1
|
Soliman A, Ismail AR, Khater M, Amr SAA, El-Gendy NS, Ezzat AA. Response surface optimization of a single-step castor oil-based biodiesel production process using a stator-rotor hydrodynamic cavitation reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60601-60618. [PMID: 39388088 DOI: 10.1007/s11356-024-35043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
In order to combat environmental pollution and the depletion of non-renewable fuels, feasible, eco-friendly, and sustainable biodiesel production from non-edible oil crops must be augmented. This study is the first to intensify biodiesel production from castor oil using a self-manufactured cylindrical stator-rotor hydrodynamic cavitation reactor. In order to model and optimize the biodiesel yield, a response surface methodology based on a 1/2 fraction-three-level face center composite design of three levels and five experimental factors was used. The predicted ideal operating parameters were found to be 52.51°C, 1164.8 rpm rotor speed, 27.43 min, 8.4:1 methanol-to-oil molar ratio, and 0.89% KOH concentration. That yielded 95.51% biodiesel with a 99% fatty acid methyl ester content. It recorded a relatively low energy consumption and high cavitation yield of 6.09 × 105 J and 12 × 10-3 g/J, respectively. The generated biodiesel and bio-/petro-diesel blends had good fuel qualities that were on par with global norms and commercially available Egyptian petro-diesel. The preliminary cost analysis assured the feasibility of the applied process.
Collapse
Affiliation(s)
- Aya Soliman
- Faculty of Engineering, Pharos University in Alexandria, PO Box 37, Sidi Gaber, Alexandria, Egypt
| | - Abdallah R Ismail
- Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Mohamed Khater
- Faculty of Engineering, Pharos University in Alexandria, PO Box 37, Sidi Gaber, Alexandria, Egypt
| | - Salem A Abu Amr
- Health Safety and Environmental Management, International College of Engineering and Management, 111 Seeb, PO 2511, Muscat, Oman
| | - Nour Sh El-Gendy
- Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt.
- Center of Excellence, October University for Modern Sciences and Arts (MSA), PO 12566, 6th of October City, Giza, Egypt.
| | - Abbas Anwar Ezzat
- Faculty of Engineering, Pharos University in Alexandria, PO Box 37, Sidi Gaber, Alexandria, Egypt
| |
Collapse
|
2
|
Soyama H, Liang X, Yashiro W, Kajiwara K, Asimakopoulou EM, Bellucci V, Birnsteinova S, Giovanetti G, Kim C, Kirkwood HJ, Koliyadu JCP, Letrun R, Zhang Y, Uličný J, Bean R, Mancuso AP, Villanueva-Perez P, Sato T, Vagovič P, Eakins D, Korsunsky AM. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging. ULTRASONICS SONOCHEMISTRY 2023; 101:106715. [PMID: 38061251 PMCID: PMC10750113 DOI: 10.1016/j.ultsonch.2023.106715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Xiaoyu Liang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Kajiwara
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | | | | | | | | | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Jozef Uličný
- Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P Mancuso
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany; Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel Eakins
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
3
|
Min Oo Y, Somnuk K. Investigation of free fatty acid reduction from mixed crude palm oil using 3D-printed rotor-stator hydrodynamic cavitation: An experimental study of geometric characteristics of the inner hole. ULTRASONICS SONOCHEMISTRY 2023; 98:106472. [PMID: 37348259 PMCID: PMC10314289 DOI: 10.1016/j.ultsonch.2023.106472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
A continuous esterification process is employed to decrease the free fatty acid (FFA) concentration of FFA-rich mixed crude palm oil. Both optimal and recommended conditions are determined for the esterification reaction conditions and the geometry of the 3D-printed rotor design in the rotor-stator hydrodynamic cavitation reactor. This study is primarily concerned with the effect of the cavitation device configuration, especially the rotor design, on FFA reduction. Instead of conventional spherical or cylindrical drilled holes, a point angle cone-shaped hole is used to create cavities over the rotor surface. These point angles are adjusted to clarify their effect on FFA reduction. The response surface methodology is applied to determine the optimal concentrations of methanol and sulfuric acid, rotor speed, hole diameter and depth, and cone point angle. The recommended conditions are 20.8 wt% methanol, 2.6 wt% sulfuric acid, 3000 rpm, 5 mm hole diameter, 5 mm hole depth, and 110°, respectively. Under this configuration, the FFA content is reduced from 12.014 wt% to around 1 wt%. A maximum yield of 97.34 vol% esterified oil is obtained through a completed phase separation step, and 93.31 vol% pure oil is collected after the cleansing step. The recommended conditions result in reduced chemical usage, cheaper FFA reduction, and lower environmental impact. This creative rotor design effectively improves our understanding of the geometry of the cavitation device, thus enhancing the cavitation effect in industrial operations.
Collapse
Affiliation(s)
- Ye Min Oo
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krit Somnuk
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Research Center, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
4
|
Patil A, Baral SS, Mohanty DK, Rane NM. Preparation, Characterization, and Evaluation of Emission and Performance Characteristics of Thumba Methyl Ester (Biodiesel). ACS OMEGA 2022; 7:41651-41666. [PMID: 36406495 PMCID: PMC9670911 DOI: 10.1021/acsomega.2c05658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Thumba oil with a higher triglyceride content can be a promising feed for synthesizing a fatty acid alkyl ester as an alternative to pure diesel. The current study investigates the emission and performance characteristics of thumba methyl ester (TME) in compression ignition (CI) engines corresponding to variable loads and compression ratios (CRs), respectively. TME was prepared at an optimized pressure of 5 bar by hydrodynamic cavitation. The properties of TME-diesel blends with varied volume percentages of biodiesel, such as 5, 10, 15, 20, and 25, denoted B5, B10, B15, B20, and B25, respectively, were compared to pure TME (100% biodiesel) and pure diesel (100%). The B20 biodiesel blend has been observed as the optimal one based on the lower emission composition and higher brake thermal efficiency. For B20 fuel, injection at 23° before the top dead center (TDC) and a CR of 18 resulted in the lowest brake specific fuel consumption of 0.32 kg/kW h and a maximum brake thermal efficiency of 36.5%. Using titanium dioxide nanoparticles in the pre-stage of TME manufacturing has ultimately reduced the nitrogen oxide, hydrocarbon, and carbon monoxide emissions. At a CR of 18 and advanced injection 23° before TDC for a CI engine, TME derived from thumba oil has the potential to be a viable diesel substitute.
Collapse
Affiliation(s)
- Abhijeet
D. Patil
- School
of Chemical Engineering, MIT Academy of
Engineering (AOE), Pune, Maharashtra412105, India
| | - Saroj Sundar Baral
- Department
of Chemical Engineering, BITS Pilani K K
Birla, Goa Campus, Goa403726, India
| | - Dillip Kumar Mohanty
- School
of Mechanical Engineering, VIT-AP University, Andhra Pradesh522237, India
| | - Nitin M. Rane
- Avantika
University, Ujjain, Madhya Pradesh456006, India
| |
Collapse
|
5
|
Anak Erison AE, Tan YH, Mubarak NM, Kansedo J, Khalid M, Abdullah MO, Ghasemi M. Life cycle assessment of biodiesel production by using impregnated magnetic biochar derived from waste palm kernel shell. ENVIRONMENTAL RESEARCH 2022; 214:114149. [PMID: 36007570 DOI: 10.1016/j.envres.2022.114149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Biodiesel is renewable, biodegradable, biocompatible (non-toxic) and environmentally friendly, which emits less pollution than traditional fossil-based diesel, making it the most promising and ideal option. However, biodiesel is facing many current issues, mostly related to the utilisation of homogeneous catalytic technology, and this circumstance obstructs its potential development and advancement. Therefore, new pathways for biodiesel production need to be explored, and the aforementioned issues need to be addressed. Recently, a study was conducted on the impregnated magnetic biochar derived from a waste palm kernel shell (PKS) catalyst that can replace conventional catalysts due to its reusability property. Nevertheless, the environmental impacts of impregnated magnetic biochar derived from waste PKS catalyst for biodiesel production are yet to be studied. This study focuses on the evaluation of the life cycle assessment (LCA) of palm-based cooking oil for biodiesel production catalysed by impregnated magnetic biochar derived from waste PKS. Simapro was used in this study to evaluate the impact assessment methodologies. Case 1 (6.64 × 102 Pt) has contributed less to environmental impacts than Case 2 (1.83 × 103 Pt). This indicates purchasing refined palm oil for biodiesel production may reduce environmental impacts by 64% compared to producing biodiesel from raw fruit bunches. In the midpoint assessment, the transesterification process was identified as the hotspot and marine aquatic ecotoxicity as the highest impact category with a value of 1.00 × 106 kg 1,4-DB eq for 1 tonne of biodiesel produced. The endpoint results showed that Case 1 revealed the greatest impact on the transesterification process, with cumulative damage of 461 Pt. Scenario without processing the raw palm fruit bunches to obtained palm oil was better than Case 2. Further research should be conducted on life cycle cost and sensitivity analysis to evaluate the economic feasibility and promote sustainable biodiesel production.
Collapse
Affiliation(s)
- Arson Edberg Anak Erison
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - N M Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Mohammad Omar Abdullah
- Department of Chemical Engineering & Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mostafa Ghasemi
- Chemical Engineering Section, Faculty of Engineering, Sohar University, 311 Sohar, Oman
| |
Collapse
|
6
|
Patil AD, Baral SS. Process intensification of thumba methyl ester (Biodiesel) production using hydrodynamic cavitation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ahmad MA, Letchumanan A, Samsuri S, Mazli WNA, Md Saad J. Parametric study of glycerol and contaminants removal from biodiesel through solvent-aided crystallization. BIORESOUR BIOPROCESS 2021; 8:54. [PMID: 38650236 PMCID: PMC10991521 DOI: 10.1186/s40643-021-00409-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/20/2021] [Indexed: 11/10/2022] Open
Abstract
At present, biodiesel is known as an alternative fuel globally. It is also known that the purification of biodiesel before consumption is mandatory to comply with international standards. Commonly, purification using water washing generates a massive amount of wastewater with a high content of organic compounds that can harm the environment. Therefore, this study applied and tested a waterless method, i.e., the solvent-aided crystallization (SAC), to remove glycerol and other traces of impurities in the crude biodiesel. The parameters of coolant temperature, crystallization time, and stirring rate on the SAC system were investigated. It was discovered that with 14 °C coolant temperature, 300 RPM and higher cooling time result in the highest percentage of FAME up to 99.54%, which indicates that contaminants' presence is limited in the purified biodiesel. The use of 1-butanol as the solvent for crystallization process remarkably enhanced the separation and improved the higher biodiesel quality.
Collapse
Affiliation(s)
- Mohd Afnan Ahmad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Arun Letchumanan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Shafirah Samsuri
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
- HICoE Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Wan Nur Athirah Mazli
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Juniza Md Saad
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Nyabau Road, 97008, Bintulu, Sarawak, Malaysia
| |
Collapse
|