1
|
Al Zahra W, Ikhsan Shiddieqy M, Anisa R, Yani A, Priyo Purwanto B. The dynamics of nitrous oxide and methane emissions from various types of dairy manure at smallholder dairy farms as affected by storage periods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:10-20. [PMID: 38704922 DOI: 10.1016/j.wasman.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Storing manure emits greenhouse gas (GHG) emissions, including nitrous oxide (N2O) and methane (CH4). However, the emissions from types of manure stored at smallholder dairy farms remains unknown. Hence, the study aims to analyse the dynamics of N2O and CH4 from different types of dairy manure as affected by storage periods. We collected samples from fresh manure (FM-DF1), manure from communal ponds in an urban dairy farm (IP-DF1, FP-DF1, MS-DF1), fresh manure from an urban dairy farm (FM-DF2), and fresh (FM-DF3), separated (FS-DF3), and fermented manure (FR-DF3) from a peri-urban dairy farm, and stored them for eight weeks and analyse them using the closed chamber method. The changes of manure composition including total solids (TS), nitrogen (N), ammonia-nitrogen (N-NH3), and carbon (C) were analysed. Results indicated an increase TS in all treatments except for MS-DF1, while N, N-NH3, and C content decreased in all treatments. The N2O emissions formed at the start, peaked in the middle, and declined towards the end storage period. The CH4 emissions peaked at the start and decreased until the end storage period. Treatment FM-DF2 yield highest cumulative of N2O (0.82 g/m2) and CH4 (41.63 g/m2) compared to other fresh manure treatment. A mixed model analysis detected a significant interaction (p < 0.05) between manure types and storage periods. In conclusion, manure types and storage periods affect the emissions. Changes in manure concentration during storage and animal diets are two important factors influencing emissions. Strategies to reduce emissions include reducing moisture content in manure, shortening storage periods, and improving feed quality.
Collapse
Affiliation(s)
- Windi Al Zahra
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, P.O. Box 16680, Bogor, West Java, Indonesia.
| | - Mohammad Ikhsan Shiddieqy
- Research Centre for Animal Husbandry, National Research and Innovation Agency (BRIN), P.O Box 16911, Cibinong, West Java, Indonesia
| | - Rahma Anisa
- Department of Statistics, Faculty of Mathematics and Natural Sciences, IPB University, P.O Box 16680, Bogor, West Java, Indonesia
| | - Ahmad Yani
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, P.O. Box 16680, Bogor, West Java, Indonesia
| | - Bagus Priyo Purwanto
- College of Vocational Studies, IPB University, P.O Box 16128 Bogor, West Java, Indonesia
| |
Collapse
|
2
|
Fang C, Qu H, Yang S, He G, Su Y, He X, Huang G. Micro-positive pressure significantly decreases greenhouse gas emissions by regulating archaeal community during industrial-scale dairy manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121163. [PMID: 38749130 DOI: 10.1016/j.jenvman.2024.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
In this study, the effects of micro-positive pressure formed by covering with a semipermeable membrane in the heating phase of dairy manure composting on greenhouse gas emissions and the mechanism of reducing methane emissions by the archaeal community were investigated. A large-scale experiment was conducted with semipermeable membrane-covered composting (SMC), forced aeration composting (FAC), and traditional static composting (TSC) groups. The results showed that the oxygen concentration and methanogen abundance were key factors in regulating methane emissions. In the heating phase of SMC, the micro-positive pressure could enhance the O2 utilization rate and heating rate, resulting in Methanobrevibacter and Methanobacterium greatly decreasing, and the abundance of mcrA decreased by 90.03%, while that of pmoA did not increase. Compared with FAC and TSC, the cumulative methane emissions in SMC decreased by 51.75% and 96.04%, respectively. Therefore, the micro-positive pressure could effectively reduce greenhouse gas emissions by inhibiting the growth of methanogens.
Collapse
Affiliation(s)
- Chen Fang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China; Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Yang Y, Chen W, Liu G, Kong Y, Wang G, Yin Z, Li G, Yuan J. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:104-114. [PMID: 37167708 DOI: 10.1016/j.wasman.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
4
|
Jorge MF, da Silva LDB, Silva JBG, Alves DG, Huther CM, Cecchin D, Guerra JGM, Dos Santos LMM, Francisco JP, de Melo ACF, Nascentes AL, Caletti RPK. Biological pilot treatment reduces physicochemical and microbiological parameters of dairy cattle wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34775-34792. [PMID: 36520290 DOI: 10.1007/s11356-022-24681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The objectives of the present study were to characterize and evaluate a pilot treatment unit (PTU) for dairy cattle wastewater (DCW) in relation to its efficiency in reducing the physicochemical and microbiological parameters and possible application of this fertilizer in organic production. A PTU was set up, composed of the following elements: a dung pit of 7.8 m3, already in place; a septic tank; a set of anaerobic biological filters comprising an upflow filter and a downward-flow filter filled with fragments PVC corrugated conduit; and two constructed wetland systems (CWSs) of horizontal subsurface flow in two parallel routes (Routes 1 and 2), controlled by means of a flow rate divider box. Route 1 passed through CWS 1 cultivated with cattail (Typha domingensis) and Route 2 passed through CWS 2 cultivated with vetiver grass (Chrysopogon zizanioides). To evaluate the treatment stages, biweekly investigations were carried out to collect effluent samples. The results of monitoring, in absolute values, were evaluated by means of the medians and variation coefficients and compared by means of Kruskal-Wallis non-parametric test followed by the Student Newman Keuls test. The treatment efficiencies of Routes 1 and 2 were calculated. The influence of vetiver on the removal of nutrients from the DCW was analyzed and the productivity estimate (t.ha-1) was performed. CWS 1 was not able to reduce the organic load indices, but it was able to retain fatty material and sodium. CWS 2 showed a reduction in nitrogenous forms and also for other nutrients, achieving the greatest removal of sodium and greatest decay of fecal contamination indicators, thermotolerant coliforms (56.13%), and E. coli (46.82%).
Collapse
Affiliation(s)
- Marcos Filgueiras Jorge
- Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 07, Seropédica, RJ, 23890-000, Brazil
| | - Leonardo Duarte Batista da Silva
- Technology and Innovation in Agriculture, Federal Rural University of Rio de Janeiro, BR 465, Km 47, Seropédica, RJ, 23890-000, Brazil
| | - Jonathas Batista Gonçalves Silva
- Department of Environmental and Sanitary Engineering, Federal University of Juiz de Fora, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Dinara Grasiela Alves
- Engineering Department, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 47, Seropédica, RJ, 23890-000, Brazil
| | - Cristina Moll Huther
- Department of Agricultural and Environmental Engineering, Fluminense Federal University (UFF), R. Passo da Pátria, 152, Niterói, RJ, 24210-240, Brazil.
| | - Daiane Cecchin
- Department of Agricultural and Environmental Engineering, Fluminense Federal University (UFF), R. Passo da Pátria, 152, Niterói, RJ, 24210-240, Brazil
| | - José Guilherme Marinho Guerra
- Brazilian Agricultural Research Corporation (EMBRAPA) National Agrobiology Research Center, Solos Laboratory, Seropédica, RJ, 23891-000, Brazil
| | | | - João Paulo Francisco
- Department of Agronomic Sciences, State University of Maringá, Estrada da Paca, Umuarama, PR, 87502-970, Brazil
| | | | - Alexandre Lioi Nascentes
- Technology and Innovation in Agriculture, Federal Rural University of Rio de Janeiro, BR 465, Km 47, Seropédica, RJ, 23890-000, Brazil
| | | |
Collapse
|
5
|
Opoola O, Shumbusho F, Hambrook D, Thomson S, Dai H, Chagunda MGG, Capper JL, Moran D, Mrode R, Djikeng A. From a documented past of the Jersey breed in Africa to a profit index linked future. Front Genet 2022; 13:881445. [PMID: 36386792 PMCID: PMC9649858 DOI: 10.3389/fgene.2022.881445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/06/2022] [Indexed: 09/08/2024] Open
Abstract
The paper reports on the prevalence and performance of the Jersey cattle breed in Africa, highlighting its geographic distribution and describing the reported performance and other related characteristics from the early 1900s to the present day. The review examines the contribution of Jersey cattle in increasing the volume and efficiency of milk production across the continent. Data relating to the Jersey cattle breed has been reported in more than 30 African countries based on available material published between 1964 and 2020. A key encompassing parameter of any reference was a well-described consideration of the Jersey cattle breed (as pure or crossbred with other exotic and/or indigenous breeds) with reported performance within a variety of production systems and agro-ecologies in Africa. The main focus was on breed and performance parameters, breed types, percentage of different breed types in specific environments, reproduction method and fertility; survival and longevity; disease incidence; and production efficiency metrics such as: feed efficiency (milk unit per dry matter intake, DMI) and milk yield (MY) per unit of body weight (BW). The main performance descriptors identified were based on observations on resilience under both abiotic (heat, nutrition) and biotic (incidences of pests and diseases) stressors, milk production, BW, nutrition and utilisation of feed resources. From the literature consulted, we grouped key dairy cattle performance characteristics reported in each country under the following areas to aid comparisons; a. Milk production (Milk nutrient value, daily MY, lifetime MY and annual MY); b. Fertility traits and AFC; c. Survival and longevity, d. Production efficiency (Feed efficiency, milk per unit BW and milk per unit DMI and e. Disease incidences. Results of the review showed that the smaller stature and lower maintenance nutrient requirements of the Jersey breed means that it is better suited to tolerate the tropical production conditions in the African small-scale dairy farming sector. Detailed analyses on MY and survival showed that Jersey crosses with exotic and African indigenous breeds performed better than purebred cattle with strong evidence to support the suitability of the Jersey breed in crossbreeding with indigenous breeds for use in smallholder production systems.
Collapse
Affiliation(s)
- Oluyinka Opoola
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Felicien Shumbusho
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
| | - David Hambrook
- Royal Jersey Agricultural and Horticultural Society (RJAHS), Trinity, Jersey
| | - Sam Thomson
- Royal Jersey Agricultural and Horticultural Society (RJAHS), Trinity, Jersey
| | - Harvey Dai
- Land O’Lakes Venture37®, Arden Hills, MN, United States
| | - Mizeck G. G. Chagunda
- Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany
| | - Jude L. Capper
- Livestock Sustainability Consultancy, Oxfordshire, United Kingdom
| | - Dominic Moran
- Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, United Kingdom
| | - Raphael Mrode
- Scotlands’ Rural College, Roslin Institute Building, Edinburgh, United Kingdom
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Fang C, Zhou L, Liu Y, Xiong J, Su Y, Lan Z, Han L, Huang G. Effect of micro-aerobic conditions based on semipermeable membrane-covered on greenhouse gas emissions and bacterial community during dairy manure storage at industrial scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118879. [PMID: 35081462 DOI: 10.1016/j.envpol.2022.118879] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the greenhouse gas emissions of solid dairy manure storage with the micro-aerobic group (MA; oxygen concentration <5%) and control group (CK; oxygen concentration <1%), and explained the difference in greenhouse gas emissions by exploring bacterial community succession. The results showed that the MA remained the micro-aerobic conditions, which the maximum and average oxygen concentrations were 4.1% and 1.9%, respectively; while the average oxygen concentrations of the CK without intervention management was 0.5%. Compared with the CK, carbon dioxide and methane emissions in MA were reduced by 78.68% and 99.97%, respectively, and nitrous oxide emission was increased by almost three times with a small absolute loss, but total greenhouse gas emissions decreased by 91.23%. BugBase analysis showed that the relative abundance of aerobic bacteria in CK decreased to 0.73% on day 30, while that in MA increased to 6.56%. Genus MBA03 was significantly different between the two groups (p < 0.05) and was significantly positively correlated with carbon dioxide and methane emissions (p < 0.05). A structural equation model also revealed that the oxygen concentration and MBA03 of the MA had significant direct effects on methane emission rate (p < 0.001). The research results could provide theoretical basis and measures for directional regulation of greenhouse gas emission reduction during dairy manure storage.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ling Zhou
- Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Xinjiang, 843300, China
| | - Ya Liu
- Chinese Academy of Agricultural Mechanization Sciences, Beijing, 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zefeng Lan
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal 2022; 16:100445. [DOI: 10.1016/j.animal.2021.100445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
|
8
|
Moisture-Induced Pattern of Gases and Physicochemical Indices in Corn Straw and Cow Manure Composting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the altering effect of moisture on the emission pattern of gases and the evolutionary dynamics of physicochemical indices in corn straw and cow manure composting. Exploring this effect was reasonable to unravel the use of moisture as a cheap alternative to control gaseous emissions and improve the final properties of compost. The nutrient dynamics of the compost showed 21.6% losses in total organic carbon content, with a 33.3% increase in total nitrogen content at the end of composting. All the gases (CH4, CO2, N2O and NH3) yielded a common emission pattern despite the differences in moisture content. Except for CH4, the peak and stable emission periods of all the gases were observed on the 5th day (thermophilic phase) and after the 27th day (late mesophilic phase) of composting, respectively. Emission reductions of 89%, 91%, 95% and 100% were recorded for CH4, CO2, N2O and NH3, respectively, during the late mesophilic phase of composting. From the study, the 65% moisture content was efficient in reducing the loss rate of the gasses and nutrient contents of the compost. This study would enable farmers to channel organic residues generated into compost while minimizing pollution and nutrient losses associated with the composting process.
Collapse
|