1
|
Cucina M, Massaccesi L, Garfí M, Saponaro V, Muñoz Muñoz A, Escalante H, Castro L. Application of digestate from low-tech digesters for degraded soil restoration: Effects on soil fertility and carbon sequestration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178854. [PMID: 39954479 DOI: 10.1016/j.scitotenv.2025.178854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The application of digestate to soil represents a common practice for its recycling, but its application to degraded lands to achieve their restoration and sequester organic C into the soil is still almost unexplored. In this context, this study describes a first attempt to use digestate from a low-tech digester for degraded soil restoration in Colombia. An experimental site (2700 m2) previously subjected to intensive mono-cultivation was treated with digestate application for 4 months (40 Mg ha-1 dry weight). Soil samples were collected (0, 4, 8, and 12 months after digestate application) to evaluate chemical and biochemical parameters, as well as total soil organic C stocks and their fractionation among different pools. Results showed that soil pH (from 5.3 to 6), total organic C (from 1.9 to 3 %), total N (from 0.17 to 0.27 %), available P (from 10 to 68 mg kg-1), exchangeable nutrients content (K, Mg, Ca, Fe), respiration rate, microbial biomass C and N, and metabolic activities exhibited an increasing trend after digestate application, leading to a recovery of the soil biological fertility (i.e. biological fertility index increased from 8 to 19 in a range from 1 to 20). Digestate promoted C sequestration in the more stable and recalcitrant pools. Soil application of digestate from low-tech digesters may thus represent a win-win resource recovery strategy to enhance degraded land recovery, contribute to climate change mitigation and support rural communities. In the circular bioeconomy context, afforestation appears as the most promising strategy to take advantage of the restored land.
Collapse
Affiliation(s)
- Mirko Cucina
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean, Via della Madonna Alta 128, 06128 Perugia, Italy.
| | - Luisa Massaccesi
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean, Via della Madonna Alta 128, 06128 Perugia, Italy
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya BarcelonaTech (UPC), c/ Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain
| | - Vincenzo Saponaro
- National Research Council of Italy, Forest Modelling Laboratory, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Madonna Alta 128, 06128 Perugia, Italy
| | - Alexander Muñoz Muñoz
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Humberto Escalante
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Liliana Castro
- Centro de Estudios e Investigaciones Ambientales (CEIAM), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia
| |
Collapse
|
2
|
Cucina M, Castro L, Font-Pomarol J, Escalante H, Muñoz-Muñoz A, Ferrer I, Garfí M. Vermifiltration as a green solution to promote digestate reuse in agriculture in small-scale farms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122164. [PMID: 39142104 DOI: 10.1016/j.jenvman.2024.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Digestates from low-tech digesters need to be post-treated to ensure their safe agricultural reuse. This study evaluated, for the first time, vermifiltration as a post-treatment for the digestate from a low-tech digester implemented in a small-scale farm, treating cattle manure and cheese whey under psychrophilic conditions. Vermifiltration performance was monitored in terms of solids, organic matter, nutrients, and pathogens removal efficiency. In addition, the growth of earthworms (Eisenia foetida) and their role in the process was evaluated. Finally, the vermicompost and the effluent of the vermifilter were characterized in order to assess their potential reuse in agriculture. Vermifilters showed high removal efficiency of chemical oxygen demand (55-90%), total solids (60-80%), ammonium nitrogen (83-97%), and phosphate-P (28-49%). Earthworms effectively grew and reproduced on digestate (i.e. earthworms number increased by 183%), enhancing the vermifiltration performance, while reducing clogging and odour-related issues. Both the vermicompost and effluent produced complied with legislation limits established for soil improvers and wastewater for fertigation, respectively. Indeed, there was an absence of pathogens and non-detectable heavy metals concentrations. Vermifiltration may be thus considered a suitable post-treatment option for the digestate from low-tech digesters, allowing for its safe agricultural reuse and boosting the circular bioeconomy in small-scale farms.
Collapse
Affiliation(s)
- Mirko Cucina
- National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean, Via della Madonna Alta 128, 06123, Perugia, Italy
| | - Liliana Castro
- Centro de Estudios e Investigaciones Ambientales (CEIAM), Universidad Industrial de Santander, Carrera 27, Calle 9, Bucaramanga, Colombia
| | - Jana Font-Pomarol
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain
| | - Humberto Escalante
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Alexander Muñoz-Muñoz
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander. Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya · BarcelonaTech, c/ Jordi Girona, 1-3, Building D, E-08034, Barcelona, Spain.
| |
Collapse
|
3
|
Wybraniec C, Cournoyer B, Moussard C, Beaupère M, Lusurier L, Leriche F, Fayolle K, Sertillanges N, Haudin CS, Houot S, Patureau D, Gagne G, Galia W. Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. Front Microbiol 2024; 15:1346715. [PMID: 39165575 PMCID: PMC11333366 DOI: 10.3389/fmicb.2024.1346715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla TEM), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants.
Collapse
Affiliation(s)
- Caroline Wybraniec
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Benoit Cournoyer
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Cécile Moussard
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Marion Beaupère
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Léa Lusurier
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Françoise Leriche
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Karine Fayolle
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | | | - Claire-Sophie Haudin
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | - Sabine Houot
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | | | - Geneviève Gagne
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Wessam Galia
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| |
Collapse
|
4
|
Kiruba N JM, Saeid A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int J Mol Sci 2022; 23:13049. [PMID: 36361844 PMCID: PMC9656562 DOI: 10.3390/ijms232113049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2023] Open
Abstract
The plant-microbe holobiont has garnered considerable attention in recent years, highlighting its importance as an ecological unit. Similarly, manipulation of the microbial entities involved in the rhizospheric microbiome for sustainable agriculture has also been in the limelight, generating several commercial bioformulations to enhance crop yield and pest resistance. These bioformulations were termed biofertilizers, with the consistent existence and evolution of different types. However, an emerging area of interest has recently focused on the application of these microorganisms for waste valorization and the production of "bio-organic" fertilizers as a result. In this study, we performed a bibliometric analysis and systematic review of the literature retrieved from Scopus and Web of Science to determine the type of microbial inoculants used for the bioconversion of waste into "bio-organic" fertilizers. The Bacillus, Acidothiobacillus species, cyanobacterial biomass species, Aspergillus sp. and Trichoderma sp. were identified to be consistently used for the recovery of nutrients and bioconversion of wastes used for the promotion of plant growth. Cyanobacterial strains were used predominantly for wastewater treatment, while Bacillus, Acidothiobacillus, and Aspergillus were used on a wide variety of wastes such as sawdust, agricultural waste, poultry bone meal, crustacean shell waste, food waste, and wastewater treatment plant (WWTP) sewage sludge ash. Several bioconversion strategies were observed such as submerged fermentation, solid-state fermentation, aerobic composting, granulation with microbiological activation, and biodegradation. Diverse groups of microorganisms (bacteria and fungi) with different enzymatic functionalities such as chitinolysis, lignocellulolytic, and proteolysis, in addition to their plant growth promoting properties being explored as a consortium for application as an inoculum waste bioconversion to fertilizers. Combining the efficiency of such functional and compatible microbial species for efficient bioconversion as well as higher plant growth and crop yield is an enticing opportunity for "bio-organic" fertilizer research.
Collapse
Affiliation(s)
- Jennifer Michellin Kiruba N
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| | - Agnieszka Saeid
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University Science and Technology, 50-373 Wroclaw, Poland
| |
Collapse
|