1
|
Hao W, Wang D, Yu M, Cai Y, Wang Y. Analysis of changes and influencing factors of stablization treatment effects and bioavailability after freeze-thaw: a case study of Pb-contaminated soil in a non-ferrous metal factory in Northeast China. Front Microbiol 2024; 15:1512899. [PMID: 39741591 PMCID: PMC11685109 DOI: 10.3389/fmicb.2024.1512899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Solidification/Stabilization techniques are commonly used for the containment and isolation of Pb-contaminated soil, but they cannot reduce the amount of contaminants. Freeze - thaw after stabilization may affect Pb's environmental behavior and increase the uncertainty of environmental risk. Methods In vitro experiments can simulate the bioavailability of heavy metals to the human body, accurately assessing their environmental health risks. In this study, soil samples from Pbcontaminated site are collected from a non-ferrous metal plant in Northeastern China. Through the results of stabilization and freeze-thaw after stabilization experiments, analyzing the changes of physicochemical property, Pb treatment effects (total concentration, leaching concentration, and occurrence forms) and microbial communities, and studying the influencing factors of Pb's bioavailability. Result and discussion The results show that stabilization and freeze - thaw after stabilization directly alter soil physicochemical property, thereby affecting the leaching and occurrence form of Pb and microbial communities, and closely related to changes in bioavailability of Pb. Both stabilization and freeze-thaw treatment reduced the leaching concentration of Pb, decreased the proportion of available Pb (acid-soluble state, oxidation state and reduction state), increased the bioavailability of Pb in the gastric phase, but decreased in the intestinal phase; And the dominant bacterial phylum in the soil changed to Firmicutes, the dominant bacterial genus changed to Bacillus; The analysis of the results shows that the bioavailability of Pb is related to soil pH, cation exchange capacity (CEC), soil organic matter (SOM), soil moisture content (SMC), Pb (leaching, acid soluble state, oxidation state, residual state), types of microorganisms in soil.
Collapse
Affiliation(s)
- Wangwang Hao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Dongdong Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Miao Yu
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Yun Cai
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Yu Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
2
|
Li H, Chi Z, Li J, Luo Y. Editorial: Microbial ecological and biogeochemical processes in the soil-vadose zone-groundwater habitats, volume II. Front Microbiol 2024; 15:1486331. [PMID: 39314873 PMCID: PMC11417021 DOI: 10.3389/fmicb.2024.1486331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Yihao Luo
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
4
|
Yang C, Chen Y, Zhang Q, Qie X, Chen J, Che Y, Lv D, Xu X, Gao Y, Wang Z, Sun J. Mechanism of microbial regulation on methane metabolism in saline-alkali soils based on metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118771. [PMID: 37591100 DOI: 10.1016/j.jenvman.2023.118771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Saline-alkali soils constitute a globally important carbon pool that plays a critical role in soil carbon dioxide (CO2) and methane (CH4) fluxes. However, the relative importance of microorganisms in the regulation of CH4 emissions under elevated salinity remains unclear. Here, we report the composition of CH4 production and oxidation microbial communities under five different salinity levels in the Yellow River Delta, China. This study also obtained the gene number of microbial CH4 metabolism via testing the soil metagenomes, and further investigated the key soil factors to determine the regulation mechanism. Spearman correlation analysis showed that the soil electrical conductivity, salt content, and Na+, and SO42- concentrations showed significantly negative correlations with the CO2 and CH4 emission rates, while the NO2--N concentration and NO2-/NO3- ratio showed significantly positive correlations with the CO2 and CH4 emission rates. Metabolic pathway analysis showed that the mcrA gene for CH4 production was highest in low-salinity soils. By contrast, the relative abundances of the fwdA, ftr, mch, and mer genes related to the CO2 pathway increased significantly with rising salinity. Regarding CH4 oxidation processes, the relative abundances of the pmoA, mmoB, and mdh1 genes transferred from CH4 to formaldehyde decreased significantly from the control to the extreme-salinity plot. The greater abundance and rapid increase of methanotrophic bacteria compared with the lower abundance and slow increase in methanogenic archaea communities in saline-alkali soils may have increased CH4 oxidation and reduced CH4 production in this study. Only CO2 emissions positively affected CH4 emissions from low- to medium-salinity soils, while the diversities of CH4 production and oxidation jointly influenced CH4 emissions from medium- to extreme-salinity plots. Hence, future investigations will also explore more metabolic pathways for CH4 emissions from different types of saline-alkali lands and combine the key soil enzymes and regulated biotic or abiotic factors to enrich the CH4 metabolism pathway in saline-alkali soils.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yitong Chen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xihu Qie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Jinxia Chen
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yajuan Che
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Dantong Lv
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinyu Xu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yuxuan Gao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
5
|
Hu L, Cheng N, Wang Y, Zhang D, Xu K, Lv X, Long Y. Arsenate microbial reducing behavior regulated by the temperature fields in landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:366-375. [PMID: 37343443 DOI: 10.1016/j.wasman.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Attention should be paid to the As(V) reducing behavior in landfills under different temperature fields. In this study, microcosm tests were conducted using enrichment culture from a landfill. The results revealed that the reduction rate of As(V) was significantly affected by the temperature field, with the highest reduction rate observed at 50 °C, followed by 35 °C, 25 °C, and 10 °C. Different As cycling pathways were observed under various temperature fields. At room and medium temperatures, As4S4 was detected, indicating that both biomineralization and methylation processes occurred after As(V) reduction. However, only biogenic methylation was observed under high or low temperatures, indicating that the viability and adaptability of microorganisms varied depending on the temperature field and As contents. Pseudomonas was found to be the primary genus and dominant As(V) reduction bacteria (ARB) in all reactors. The study revealed that Pseudomonas accounted for a significant proportion of arsC genes, ranging from 87.29% to 97.59%, while arsCs genes were predominantly found in Bacillales and Closestridiales, with a contribution ranging from 89.17% to 96.59%. Interestingly, Bacillus and Clostridium were found to possess arsA genes in their metagenome-ssembled genome, resulting in a higher As(V) reducing rate under medium and high temperatures. These findings underscore the importance of temperature in modulating As(V) reducing behavior and As cycling, and could have implications for managing As pollution in landfill sites.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Na Cheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Lv
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
6
|
Li H, Chi Z, Li J, Luo Y. Editorial: Microbial ecological and biogeochemical processes in the soil-vadose zone-groundwater habitats. Front Microbiol 2023; 14:1238103. [PMID: 37485498 PMCID: PMC10361609 DOI: 10.3389/fmicb.2023.1238103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zifang Chi
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Yihao Luo
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Xie Z, Jin Z, Zhang S, Chen L. Biogas utilization without desulfurization pretreatment in a bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162239. [PMID: 36796222 DOI: 10.1016/j.scitotenv.2023.162239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Utilizing biogas as a fuel for heating and power generation usually requires desulfurization pretreatment. In this study, the biogas utilization without desulfurization pretreatment in a bioelectrochemical system (BES) was explored. The results showed that the biogas-fueled BES was successfully started up within 36 d and the presence of hydrogen sulfide promoted both methane consumption and electricity generation. The optimal performance (i.e., a methane consumption of 0.523 ± 0.004 mmol/d, a peak voltage of 577 ± 1 mV, a coulomb production of 37.86 ± 0.43C/d, a coulombic efficiency of 9.37 ± 0.06 % and the maximum power density of 2.070 W/m3) was obtained under bicarbonate buffer solution and 40 °C conditions. The addition of 1 mg/L sulfide and 5 mg/L L-cysteine facilitated methane consumption and electricity generation. In the anode biofilm, the dominant bacteria were Sulfurivermis, unclassified_o__Ignavibacteriales and Lentimicrobium, while Methanobacterium, Methanosarcina and Methanothrix were the predominant archaea. Besides, the metagenomics profiles reveal that anaerobic methane oxidation and electricity generation were closely related to sulfur metabolism. These findings provide a novel approach for utilizing biogas without desulfurization pretreatment.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixin Jin
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
8
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
9
|
Dang Q, Zhao X, Li Y, Xi B. Revisiting the biological pathway for methanogenesis in landfill from metagenomic perspective-A case study of county-level sanitary landfill of domestic waste in North China plain. ENVIRONMENTAL RESEARCH 2023; 222:115185. [PMID: 36586711 DOI: 10.1016/j.envres.2022.115185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Landfill is the third highest contributor to anthropogenic methane (CH4) emissions, produced primarily by the anaerobic decomposition of organic matter by microbes. However, how various microbial metabolic processes contribute to CH4 production in domestic waste landfill remains elusive. We addressed this problem by investigating the methanogenic communities, methanogenic functional genes, KEGG modules and KEGG pathways in a county-level MSW sanitary landfill in North China Plain, China. Results showed that Methanomicrobiales, Methanobacteriales, Methanosarcinales, Micrococcales, Corynebacteriales and Bacillales were the dominant methanogens. M00357, M00346, M00567 and M00563 were the four major methane metabolic modules. The most abundant genes were ACSS, ackA and fwd with the relative abundance of 19.26-54.54%, 6.14-25.78% and 6.76-16.51%, respectively. The two essential genes of methanogenesis were detected with the relative abundance of 2.66-9.58% (mtr) and 1.63-9.14% (mcr). These findings indicated that acetotrophic and hydrogenotrophic methanogenesis were the major pathways. Methanomicrobiales, Methanosarcinales and Clostridiales were the key microbes to these pathways identified by co-occurrence network. Analysis of relative contribution of species to function further showed that Micrococcales, Corynebacteriales and Bacillales were special contributors to acetotrophic methanogenesis pathway. Redundancy analysis revealed that above functional genes and microbes were mainly controlled by NH4+ and pH. Our results can help to provide develop the fine management strategies for methane utilization and emission reduction in landfill.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanping Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Hu L, Wang Y, Ci M, Long Y. Unravelling microbial drivers of the sulfate-reduction process inside landfill using metagenomics. CHEMOSPHERE 2023; 313:137537. [PMID: 36521740 DOI: 10.1016/j.chemosphere.2022.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is one of the common landfill odor. This research demonstrates that the sulfate transformation behavior is significantly enhanced during the landfill process, accompanied by a shift in microbial structure. The relative abundance of dissimilatory sulfate reduction (DSR) and thiosulfate oxidation by SOX (sulfur-oxidation) complex gradually decreases through the landfill processes while the assimilatory sulfate reduction (ASR) demonstrates the opposite behavior. The major module for landfill sulfate reduction is ASR, accounting for 31.72% ± 2.84% of sulfate metabolism. Based on the functional genes for the sulfate pathway, the drivers for sulfate biotransformation in landfills were determined and further identified their contribution in the sulfate metabolism during landfill processes. Pseudomonas, Methylocaldum, Bacillus, Methylocystis and Hyphomicrobium were the top 5 contributors for ASR pathway, and only one genus Pseudomonas was found for DSR pathway. Among the 26 high-quality metagenome-assembled genomes of sulfate functional species, 24 were considered novel species for sulfuric metabolism. Overall, this study provides unique insight into the sulfate transformation process related to the H2S odor control in landfill management.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
11
|
Li X, Zhao Y, Xu A, Chang H, Lin G, Li R. Conductive biochar promotes oxygen utilization to inhibit greenhouse gas emissions during electric field-assisted aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156929. [PMID: 35753460 DOI: 10.1016/j.scitotenv.2022.156929] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The insufficient oxygen supply in partial materials commonly results in significant greenhouse gas emissions during composting, which is essentially attributed to the poor electron transfer in the composting systems. Electric field-assisted aerobic composting (EAC) is considered effective in mitigation of greenhouse gas emissions, but the poor conductivity of composting materials hampers its efficiency and applicability. In this study, conductive biochar was added in the EAC system to investigate its effects on the performance and greenhouse gas emissions during the composting processes. In the system of EAC with biochar, the electrochemical properties, O2 utilization and composting performance were improved compared to the systems without biochar or assisted electric field. The maximum current of EAC with biochar was 0.32 A, higher than that without biochar (0.28A). Particularly, the peak concentrations of CH4 and N2O in the EAC system with biochar were 0.86 mg·kg-1 and 1.43 mg·kg-1, which were 45 % and 27 % lower than those in the EAC without biochar, respectively. The direct global warming potential attributed to CO2, CH4, and N2O was 3.96 g CO2-equivalent·kg-1 dry mass, providing a 31.6 % reduction compared to conventional composting. Microbial analyses revealed that biochar increased the relative abundance of electroactive bacteria including Bacillus, Tepidimicrobium and Corynebacterium. In contrast, the abundances of potential nitrifying and denitrifying bacterial species of Pseudomonas, Corynebacterium, Acinetobacter, and Bacillus were significantly lowered in the biochar-assisted EAC system (11.35 %). The results showed that the addition of biochar was able to promote the electrical conductivity of composting materials and accelerate the organic oxidation process by increasing O2 consumption, and accordingly change the dominant microbial community on both composting and biochar particles. This study verified the mechanism of the effectiveness of biochar in greenhouse gas control in composting processes, and thus provided evidence for facilitating the sustainable development of composting technologies.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ankun Xu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huiming Chang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guangnv Lin
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|