1
|
Rafieizonooz M, Kim JHJ, Khankhaje E, Rezania S. Leaching behavior of sustainable concrete made with coal ash wastes as replacement of cement and sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61437-61450. [PMID: 39422862 DOI: 10.1007/s11356-024-35250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The coal-fired power plant fly ash (FA) and bottom ash (BA) are gradually used as alternative materials in the concrete. However, knowledge of the leaching characteristics of using both incinerator ashes in concrete production is lacking. This work aimed to evaluate the leaching behavior of the FA and BA used in concrete production by employing batch and tank leaching tests. The outcomes of both leaching tests showed that there was no considerable leaching of any trace elements to the environment, and it remains much lower than standard limitations for utilization as construction materials. The results of cumulative mass discharge showed that the slope of flux time for all elements was less than 0.4 and because of that, primary surface wash-off was the main discharge process of all the heavy metals. Strength test results revealed that there was not much difference between coal ash concrete (CAC) and the control mix at the initial age of curing time. Despite that, at a long period of curing time (180 days), the compressive strength of CAC containing 20% FA as cement replacement and 100% BA as fine aggregate replacement increased by 76% due to the pozzolanic reaction of BA and FA in comparison to the normal concrete, while, due to the high porosity of BA, the workability of CAC decreased by 50%. The outcomes of the current work revealed that the combined use of FA and BA can be counted as a promising alternative in the production of sustainable concrete for structural applications toward sustainable development.
Collapse
Affiliation(s)
- Mahdi Rafieizonooz
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jang-Ho Jay Kim
- School of Civil and Environmental Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul, 03722, South Korea.
| | - Elnaz Khankhaje
- Architectural Engineering Program, School of Architecture, Seoul National University of Science and Technology, 232 Gongneung-Ro, Gongneung-Dong, Nowon-Gu, Seoul, 01811, South Korea
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
2
|
Rashid MI, Yaqoob Z, Mujtaba M, Fayaz H, Saleel CA. Developments in mineral carbonation for Carbon sequestration. Heliyon 2023; 9:e21796. [PMID: 38027886 PMCID: PMC10660523 DOI: 10.1016/j.heliyon.2023.e21796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Mineral technology has attracted significant attention in recent decades. Mineral carbonation technology is being used for permanent sequestration of CO2 (greenhouse gas). Temperature programmed desorption studies showed interaction of CO2 with Mg indicating possibility of using natural feedstocks for mineral carbonation. Soaking is effective to increase yields of heat-activated materials. This review covers the latest developments in mineral carbonation technology. In this review, development in carbonation of natural minerals, effect of soaking on raw and heat-activated dunite, increasing reactivity of minerals, thermal activation, carbonations of waste materials, increasing efficiency of carbonation process and pilot plants on mineral carbonation are discussed. Developments in carbonation processes (single-stage carbonation, two-stage carbonation, acid dissolution, ph swing process) and pre-process and concurrent grinding are elaborated. This review also highlights future research required in mineral carbonation technology.
Collapse
Affiliation(s)
- Muhammad Imran Rashid
- Chemical, Polymer and Composite Materials Engineering Department, University of Engineering and Technology, Lahore (New Campus), 39021, Pakistan
- Discipline of Chemical Engineering, University of Newcastle, Callaghan NSW 2308, Australia
| | - Zahida Yaqoob
- Department of Material Science and Engineering, Institute of Space Technology, Islamabad, 44000, Pakistan
| | - M.A. Mujtaba
- Department of Mechanical Engineering, University of Engineering and Technology (New Campus), Lahore 54890, Pakistan
| | - H. Fayaz
- Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - C Ahamed Saleel
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Asir-Abha 61421, Saudi Arabia
| |
Collapse
|
3
|
Chen Z, Zhang P, Brown KG, van der Sloot HA, Meeussen JCL, Garrabrants AC, Wang X, Delapp RC, Kosson DS. Impact of oxidation and carbonation on the release rates of iodine, selenium, technetium, and nitrogen from a cementitious waste form. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131004. [PMID: 36821900 DOI: 10.1016/j.jhazmat.2023.131004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Evaluation of the long-term retention mechanisms and potential release rates for the primary constituents of potential concern (COPCs) (i.e., Tc, I, Se, and nitrate) is necessary to determine if Cast Stone, a radioactive waste form, can meet performance objectives under near-surface disposal scenarios. Herein, a mineral and parameter set accounting for the solubility of I and Se in Cast Stone was developed based on pH-dependent and monolithic diffusion leaching test results, to extend a geochemical speciation model previously developed. The impact of oxidation and carbonation as environmental aging processes on the retention properties of Cast Stone for primary COPCs was systematically estimated. Physically, the effective diffusion coefficients of 4 COPCs in Cast Stone were increased after carbonation and/or oxidation, reflecting an increase in permeability to diffusion. Chemically, i) pH & pe conditions in the original Cast Stone were favorable for the stabilization of Tc, but not for I, Se, and N; ii) oxidation (with/without carbonation) of Cast Stone changed the pe & pH conditions to be detrimental for Tc stabilization; and iii) carbonation (with/without oxidation) of Cast Stone modified the pH & pe conditions to be beneficial for the stabilization of I (in system with Ag added) and Se.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Peng Zhang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States; Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | | | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Xinyue Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Rossane C Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
4
|
Chen Z, Zhang P, Brown KG, van der Sloot HA, Meeussen JCL, Garrabrants AC, Delapp RC, Um W, Kosson DS. Evaluating the impact of drying on leaching from a solidified/stabilized waste using a monolithic diffusion model. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:27-39. [PMID: 37080015 DOI: 10.1016/j.wasman.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The release rates of constituents of potential concern from solidified/stabilized cementitious waste forms are potentially impacted by drying, which, however, is not well understood. This study aimed to identify the impacts of drying on subsequent leaching from Cast Stone as an example of a solidified cementitious waste form. The release fluxes of constituents from monoliths after aging under 100, 68, 40, and 15 % relative humidity for 16, 32, and 48 weeks, respectively, were derived from mass transfer tank leaching tests following EPA Method 1315. A monolithic diffusion model was calibrated based on the leaching test results to simulate the leaching of major and redox-sensitive constituents from monoliths after drying. The reduction in physical retention of constituents (tortuosity-factor) in the unsaturated zone was identified as the primary impact from drying on subsequent leaching. Fluxes of both major (i.e., OH-, Na, K, Ca, Si, and Al) and redox-sensitive constituents (i.e., Tc, Cr, Fe, and S) from monoliths during leaching were well described by the model. The drying-induced reduction of tortuosity-factor and concomitant changes in porewater pH and redox conditions can significantly change the subsequent release fluxes of pH- and redox- sensitive constituents.
Collapse
Affiliation(s)
- Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Peng Zhang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States; Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | | | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Rossane C Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Wooyong Um
- Pacific Northwest National Lab., Richland, WA, United States; Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
5
|
Wang X, van der Sloot HA, Brown KG, Garrabrants AC, Chen Z, Hensel B, Kosson DS. Application and uncertainty of a geochemical speciation model for predicting oxyanion leaching from coal fly ash under different controlling mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129518. [PMID: 35999720 DOI: 10.1016/j.jhazmat.2022.129518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Three primary mechanisms (adsorption to iron oxides or analogous surfaces, co-precipitation with Ca, and substitution in ettringite) controlling oxyanion retention in coal fly ashes (CFAs) were identified by differentiating the leaching behavior of As, B, Cr, Mo, Se, and V from 30 CFAs. Fidelity evaluation of geochemical speciation modeling focused on six reference CFAs representing a range of CFA compositions, whereby different leaching-controlling mechanisms of oxyanions were systematically considered. For three reference CFAs with low Ca and S content, calibration of adsorption reactions for the diffuse double-layer model for hydrous ferric oxides improved the simultaneous prediction of oxyanion leaching, which reduced uncertainties in Se and V predictions caused by nonideal adsorption surfaces and competitive adsorption effects. For two reference CFAs with intermediate Ca content, the solubility constants for Ca-arsenates from literature and postulated phases of B, Cr, Se, and V were used to describe co-precipitation of oxyanions with Ca-bearing minerals under alkaline conditions. For the reference CFA with high Ca and S content, an ettringite solid solution was used to capture the simultaneous retention of all oxyanions at pH> 9.5. Overall, the simultaneous leaching predictions of oxyanions from a wide range of CFAs were improved by calibration of adsorption reactions and controlling solid phases.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Hans A van der Sloot
- Hans van der Sloot Consultancy, Glenn Millerhof 29, 1628 TS Hoorn, the Netherlands
| | - Kevin G Brown
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Andrew C Garrabrants
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Bruce Hensel
- Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94304, United States
| | - David S Kosson
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|