1
|
Xia R, Wang J, Yang XX, Li QH, Zhou H, Sun H, Zhang YG. Comprehensive compositional analysis of liquid organic product prepared by industrialized hydrothermal cracking of biomass waste and its potential application as fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175264. [PMID: 39106904 DOI: 10.1016/j.scitotenv.2024.175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Hydrothermal cracking involves the conversion of organic waste into efficient fertilizer through hydrolysis at temperatures ranging from 180 to 220 °C and pressures of 1.5 to 2.45 MPa, which offers significant advantages in shortening the production cycle, enhancing efficiency, and decomposing antibiotics. As a result, it holds immense practical value for promoting organic fertilizer manufacturing processes globally. The products derived from hydrothermal cracking can be categorized into solid and liquid components. Extensive research has focused on the composition and use of solids, while studies on liquids have mainly examined basic characteristics. The study aimed to comprehensively analyze the components in liquid products prepared through hydrothermal cracking and evaluate their suitability as liquid fertilizers. Specifically, we employed rigorous analytical techniques to accurately identify and quantify medium and trace elements, organic acids, amino acids, and plant growth regulators. Furthermore, we carried out a planting experiment to assess the yield and soil changes following the application of liquid products in maize cultivation. The experimental data revealed that the liquid product contained abundant medium and trace elements, along with 6.22 g/L free amino acids and 9.22 g/L organic acids. It is noteworthy that this liquid product contained 1.22 × 105 pg/mL ABA, 6.26 × 103 pg/mL IAA, 1.07 × 102 pg/mL IBA, and 3.60 × 10-2 pg/mL GA3. The utilization of this liquid product has the potential to enhance the disease resistance of maize crops and promote the accumulation of nitrate nitrogen in the soil. By understanding the composition of liquid products via hydrothermal cracking, valuable insights can be gained into their potential benefits for agricultural and ecological applications.
Collapse
Affiliation(s)
- Rui Xia
- Shanxi Research Institute for Clean Energy Tsinghua University, Taiyuan 030000, China.
| | - Jue Wang
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiao-Xiao Yang
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Qing-Hai Li
- Shanxi Research Institute for Clean Energy Tsinghua University, Taiyuan 030000, China; Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Hui Zhou
- Shanxi Research Institute for Clean Energy Tsinghua University, Taiyuan 030000, China; Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Hui Sun
- Beijing Hydecom Technology Co., Ltd., Beijing 100083, China.
| | - Yan-Guo Zhang
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Gou L, Dai L, Wang Y. Coupling of struvite crystallization and aqueous phase recirculation for hydrochar upgrading and nitrogen recovery during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172682. [PMID: 38663600 DOI: 10.1016/j.scitotenv.2024.172682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.
Collapse
Affiliation(s)
- Le Gou
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China
| | - Liyi Dai
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| | - Yuanyuan Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
3
|
Shan G, Wei X, Li W, Liu J, Bao S, Wang S, Zhu L, Xi B, Tan W. Effect of aqueous phase from hydrothermal carbonization of sewage sludge on heavy metals and heavy metal resistance genes during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134398. [PMID: 38677124 DOI: 10.1016/j.jhazmat.2024.134398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Livestock manure is often contaminated with heavy metals (HMs) and HM resistance genes (HMRGs), which pollute the environment. In this study, we aimed to investigate the effects of the aqueous phase (AP) produced by hydrothermal carbonization (HTC) of sewage sludge (SS) alone and the AP produced by co-HTC of rice husk (RH) and SS (RH-SS) on humification, HM bioavailability, and HMRGs during chicken manure composting. RH-SS and SS increased the humic acid content of the compost products by 18.3 % and 9.7 %, respectively, and significantly increased the humification index (P < 0.05) compared to the CK (addition of tap water). The passivation of HMs (Zn, Cu, As, Pb, and Cr) increased by 12.17-23.36 % and 9.74-15.95 % for RH-SS and SS, respectively, compared with that for CK. RH-SS and SS reduced the HMRG abundance in composted products by 22.29 % and 15.07 %, respectively. The partial least squares path modeling results showed that SS and RH-SS promoted compost humification while simultaneously altering the bacterial community and reducing the bioavailability of metals and host abundance of HMRGs, which has a direct inhibitory effect on the production and distribution of HMRGs. These findings support a new strategy to reduce the environmental risk of HMs and HMRGs in livestock manure utilization.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoshu Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Shan G, Li W, Liu J, Tan W, Bao S, Wang S, Zhu L, Hu X, Xi B. Macrogenomic analysis of the effects of aqueous-phase from hydrothermal carbonation of sewage sludge on nitrogen metabolism pathways and associated bacterial communities during composting. BIORESOURCE TECHNOLOGY 2023; 389:129811. [PMID: 37776912 DOI: 10.1016/j.biortech.2023.129811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The effects of aqueous phases (AP) formed from hydrothermal carbonation of sewage sludge (with or without rice husk) as moisture regulators of nitrogen metabolism pathways during composting are currently unclear. Macrogenomic analyses revealed that both APs resulted in notably changes in bacterial communities during composting; increased levels of nitrogen assimilation, nitrification, and denitrification metabolic pathways; and decreased levels of nitrogen mineralization metabolic pathways. Genes associated with nitrogen assimilation and mineralization accounted for 34-41% and 32-40% of the annotated reads related to nitrogen cycling during composting, respectively, representing them as the most abundant nitrogen metabolism processes. The gudB and norB were identified as key genes for nitrogen mineralization and nitrous oxide emission, respectively. This research offers a better understanding of the effects of additional nitrogen sources on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Llanaj X, Törős G, Hajdú P, Abdalla N, El-Ramady H, Kiss A, Solberg SØ, Prokisch J. Biotechnological Applications of Mushrooms under the Water-Energy-Food Nexus: Crucial Aspects and Prospects from Farm to Pharmacy. Foods 2023; 12:2671. [PMID: 37509764 PMCID: PMC10379137 DOI: 10.3390/foods12142671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Mushrooms have always been an important source of food, with high nutritional value and medicinal attributes. With the use of biotechnological applications, mushrooms have gained further attention as a source of healthy food and bioenergy. This review presents different biotechnological applications and explores how these can support global food, energy, and water security. It highlights mushroom's relevance to meet the sustainable development goals of the UN. This review also discusses mushroom farming and its requirements. The biotechnology review includes sections on how to use mushrooms in producing nanoparticles, bioenergy, and bioactive compounds, as well as how to use mushrooms in bioremediation. The different applications are discussed under the water, energy, and food (WEF) nexus. As far as we know, this is the first report on mushroom biotechnology and its relationships to the WEF nexus. Finally, the review valorizes mushroom biotechnology and suggests different possibilities for mushroom farming integration.
Collapse
Affiliation(s)
- Xhensila Llanaj
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Péter Hajdú
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Neama Abdalla
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Hassan El-Ramady
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Attila Kiss
- Knowledge Utilization Center of Agri-Food Industry, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| | - Svein Ø Solberg
- Faculty of Applied Ecology, Agriculture and Biotechnology, Inland Norway University of Applied Sciences, 2401 Elverum, Norway
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Chan YH, Lock SSM, Chin BLF, Wong MK, Loy ACM, Foong SY, Yiin CL, Lam SS. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy. BIORESOURCE TECHNOLOGY 2023; 380:129061. [PMID: 37075852 DOI: 10.1016/j.biortech.2023.129061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
To achieve the main goal of net zero carbon emission, the shift from conventional fossil-based energy/products to renewable and low carbon-based energy/products is necessary. Biomass has been perceived as a carbon-neutral source from which energy and value-added products can be derived, while sludge is a slurry waste that inherently contains high amount of minerals and organic matters. Hence, thermochemical co-processing of biomass wastes and sludge could create positive synergistic effects, resulting in enhanced performance of the process (higher conversion or yield) and improved qualities or characteristics of the products as compared to that of mono-processing. This review presents the current progress and development for various thermochemical techniques of biomass-sludge co-conversion to energy and high-value products, and the potential applications of these products from circular economy's point of view. Also, these technologies are discussed from economic and environmental standpoints, and the outlook towards technology maturation and successful commercialization is laid out.
Collapse
Affiliation(s)
- Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|