1
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
2
|
Hua Z, Liang J, Wang D, Zhou Z, Fang J. Formation Mechanisms of Nitro Products from Transformation of Aliphatic Amines by UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18754-18764. [PMID: 37294018 DOI: 10.1021/acs.est.3c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Formation of nitrogenous disinfection byproducts from aliphatic amines is a widespread concern owing to the serious health risks associated with them. However, the mechanisms of transforming aliphatic amines and forming nitro products in the UV/chlorine process have rarely been discussed, which are investigated in this work. Initially, secondary amines (R1R2NH) are transformed into secondary organic chloramines (R1R2NCl) via chlorination. Subsequently, radicals, such as HO• and Cl•, are found to contribute predominantly to such transformations. The rate constants at which HO•, Cl•, and Cl2•- react with R1R2NCl are (2.4-5.1) × 109, (1.5-3.8) × 109, and (1.2-6.1) × 107 M-1 s-1, respectively. Consequently, R1R2NCl are transformed into primary amines (R1NH2/R2NH2) and chlorinated primary amines (R1NHCl/R2NHCl and R1NCl2/R2NCl2) by excess chlorine. Furthermore, primarily driven by UV photolysis, chlorinated primary amines can be transformed into nitroalkanes with conversion rates of ∼10%. Dissolved oxygen and free chlorine play crucial roles in forming nitroalkanes, and post-chlorination can further form chloronitroalkanes, such as trichloronitromethane (TCNM). Radicals are involved in forming TCNM in the UV/chlorine process. This study provides new insights into the mechanisms of transforming aliphatic amines and forming nitro products using the UV/chlorine process.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jieying Liang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ding Wang
- General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
3
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
4
|
Genisoglu M, Minaz M, Tanacan E, Sofuoglu SC, Kaplan-Bekaroglu SS, Kanan A, Ates N, Sardohan-Koseoglu T, Yigit NÖ, Harman BI. Halogenated By-Products in Chlorinated Indoor Swimming Pools: A Long-Term Monitoring and Empirical Modeling Study. ACS OMEGA 2023; 8:11364-11372. [PMID: 37008144 PMCID: PMC10061505 DOI: 10.1021/acsomega.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Monitoring the disinfection process and swimming pool water quality is essential for the prevention of microbial infections and associated diseases. However, carcinogenic and chronic-toxic disinfection by-products (DBPs) are formed with reactions between disinfectants and organic/inorganic matters. DBP precursors in swimming pools originate from anthropogenic sources (body secretions, personal care products, pharmaceuticals, etc.) or chemicals used in pools. Temporal (48 weeks) water quality trends of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and halonitromethanes (HNMs) in two swimming pools (SP-A and SP-B) and precursor-DBP relationships were investigated in this study. Weekly samples were taken from swimming pools, and several physical/chemical water quality parameters, absorbable organic halides (AOX), and DBPs were determined. THMs and HAAs were the most detected DBP groups in pool water. While chloroform was determined to be the dominant THM compound, dichloroacetic acid and trichloroacetic acid were the dominant HAA compounds. The average AOX concentrations were measured to be 304 and 746 μg/L as Cl- in SP-A and SP-B, respectively. Although the amount of AOX from unknown chlorinated by-products in SP-A did not vary temporally, a significant increase in unknown DBP concentrations in SP-B was observed over time. AOX concentrations of chlorinated pool waters were determined to be an important parameter that can be used to estimate DBP concentrations.
Collapse
Affiliation(s)
- Mesut Genisoglu
- Department
of Environmental Engineering, Izmir Institute
of Technology, Izmir 35430, Turkey
| | - Mert Minaz
- Department
of Environmental Engineering, Suleyman Demirel
University, Isparta 32260, Turkey
- Department
of Aquaculture, Recep Tayyip Erdoǧan
University, Rize 53100, Turkey
| | - Ertac Tanacan
- Department
of Environmental Engineering, Suleyman Demirel
University, Isparta 32260, Turkey
| | - Sait Cemil Sofuoglu
- Department
of Environmental Engineering, Izmir Institute
of Technology, Izmir 35430, Turkey
| | | | - Amer Kanan
- Department
of Environment and Earth Sciences, Al-Quds
University, Jerusalem 51000, Palestine
| | - Nuray Ates
- Department
of Environmental Engineering, Erciyes University, Kayseri 38280, Turkey
| | - Tugba Sardohan-Koseoglu
- Department
of Biomedical Engineering, Applied Sciences
University of Isparta, Isparta 32200, Turkey
| | - Nevzat Özgü Yigit
- Department
of Environmental Engineering, Suleyman Demirel
University, Isparta 32260, Turkey
| | - Bilgehan Ilker Harman
- Department
of Environmental Engineering, Suleyman Demirel
University, Isparta 32260, Turkey
| |
Collapse
|
5
|
Hua Z, Li J, Zhou Z, Zheng S, Zhang Y, Fang J. Exploring Pathways and Mechanisms for Dichloroacetonitrile Formation from Typical Amino Compounds during UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9712-9721. [PMID: 35703371 DOI: 10.1021/acs.est.2c01495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of disinfection byproducts (DBPs) during UV/chlorine treatment, especially nitrogenous DBPs, is not well understood. This study investigated the formation mechanisms for dichloroacetonitrile (DCAN) from typical amino compounds during UV/chlorine treatment. Compared to chlorination, the yields of DCAN increase by 88-240% during UV/chlorine treatment from real waters, while the yields of DCAN from amino compounds increase by 3.3-5724 times. Amino compounds with electron-withdrawing side chains show much higher DCAN formation than those with electron-donating side chains. Phenylethylamine, l- phenylalanine, and l-phenylalanyl-l-phenylalanine were selected to represent amines, amino acids, and peptides, respectively, to investigate the formation pathways for DCAN during UV/chlorine treatment. First, chlorination of amines, amino acids, and peptides rapidly forms N-chloramines via chlorine substitution. Then, UV photolysis but not radicals promotes the transformation from N-chloramines to N-chloroaldimines and then to phenylacetonitrile, with yields of 5.4, 51.0, and 19.8% from chlorinated phenylethylamine, l-phenylalanine, and l-phenylalanyl-l-phenylalanine to phenylacetonitrile, respectively. Finally, phenylacetonitrile is transformed to DCAN with conversion ratios of 14.2-25.6%, which is attributed to radical oxidation, as indicated by scavenging experiments and density functional theory calculations. This study elucidates the pathways and mechanisms for DCAN formation from typical amino compounds during UV/chlorine treatment.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junfang Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Shanshan Zheng
- Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Guo K, Wu Z, Chen C, Fang J. UV/Chlorine Process: An Efficient Advanced Oxidation Process with Multiple Radicals and Functions in Water Treatment. Acc Chem Res 2022; 55:286-297. [PMID: 35025201 DOI: 10.1021/acs.accounts.1c00269] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the deterioration of global water quality, the occurrence of chemical and microbial contaminants in water raises serious concerns for the health of the population. Identifying and developing effective and environmentally friendly water treatment technologies are critical to obtain clean water. Among the various technologies for the purification of water, ultraviolet photolysis of chlorine (UV/chlorine), an emerging advanced oxidation process (AOP), has multiple functions for the control of contaminants via the production of hydroxyl radicals (HO·) and reactive chlorine species (RCS), such as Cl·, ClO·, and Cl2·-.This Account centers around the radical chemistry of RCS and HO· in different water matrices and their roles and mechanisms in the abatement of contaminants. The concentrations of Cl·, ClO·, and Cl2·- are comparable to or higher than those of HO· (10-14 to 10-13 M). The reactivities of RCS are more selective than HO· with a broader range of second-order rate constants (k). The k values of Cl· toward most aromatics are higher or similar as compared to those of HO·, while those of Cl2·- and ClO· are less reactive but more selective toward aromatics containing electron-donating functional groups. Their major reaction mechanisms with Cl· are electron transfer and addition, while those with ClO· and Cl2·- primarily involve electron transfer. As for aliphatics, their reactivities with both HO· and RCS are much lower than those of aromatics. The reaction mechanisms for most of them with Cl· and Cl2·- are hydrogen abstraction, except for olefins, which are addition. In addition, RCS greatly contribute to the inactivation of microbial contaminants.Toward future application, the UV/chlorine process has both pros and cons. Compared with the traditional HO·-based AOP of UV/H2O2, UV/chlorine is more efficient and energy-saving for oxidation and disinfection, and its efficiency is less affected by water matrix components. However, the formation of toxic byproducts in UV/chlorine limits its application scenarios. In dissolved organic matter (DOM)-rich water, the formation of halogenated byproducts is enhanced in UV/chlorine. In the presence of ammonia, reactive nitrogen species (RNS) (e.g., ·NO and ·NO2) are involved, and highly toxic nitro(so) products such as nitro(so)-phenolics and N-nitrosodimethylamine are generated. For a niche application, the UV/chlorine process is recommended to be utilized in water with low levels of DOM and ammonia.Strategies should be developed to make full use of highly reactive species (RCS and HO·) for the abatement of target contaminants and to reduce the formation of toxic byproducts. For example, the UV/chlorine process can be used in tandem with other treatments to create multiple barriers for the production of safe water. In addition, halogen radicals are very important in ecosystems as well as other areas such as medical therapy and organic synthesis. UV/chlorine is the most efficient homogeneous system to generate halogen radicals, and thus it provides a perfect system to investigate the fates of halogen radicals for interdisciplinary research.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zihao Wu
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Wang Y, Li F, Du J, Shi X, Tang A, Fu ML, Sun W, Yuan B. Formation of nitrosamines during chloramination of two algae species in source water-Microcystis aeruginosa and Cyclotella meneghiniana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149210. [PMID: 34315055 DOI: 10.1016/j.scitotenv.2021.149210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The contribution of two algae species, Microcystis aeruginosa (M. aeruginosa) and Cyclotella meneghiniana (C. meneghiniana), to the formation of nitrosamines (NAs) during chloramination in drinking water treatment was investigated. A variety of factors including contact time, algae cell concentration, chloramine dosages, and algal cell components (cell debris (CD), intracellular organic matter (IOM), and extracellular organic matter (EOM)) were evaluated for influencing the formation of different NAs, such as N-Nitrosodiethylamine (NDMA), N-Nitrosomethylethylamine (NMEA), N-Nitrosodibutylamine (NDBA), N-Nitrosodi-n-propylamine (NDPA), and N-nitrosopyridine (NPyr). In addition, NAs formation from Chlorophyll-a and Microcystin-LR (MC-LR) after chloramination was studied. These results showed that the increase of reaction time and algae cell concentration enhanced the formation potential of five types of NAs from both algae species, except for the NDMA formation from C. meneghiniana, which increased first and then decreased with increased reaction time. The generation of NDMA was detected as the dominated type of NAs. The formation of total NAs from both algae species followed same pattern of increasing first and then decreasing with the increase of chloramine dosage. The largest NAs formation potential (NAsFP) of M. aeruginosa and C. meneghiniana showed at 1.5 mM and 1.0 mM monochloramine, respectively. Moreover, the impacts of algae cellular components on the formation potential of NAs followed the order of IOM > EOM ≫ CD and IOM ≫ CD > EOM for M. aeruginosa and C. meneghiniana, respectively, indicating that IOM was the main source of NAs precursors for both algae. Furthermore, EEM analysis before and after chloramination confirmed that the soluble microbial products (SMPs) and protein-like substances were the main cellular components that contributed to NAs formation for both algae. The NAs formation potential of Microcystin-LR was much higher than that of Chlorophyll-a chloramination.
Collapse
Affiliation(s)
- Yunpeng Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jiayu Du
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Xiaoyang Shi
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Aixi Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, 720 4th Avenue South, St. Cloud, MN 56301, United States of America
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
8
|
Guo Y, Yang Q, Xu J, Bai X, Han Q, Nie J, Zhang L, Li H, Gao H, Zhou W, Li J. Formation of organic chloramines during chlorination of 18 compounds. WATER RESEARCH 2021; 204:117570. [PMID: 34464745 DOI: 10.1016/j.watres.2021.117570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Organic chloramines have attracted considerable attention because of their potential toxicity and reactivity. However, the lack of suitable and effective analytical methods has limited the study of organic chloramines due to their volatile and unstable properties. In this study, membrane introduction mass spectrometry (MIMS) combined with DPD/FAS titration was used to monitor the formation of organic chloramines. N-chlorodimethylamine [(CH3)2NCl] and N-chlorodiethylamine [(C2H5)2NCl] were detected and identified as the dominant volatile DBPs during chlorination of 18 organic compounds with dimethylamine or diethylamine functional groups, with yields ranging from 0.3% to 51.1% at a chlorine to precursor (Cl/P) molar ratio of 8.0. (CH3)2NBr was formed in the presence of bromide, while the formation of (CH3)2NCl was decreased. The reaction of phenol with (CH3)2NCl combined with theoretical calculations confirmed that the reactivity of (CH3)2NCl was similar to that of monochloramine. Moreover, (CH3)2NCl and (C2H5)2NCl were observed at the ppb level during chlorination of actual water samples collected from different areas. The results suggest that (CH3)2NCl and (C2H5)2NCl are important organic chloramines during chlorination, which may lead to the occurrence of further oxidation reactions and promote the formation of other disinfection byproducts simultaneously and should be of concern.
Collapse
Affiliation(s)
- Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xueling Bai
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Qihuan Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Nie
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Luo Zhang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zheng Zhou 450052, China
| | - Hongtao Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zheng Zhou 450052, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - WenFeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
9
|
Impact of Low-Pressure UV Lamp on Swimming Pool Water Quality and Operating Costs. ENERGIES 2021. [DOI: 10.3390/en14165013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UV lamps are being increasingly used in the treatment of swimming pool water, mainly due to their abilities to disinfect and effectively remove chloramines (combined chlorine). However, the application of UV lamps in a closed loop system, such as that in which swimming pool water is treated, creates conditions under which chlorinated water is then also irradiated with UV. Thus, the advanced oxidation process occurs, which affects the transformation of organic matter and its increased reactivity, and hence the higher usage of chlorine disinfectant. In addition, UV lamps require electrical power and the periodic replacement of filaments. In order to assess whether the application of a low-pressure UV lamp is justified, water quality tests and an analysis of the operating costs (including the energy consumption) of the water treatment system were carried out for two operation variants—those of the low-pressure UV lamp being turned on and off. The experiments were carried out on the real object of the AGH University of Science and Technology sports swimming pool for one year. The consumption of electricity and water treatment reagents was also measured. The following values of the selected parameters of the swimming pool water quality were observed (for without and with UV lamp, respectively): 0.68 and 0.52 mg/L combined chlorine; 3.12 and 3.02 mg/L dissolved organic carbon; 15.70 and 15.26 µg/L trihalomethanes; 7 and 6 cfu/mL mesophilic bacteria; and 6 and 20 cfu/mL psychrophilic bacteria. Generally, the statistically important differences in water quality parameters were not observed, thus the application of the low-pressure UV lamp in the swimming pool water treatment technology did not bring the expected improvement in water quality. However, the higher consumption of electric energy (by 29%) and chlorine disinfectant (by 15%), and the need to periodically replace the lamp filaments significantly increased the operating costs of the water treatment system (by 21%) and its ecological impact, thus this technology cannot be considered as profitable or ecological.
Collapse
|
10
|
Ruan X, Zhang X, Lei Y, Lei X, Wang C, Yang X. UV 254 irradiation of N-chloro-α-amino acids: Kinetics, mechanisms, and N-DBP formation potentials. WATER RESEARCH 2021; 199:117204. [PMID: 34004443 DOI: 10.1016/j.watres.2021.117204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
This study explores the degradation kinetics and mechanisms of N-chloro-α-amino acids and the changes in the formation potential of nitrogenous disinfection byproducts (N-DBPs) upon UV254 irradiation. UV254 irradiation significantly accelerated the degradation of all the tested N-chloro-α-amino acids compared to those in the dark. Both direct photolysis-induced cleavage of the N-Cl bonds and radical oxidation (e.g., Cl• and Cl2•-) involved reactions that contributed to their enhanced degradation. The fluence-based photolysis rate constants of the N-chloro-α-amino acids varied in the range of (1.06-5.47) × 10-3 cm2 mJ-1 at pH 6.0 and (0.74-2.79) × 10-3 cm2 mJ-1 at pH 8.0. The apparent quantum yields (Φapp) of the majority of the N-chloro-α-amino acids were in the range of 0.41-0.95 at pH 6.0 and 0.22-0.79 at pH 8.0, except N-chloroaspartic acid, N-chlorohistidine, and N-chloroalanine. UV254 irradiation significantly enhanced the formation of trichloronitromethane (TCNM) from the tested N-chloro-α-amino acids after post-chlorination, but exhibited various effects on the formation of dichloroacetonitrile (DCAN). A longer UV254 irradiation time generated more TCNM, and a lower pH produced more DCAN from the N-chloro-α-amino acids. The degradation pathways of N-chlorotyrosine, as a representative N-chloro-α-amino acid, are proposed, and the β-scission and 1,2-H shift pathways led to the formation of different precursors of TCNM and DCAN. The results of this study improve our understanding of the fate of N-chloro-α-amino acids under UV254 irradiation and post-chlorination.
Collapse
Affiliation(s)
- Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Ruan X, Xiang Y, Shang C, Cheng S, Liu J, Hao Z, Yang X. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry. J Environ Sci (China) 2021; 102:24-36. [PMID: 33637249 DOI: 10.1016/j.jes.2020.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
UV/chlorine process, as an emerging advanced oxidation process (AOP), was effective for removing micro-pollutants via various reactive radicals, but it also led to the changes of natural organic matter (NOM) and formation of disinfection byproducts (DBPs). By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), the transformation of Suwannee River NOM (SRNOM) and the formation of chlorinated DBPs (Cl-DBPs) in the UV/chlorine AOP and subsequent post-chlorination were tracked and compared with dark chlorination. In comparison to dark chlorination, the involvement of ClO•, Cl•, and HO• in the UV/chlorine AOP promoted the transformation of NOM by removing the compounds owning higher aromaticity (AImod) value and DBE (double-bond equivalence)/C ratio and causing the decrease in the proportion of aromatic compounds. Meanwhile, more compounds which contained only C, H, O, N atoms (CHON) were observed after the UV/chlorine AOP compared with dark chlorination via photolysis of organic chloramines or radical reactions. A total of 833 compounds contained C, H, O, Cl atoms (CHOCl) were observed after the UV/chlorine AOP, higher than 789 CHOCl compounds in dark chlorination, and one-chlorine-containing components were the dominant species. The different products from chlorine substitution reactions (SR) and addition reactions (AR) suggested that SR often occurred in the precursors owning higher H/C ratio and AR often occurred in the precursors owning higher aromaticity. Post-chlorination further caused the cleavages of NOM structures into small molecular weight compounds, removed CHON compounds and enhanced the formation of Cl-DBPs. The results provide information about NOM transformation and Cl-DBPs formation at molecular levels in the UV/chlorine AOP.
Collapse
Affiliation(s)
- Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Nishizawa S, Matsushita T, Matsui Y, Shirasaki N. Formation of disinfection by-products from coexisting organic matter during vacuum ultraviolet (VUV) or ultraviolet (UV) treatment following pre-chlorination and their fates after post-chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140300. [PMID: 32783868 DOI: 10.1016/j.scitotenv.2020.140300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change. UV treatment after pre-chlorination produced similar changes in the by-products as those observed for VUV treatment, with the exception that the total THM concentration was not changed, and the total HAN concentration was increased. The final concentrations of by-products after post-chlorination were increased by VUV or UV treatment, except for the total HAA concentration, which remained unchanged after UV treatment. The increases were greater after VUV treatment than after UV treatment, probably because the larger amount of hydroxyl radicals generated during VUV treatment compared with during UV treatment transformed coexisting organic matter into precursors of by-products that were then converted to by-products during post-chlorination.
Collapse
Affiliation(s)
- Shota Nishizawa
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
13
|
Hu Y, Yang Q, Guo Y, Xu J, Zhou W, Li J, Blatchley ER. Volatile organic chloramines formation during ClO 2 treatment. J Environ Sci (China) 2020; 92:256-263. [PMID: 32430128 DOI: 10.1016/j.jes.2020.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic chloramines are reported as the disinfection byproducts during chlorination or chloramination. However, ClO2, as an important alternative disinfectant for chlorine, was not considered to produce halogenated amines. In the present work, volatile organic chloramines including (CH3)2NCl and CH3NCl2 were found to be generated during the reaction of ClO2 and the dye pollutants. (CH3)2NCl was the dominant volatile DBP to result from ClO2 treated all four dye pollutants including Methyl Orange, Methyl Red, Methylene Blue and Malachite Green, with molar yields ranging from 2.6% to 38.5% at a ClO2 to precursor (ClO2/P) molar ratio of 10. HOCl was identified and proved to be the reactive species for the formation of (CH3)2NCl, which implied (CH3)2NCl was transformed by a combined oxidation of ClO2 and hypochlorous acid. (CH3)2NCl concentrations in the ppb range were observed when real water samples were treated by ClO2 in the presence of the dye pollutants. The results suggest that these azo dyes are one of the significant precursors for the formation of HOCl during ClO2 treatment and that organic chloramines should be considered in ClO2 disinfection chemistry and water treatment.
Collapse
Affiliation(s)
- Yuanzhi Hu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Ernest R Blatchley
- School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907-2051, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Peng F, Peng J, Li H, Li Y, Wang B, Yang Z. Health risks and predictive modeling of disinfection byproducts in swimming pools. ENVIRONMENT INTERNATIONAL 2020; 139:105726. [PMID: 32298877 DOI: 10.1016/j.envint.2020.105726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Disinfection is an indispensable water treatment process used to inactivate pathogens and prevent outbreaks of infectious diseases in swimming pools. However, toxic disinfection byproducts (DBPs) are inevitably formed during the process. To improve the supervision and regulation of DBPs in swimming pools, the reliability of using trihalomethanes (THMs) as the sole indicator of organic DBPs and the possibility of using easily detectable water quality parameters as predictors of DBPs were discussed based on the occurrence of 29 typical DBPs in swimming pools. Among the target DBP categories, THMs and haloacetic acids (HAAs) were the prominent species, and the concentrations of HAAs were the highest. The risk assessment results indicated that the total risk values in most pools were higher than the acceptable value (10-6). Compared with nitrosamines and THMs, HAAs were the main contributors to the cancer risks posed by dermal absorption and ingestion. THMs (r = 0.619; p < 0.01) and HAAs (r = 0.989; p < 0.01) were both significantly correlated with total DBPs (the sum of 29 DBPs). A stepwise multivariate regression model was developed by analyzing the correlations between total DBPs and water quality parameters, and the relationship coefficient R2 was 0.756. This study provides important information and perspectives for the improvement and implementation of standards for swimming pool water.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Jingjin Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Yue Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Beizi Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
15
|
Wang Y, Xue Y, Zhang C. Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136501. [PMID: 31931214 DOI: 10.1016/j.scitotenv.2020.136501] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Saline wastewater originates from many industries, containing a large amount of salt (NaCl) and other toxic and harmful organic matter, which have a great impact on the soil and groundwater. However, the treatment of saline wastewater is a serious problem because organic contents are hard to degrade with the high salinity by the common water treatment technologies. Herein, an electrochemical process coupled with ultraviolet (UV) irradiation was proposed for the saline wastewater treatment. High efficiency of p-nitrophenol (p-NP) and ammonia degradation were contributed from the in situ electrochemical produced active chlorine and photo-induced chlorine radicals. Under the optimal conditions (0.10 A, 0.05 M NaCl, and pH 6.00), approximately 98.91% p-NP was removed after 60 min with the rate constant of 7.521 × 10-2 min-1 in the electrochemical process, and 28.99% mineralization rate was obtained, while with the synergistic effect of UV and electrochemistry, approximately 100% of p-NP removal (k = 9.331 × 10-2 min-1) was achieved by 30 min treatment and about 83.70% of p-NP can be mineralized to CO2 after 60 min. The study on the synergistic mechanism of enhanced degradation performance illustrated that Cl with high oxidation capacity played an important role in the p-NP oxidation. Besides, based on the chlorine radical reactions, this method was also effectively applied to remove ammonia nitrogen (92.00% removal of total nitrogen in 100 min) for nitrogen-containing wastewater. Thus, this study offers a promising approach for the treatment of saline industry wastewater.
Collapse
Affiliation(s)
- Yunting Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| | - Yudong Xue
- College of Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | - Chunhui Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology of Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
16
|
E Y, Yang Q, Guo Y, Lian L, Li J, Blatchley ER. CH 3NCl 2 Formation from Chlorination of Carbamate Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13098-13106. [PMID: 31638785 DOI: 10.1021/acs.est.9b03891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbamate insecticides, which are common micropollutants in surface waters, were found to generate dichloromethlyamine (DCMA) during chlorination. DCMA formation from other precursors has been reported previously; it is part of the emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in chlorinated water. However, there is a limited understanding about its formation, stability, and toxicity. Four carbamate insecticides (methomyl, carbofuran, carbaryl, and thiodicarb) were examined as DCMA precursors over a range of reaction conditions, based on variables of chlorine/precursor (Cl/P) molar ratio, pH, time, and temperature. DCMA was found to be the dominant volatile DBP to result from chlorination of all four carbamate insecticides, with molar yields ranging from 12% to 150% at a Cl/P molar ratio of 20. Further experiments indicated CH3NCl2 to be relatively stable, with a half-life of up to 35 h in water. The toxicity of CH3NCl2 was investigated using a bacterial bioluminescence inhibition test and survival of human lung tumor cells. The results of these toxicity assays indicated that CH3NCl2 is about 3 orders of magnitude more toxic than CHCl3. CH3NCl2 concentrations in the ppb range were observed to result from chlorination of surface water or tap water samples collected from several different locations in China. The results suggest that precursors to CH3NCl2 formation are ubiquitous and that CH3NCl2 poses a hazard to public health and the environment and should be considered in disinfection chemistry and water treatment.
Collapse
Affiliation(s)
- Yue E
- Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Qian Yang
- Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Yang Guo
- Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Lushi Lian
- Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Jing Li
- Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
- Division of Environmental & Ecological Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
17
|
Wu H, Long K, Lu D, Mo Y, Yang Q, Wei X. Occurrence and formation of halobenzoquinones in indoor and outdoor swimming pool waters of Nanning City, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31537-31545. [PMID: 31482527 DOI: 10.1007/s11356-019-06341-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool have elicited increasing worldwide concern due to their potential health risks. However, only trihalomethanes (THMs) are regulated by several local governing bodies. Studies indicated that specific unregulated DBP classes would drive disinfected water toxicity in addition to THMs. Halobenzoquinones (HBQs), a type of emerging unregulated DBPs, have been shown to be possible bladder cancer carcinogens. This study aimed to determine the distribution and formation of HBQs in indoor and outdoor swimming pool waters of Nanning City, Southwest China. Seven HBQs in water from seven public indoor and outdoor swimming pools were examined using an effective ultra-performance liquid chromatography-tandem mass spectrometry method. Results suggest the presence of 2,6-dichloro-1,4-benzoquinone in all the swimming pool waters in the range of 4.56-45.30 ng/L. Furthermore, 2,6-dibromo-1,4-benzoquinone and 3,4,5,6-tetrachloro-1,2-benzoquinone (TetraC-1,2-BQ) were detected in two pools at concentrations of < 0.38-14.20 and < 0.54-2.60 ng/L, respectively. The swimming pool water featured higher HBQs than input tap water, and TetraC-1,2-BQ was only detected in pool water. Higher HBQ levels were observed in the indoor pools than in the outdoor pools. These findings demonstrate that low NH3-N, high chloride, humic acid, chemical oxygen demand, and UV254 in the indoor pools increased the HBQ formation. This study is the first to reveal the occurrence and formation of HBQs in water from Chinese indoor and outdoor swimming pools. The findings should be useful in the management of these governing factors and HBQ controls in swimming pools.
Collapse
Affiliation(s)
- Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, 530021, Guangxi, China.
| |
Collapse
|
18
|
Wu Z, Chen C, Zhu BZ, Huang CH, An T, Meng F, Fang J. Reactive Nitrogen Species Are Also Involved in the Transformation of Micropollutants by the UV/Monochloramine Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11142-11152. [PMID: 31411457 DOI: 10.1021/acs.est.9b01212] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The UV/monochloramine (NH2Cl) process is an emerging advanced oxidation process (AOP) in water treatment via radicals produced from the UV photolysis of NH2Cl. This study investigated the degradation of micropollutants by the UV/NH2Cl AOP, with ibuprofen (IBP) and naproxen (NPX) selected as representative micropollutants. Hydroxyl radical (HO•) and chlorine atom (Cl•) were identified in the process, and unexpectedly, we found that reactive nitrogen species (RNS) also played important roles in the transformation of micropollutants. The electron paramagnetic resonance (EPR) analysis proved the production of •NO as well as HO•. The concentrations of HO•, Cl•, and •NO in UV/NH2Cl remained constant at pH 6.0-8.6, resulting in the slightly changed UV fluence-based pseudo-first-order rate constants (k') of IBP and NPX, which were about 1.65 × 10-3 and 2.54 × 10-3 cm2/mJ, respectively. For IBP, the relative contribution of RNS to k' was 27.8% at pH 7 and 50 μM NH2Cl, which was higher than that of Cl• (6.5%) but lower than that of HO• (58.7%). For NPX, the relative contribution of RNS to k' was 13.6%, which was lower than both Cl• (23.2%) and HO• (46.9%). The concentrations of HO•, Cl•, and •NO increased with the increasing NH2Cl dosage. Water matrix components of natural organic matter (NOM) and bicarbonate can scavenge HO•, Cl•, and RNS. The presence of 5 mg/L NOM decreased the k' of IBP and NPX by 66.9 and 57.6%, respectively, while 2 mM bicarbonate decreased the k' of IBP by 57.4% but increased the k' of NPX by 10.5% due to the contribution of CO3•- to NPX degradation. Products containing nitroso-, hydroxyl-, and chlorine-groups were detected during the degradation of IBP and NPX by UV/NH2Cl, indicating the role of nitrogen oxide radical (•NO) as well as HO• and Cl•. Trichloronitromethane formation was strongly enhanced in the UV/NH2Cl-treated samples, further indicating the important roles of RNS in this process. This study first demonstrates the involvement of RNS in the transformation of micropollutants in UV/NH2Cl.
Collapse
Affiliation(s)
- Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences , Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
19
|
Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of Different Combinations of Water Treatment Processes on the Concentration of Disinfection Byproducts and Their Precursors in Swimming Pool Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8115-8126. [PMID: 31180210 DOI: 10.1021/acs.est.9b00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To mitigate microbial activity in swimming pools and to ensure hygienic safety for bathers, pool systems have a recirculating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with precursor substances present in pool water to form harmful disinfection byproducts (DBPs). In this study, different combinations of conventional and advanced treatment processes were applied to lower the concentration of DBPs and their precursors in pool water by using a pilot-scale swimming pool model operated under reproducible and fully controlled conditions. The quality of the pool water was determined after stationary concentrations of dissolved organic carbon (DOC) were reached. The relative removal of DOC (Δc cin-1) across the considered treatment trains ranged between 0.1 ± 2.9% and 7.70 ± 4.5%, where conventional water treatment (coagulation and sand filtration combined with granular activated carbon (GAC) filtration) was revealed to be the most effective. Microbial processes in the deeper, chlorine-free regions of the GAC filter have been found to play an important role in the degradation of organic substances. Almost all treatment combinations were capable of removing trihalomethanes to some degree and trichloramine and dichloroacetonitrile almost completely. However, the results demonstrated that effective removal of DBPs across the treatment train does not necessarily result in low DBP concentrations in the basin of a pool. This raises the importance of the DBP formation potential of the organic precursors, which has been shown to depend strongly on the treatment concept applied. Irrespective of the filtration technique employed, treatment combinations employing UV irradiation as a second treatment step revealed higher concentrations of volatile DBPs in the pool compared to those employing GAC filtration as a second treatment step. In the particular case of trichloramine, results confirm that its removal across the treatment train is not a feasible mitigation strategy because it cannot compensate for the fast formation in the basin.
Collapse
Affiliation(s)
- Bertram Skibinski
- Chair of Urban Water Systems Engineering , Technical University of Munich , 85748 Garching , Germany
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Uhlig
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Pascal Müller
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Irene Slavik
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Wahnbachtalsperrenverband , 53721 Siegburg , Germany
| | - Wolfgang Uhl
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Norwegian Institute for Water Research (NIVA) , 0349 Oslo , Norway
- Norwegian University of Science and Technology (NTNU) , Institute of Civil and Environmental Engineering , 7491 Trondheim , Norway
| |
Collapse
|
20
|
Ra J, Yoom H, Son H, Hwang TM, Lee Y. Transformation of an Amine Moiety of Atenolol during Water Treatment with Chlorine/UV: Reaction Kinetics, Products, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7653-7662. [PMID: 31244072 DOI: 10.1021/acs.est.9b01412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transformation of atenolol (ATN), a micropollutant containing a secondary (2°) amine moiety, can be significantly enhanced in water treatment with sequential and combined use of chlorine and UV (chlorine/UV) through photolysis of the N-Cl bond. This study investigated the transformation kinetics, products, and mechanisms of the amine moiety of ATN in chlorine/UV (254 nm). The fluence-based, photolysis rate constant for N-Cl ATN was 2.0 × 10-3 cm2/mJ. Transformation products (TPs) with primary (1°) amines were mainly produced, but TPs with 2° and 3° amines were also formed, on the basis of liquid chromatography (LC)/quadrupole-time-of-flight/mass spectrometry and LC/UV analyses. The amine-containing TPs could be further transformed in chlorine/UV (with residual chlorine in post UV) via formation and photolysis of new N-Cl bonds. Photolysis of N-Cl 1° amine TPs produced ammonia as a major product. These data could be explained by a reaction mechanism in which the N-Cl bond was cleaved by UV, forming aminyl radicals that were transformed via 1,2-hydrogen shift, β-scission, intramolecular addition, and 1,2-alkyl shift. Among these, the 1,2-alkyl shift is newly discovered in this study. Despite enhanced transformation, only partial mineralization of the ATN's amine moiety was expected, even under chlorine/UV advanced oxidation process conditions. Overall, the kinetic and mechanistic information from this study can be useful for predicting the transformation of amine moieties by chlorine/UV water treatment.
Collapse
Affiliation(s)
- Jiwoon Ra
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Tae-Mun Hwang
- Water Resources and Environmental Research Division , Korea Institute of Construction Technology , 2311, Goyang , Gyeonggi 411-712 , Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| |
Collapse
|
21
|
Dong F, Lin Q, Deng J, Zhang T, Li C, Zai X. Impact of UV irradiation on Chlorella sp. damage and disinfection byproducts formation during subsequent chlorination of algal organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:519-527. [PMID: 30933807 DOI: 10.1016/j.scitotenv.2019.03.282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The frequent occurrence of algal blooms in surface water has attracted more and more attention, which caused many water quality problems, including disinfection byproducts (DBPs). Algal organic matter (AOM) including intracellular organic matter (IOM) and extracellular organic matter (EOM), was a well-known precursor to DBPs formation in drinking water. This study evaluated the effect of ultraviolet (UV) irradiation on the cell integrity, IOM release and DBPs formation during subsequent chlorination of Chlorella sp. Results showed the damage rates of algal cells increased to 40.1% after the high UV irradiation of 528 mJ/cm2, which contributed to the release of IOM. In addition, UV irradiation was effective in reducing the formation of haloacetic acids (HAAs) both in AOM and IOM, but promoted the formation of nitrogenous DBPs (N-DBPs) from AOM in subsequent chlorination. Furthermore, neutral pH exerted a positive effect on the formation of DBPs. UV irradiation decreased the bromine substitution factor (BSF) value of AOM at a high bromide level. The BSF values increased with increasing of the concentration of bromide. Moreover, more amino acids and low molecular weight precursors were produced after UV irradiation in filtered supernatant, which contributed to the formation of N-DBPs with algal chlorination. Overall, this information demonstrated pre-oxidation of UV irradiation could be used to treat the algal-rich drinking water.
Collapse
Affiliation(s)
- Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, USA
| | - Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Xuedong Zai
- Erdos City Anxintai Environmental Protection Technology Co. Ltd, Erdos 017000, China
| |
Collapse
|
22
|
Zhang X, Ren P, Li W, Lei Y, Yang X, Blatchley ER. Synergistic removal of ammonium by monochloramine photolysis. WATER RESEARCH 2019; 152:226-233. [PMID: 30677633 DOI: 10.1016/j.watres.2018.12.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The presence of ammonium (NH4+) in drinking water treatment results in inhibition of disinfection efficiency and formation of nitrogenous disinfection by-products. Our previous study found monochloramine (NH2Cl) photolysis under 254 nm UV irradiation can be effective for removal of NH4+; however, the mechanisms of NH4+ degradation in this process were unknown. The kinetics and fundamental radical chemistry responsible for NH4+ removal in the UV/NH2Cl process were investigated in this study. The results showed that the pseudo first-order rate constant for NH4+ degradation in the UV/NH2Cl process ranged between 3.6 × 10-4 to 1.8 × 10-3 s-1. Solution pH affected radical conversion and a higher NH4+ degradation efficiency was achieved under acidic conditions. The effects of chloride were limited; however, the presence of either bicarbonate or natural organic matter scavenged radicals and inhibited NH4+ removal. NH2Cl photolysis generated an aminyl radical (NH2•) and a chlorine radical (Cl•) that further transformed to a chlorine dimer (Cl2•-) and a hydroxyl radical (HO•). The second-order rate constants for Cl• and Cl2•- reacting with NH4+ were estimated as 2.59 × 108 M-1s-1 and 3.45 × 105 M-1s-1 at pH 3.9, respectively. Cl•, Cl2•-, and HO• contributed 95.2%, 3.5%, and 1.3% to NH4+ removal, respectively, at the condition of 3 mM NH2Cl and pH 7.5. Major products included nitrite and nitrate, possibly accompanied by nitrogen-containing gases. This investigation provides insight into the photochemistry of NH4+ degradation in the UV/NH2Cl process and offers an alternative method for drinking water production.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Pengfei Ren
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Weiguang Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907-2051, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907-2051, USA
| |
Collapse
|
23
|
Ekowati Y, Ferrero G, Farré MJ, Kennedy MD, Buttiglieri G. Application of UVOX Redox ® for swimming pool water treatment: Microbial inactivation, disinfection byproduct formation and micropollutant removal. CHEMOSPHERE 2019; 220:176-184. [PMID: 30583210 DOI: 10.1016/j.chemosphere.2018.12.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Alternative disinfection technologies may overcome some of the limitations of conventional treatment applied in swimming pools: chlorine-resistant pathogens (e.g. Cryptosporidium oocysts and Giardia cysts) and the formation of chlorinated disinfection byproducts. In this paper, results of full scale validation of an alternative disinfection technology UVOX Redox® (hereinafter referred to as UVOX) that combines ozonation and UV irradiation are presented. The performance was assessed in terms of microbial inactivation, disinfection byproduct formation and micropollutant removal. UVOX was able to achieve 1.4-2.7 log inactivation of Bacillus subtilis spores at water flows between 20 and 76 m³/h. Lower formation of trichloromethane and dichloroacetic acid was observed with UVOX followed by chlorination when compared to chlorination alone. However, due to the use of ozone and the presence of bromide in the pool water, the formation of trihalomethanes and haloacetic acids shifted to more brominated byproducts. Chlorine alone was able to remove the target micropollutants: acetaminophen, atenolol, caffeine, carbamazepine, estrone, estradiol, and venlafaxine (>97% removal) after 24 h, with the exception of ibuprofen (60% removal). The application of UVOX in chlorinated water enhanced the removal of ibuprofen. The application of UVOX could lower the usage of chlorine to the level that provides an adequate residual disinfection effect.
Collapse
Affiliation(s)
- Yuli Ekowati
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands.
| | - Giuliana Ferrero
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain
| | - Maria D Kennedy
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain
| |
Collapse
|
24
|
Berg AP, Fang TA, Tang HL. Variability of residual chlorine in swimming pool water and determination of chlorine consumption for maintaining hygienic safety of bathers with a simple mass balance model. JOURNAL OF WATER AND HEALTH 2019; 17:227-236. [PMID: 30942773 DOI: 10.2166/wh.2018.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trial-and-error chlorination as a conventional practice for swimming pool water disinfection may fail to consistently maintain the pool's residual chlorine within regulatory limits. This study explored the variability of residual chlorine and other common water quality parameters of two sample swimming pools and examined the potential of using a mass balance model for proactive determination of chlorine consumption to better secure the hygienic safety of bathers. A lightly loaded Pool 1 with a normalized bather load of 0.038 bather/m3/day and a heavily loaded Pool 2 with a normalized bather load of 0.36 bather/m3/day showed great variances in residual free and combined chlorine control by trial-and-error methods due to dynamic pool uses. A mass balance model based on chemical and physical chlorine consumption mechanisms was found to be statistically valid using field data obtained from Pool 1. The chlorine consumption per capita coefficient was determined to be 4120 mg/bather. The predictive method based on chlorine demand has a potential to be used as a complementary approach to the existing trial-and-error chlorination practices for swimming pool water disinfection. The research is useful for pool maintenance to proactively determine the required chlorine dosage for compliance of pool regulations.
Collapse
Affiliation(s)
- Alvyn P Berg
- Environmental Engineering Program, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA E-mail:
| | - Ting-An Fang
- Environmental Engineering Program, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA E-mail:
| | - Hao L Tang
- Environmental Engineering Program, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA E-mail:
| |
Collapse
|
25
|
Saleem S, Dyck R, Hu G, Hewage K, Rodriguez M, Sadiq R. Investigating the effects of design and management factors on DBPs levels in indoor aquatic centres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:775-786. [PMID: 30253359 DOI: 10.1016/j.scitotenv.2018.09.172] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Disinfection by-products (DBPs) in indoor swimming pool water and air have long been a critical human health risk concern. This study investigated the effects of several indoor swimming pool design and management factors (e.g. ventilation, water treatment, pool operations, pool type) on the concentrations of DBPs, such as trihalomethanes (THMs) and chloramines, in pool water and air. Two sampling campaigns, A and B, were carried out to measure the concentrations of DBPs under different conditions. In both campaigns, 46 pool water samples, seven tap water samples, and 28 ambient air samples were collected and analyzed. Regression models were also developed and validated for investigating the combined effects of design and management factors on total trihalomethanes (TTHM) and trichloramine. The model results show that pool water characteristics (e.g., total organic content, temperature, conductivity, pH and alkalinity) and management factors (e.g., the number of bathers and sprayers) have direct effects on DBP concentrations. Pool water characteristics such as UV absorbance, hardness, and oxidation-reduction potential and a management factor UV intensity have inverse effects on DBPs levels. Based on the correlation analysis, other factors such as fan speed, fresh air, pool age, and basin area were found to be correlated with the concentrations of individual THMs and trichloramine in both water and air. It was also observed that the concentration of THMs varies with pool type. It is note worthy that the effects of the number of sprayers was quantified for the first time. This study comprehensively assessed pool design and management factors and identified their effects on DBPs, providing indoor swimming pool facilities with useful information to control DBPs in the indoor swimming environment.
Collapse
Affiliation(s)
- Sana Saleem
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7.
| | - Roberta Dyck
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7.
| | - Guangji Hu
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7.
| | - Manuel Rodriguez
- Université Laval, Pavillon Félix-Antoine-Savard, 2325 rue des Bibliothèques, Local 1628, QC G1V 0A6, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada V1V 1V7.
| |
Collapse
|
26
|
Cheema WA, Andersen HR, Kaarsholm KMS. Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment. WATER RESEARCH 2018; 147:214-222. [PMID: 30312794 DOI: 10.1016/j.watres.2018.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Chlorine is the most frequently used disinfectant and oxidant for maintaining swimming pool water quality; however, it reacts continuously with dissolved organic matter to produce disinfection by-products (DBPs), which are a health risk for pool users. UV treatment is used widely to remove chloramines, which are the most prevalent group of DBPs, albeit chloro-organic DBP concentrations often increase during post-UV chlorination. In this work, UV and ozone treatments were investigated as additional technologies to eliminate DBP formation and their precursors. Batch experiments were conducted under controlled conditions, using realistic UV and ozone dosages and real pool water samples collected from a public swimming pool. A gradual increase in all investigated DBP concentrations and predicted toxicity was observed during chlorination after repeated UV treatments, and concentrations of certain DBPs also increased during post-ozone chlorination. Based on ozone and chlorine's similar reactivity, ozone was used directly after UV treatment to decrease the induction of DBP formation. Most DBP concentrations decreased during repeated combined treatments. It was also observed that DBP formed by post-ozone chlorination was removed by photolysis, thereby indicating synergy between the treatments. Repeated treatments using realistic UV and ozone dosages predicted that water quality will improve as a result of continuous combined UV and ozone treatments.
Collapse
Affiliation(s)
- Waqas A Cheema
- National University of Sciences & Technology, H-12 Islamabad, 44000, Pakistan; Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Kamilla M S Kaarsholm
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
27
|
Ilyas H, Masih I, van der Hoek JP. An exploration of disinfection by-products formation and governing factors in chlorinated swimming pool water. JOURNAL OF WATER AND HEALTH 2018; 16:861-892. [PMID: 30540262 DOI: 10.2166/wh.2018.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper investigates disinfection by-products (DBPs) formation and their relationship with governing factors in chlorinated swimming pools. The study compares concentrations of DBPs with WHO guidelines for drinking water quality recommended to screen swimming pool water quality. The statistical analysis is based on a global database of 188 swimming pools accumulated from 42 peer-reviewed journal publications from 16 countries. The mean and standard deviation of dichloroacetic acid and trichloroacetic acid were estimated as 282 ± 437 and 326 ± 517 μg L-1, respectively, which most often surpassed the WHO guidelines. Similarly, more than half of the examined pools had higher values of chloral hydrate (102 ± 128 μg L-1). The concentration of total chloramines (650 ± 490 μg L-1) was well above the WHO guidelines in all reported cases. Nevertheless, the reported values remained below the guidelines for most of the studied pools in the case of total trihalomethanes (134 ± 160 μg L-1), dichloroacetonitrile (12 ± 12 μg L-1) and dibromoacetonitrile (8 ± 11 μg L-1). Total organic carbon, free residual chlorine, temperature, pH, total nitrogen and bromide ions play a pivotal role in DBPs formation processes. Therefore, proper management of these governing factors could significantly reduce DBPs formation, thereby, contributing towards a healthy swimming pool environment.
Collapse
Affiliation(s)
- Huma Ilyas
- Water Treatment and Management Consultancy B.V., 2289 ED Rijswijk, The Netherlands E-mail:
| | - Ilyas Masih
- Water Treatment and Management Consultancy B.V., 2289 ED Rijswijk, The Netherlands E-mail: ; IHE Delft, Institute for Water Education, 2611 AX Delft, The Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands and Strategic Centre, Waternet, 1096 AC Amsterdam, The Netherlands
| |
Collapse
|
28
|
Yang L, Chen X, She Q, Cao G, Liu Y, Chang VWC, Tang CY. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. ENVIRONMENT INTERNATIONAL 2018; 121:1039-1057. [PMID: 30392941 DOI: 10.1016/j.envint.2018.10.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The microbial safety of swimming pool waters (SPWs) becomes increasingly important with the popularity of swimming activities. Disinfection aiming at killing microbes in SPWs produces disinfection by-products (DBPs), which has attracted considerable public attentions due to their high frequency of occurrence, considerable concentrations and potent toxicity. We reviewed the latest research progress within the last four decades on the regulation, formation, exposure, and treatment of DBPs in the context of SPWs. This paper specifically discussed DBP regulations in different regions, formation mechanisms related with disinfectants, precursors and other various conditions, human exposure assessment reflected by biomarkers or epidemiological evidence, and the control and treatment of DBPs. Compared to drinking water with natural organic matter as the main organic precursor of DBPs, the additional human inputs (i.e., body fluids and personal care products) to SPWs make the water matrix more complicated and lead to the formation of more types and greater concentrations of DBPs. Dermal absorption and inhalation are two main exposure pathways for trihalomethanes while ingestion for haloacetic acids, reflected by DBP occurrence in human matrices including exhaled air, urine, blood, and plasma. Studies show that membrane filtration, advanced oxidation processes, biodegradation, thermal degradation, chemical reduction, and some hybrid processes are the potential DBP treatment technologies. The removal efficiency, possible mechanisms and future challenges of these DBP treatment methods are summarized in this review, which may facilitate their full-scale applications and provide potential directions for further research extension.
Collapse
Affiliation(s)
- Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Qianhong She
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongdi Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Victor W-C Chang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Department of Civil Engineering, Monash University, VIC 3800, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
29
|
McMaster ME, Ashley-Sing C, Dos Santos Tavares AA, Corral CA, McGill K, McNeil D, Jansen MA, Simpson AHRW. The inhalation effects of by-products from chlorination of heated indoor swimming pools on spinal development in pup mice. ENVIRONMENTAL RESEARCH 2018; 166:668-676. [PMID: 30015251 DOI: 10.1016/j.envres.2018.06.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION It has been postulated that swimming in heated indoor swimming pools in the first year of life is associated with the development of spinal deformity in children. We explored in pup mice whether exposure to certain disinfection by-products resulting from chlorination of heated pools would affect the future development of the spinal column. METHODS Mice, from birth and for 28 consecutive days, were exposed to chemicals known to be created by disinfection by-products of indoor heated swimming pools. The study made use of a body fluid analogue and a chlorine source to recreate the conditions found in municipal pools. A cohort of 51 wild-type C57B6 mice, male and female, were divided into two groups: experimental (n = 29) and controls (n = 22). 24 mice were observed for 8 months (32 weeks), with 27 culled at 4 months (16 weeks). Serial CT scanning was used to assess the spines. RESULTS Exposure to disinfection by-products resulted in an increase in the normal thoracic kyphotic spinal angle of the mice when compared with their controls at 10 weeks; experimental mice kyphosis range 35-82° versus 29-38° in controls. At 14 weeks the kyphosis of the experimental mice had reduced in size but never to that of the control group. CONCLUSION We have demonstrated the ability to influence spinal development in pup mice through environmental factors and shown that the developmental deformity became evident only after a significant latent period.
Collapse
Affiliation(s)
| | | | | | - Carlos Alcaide Corral
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - Katie McGill
- Central Bioresearch Services, University of Edinburgh, Edinburgh, UK.
| | - Duncan McNeil
- Central Bioresearch Services, University of Edinburgh, Edinburgh, UK.
| | - Maurits A Jansen
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - A H R W Simpson
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
30
|
Chhipi-Shrestha G, Rodriguez M, Sadiq R. Unregulated disinfection By-products in drinking water in Quebec: A meta analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:984-1000. [PMID: 30096751 DOI: 10.1016/j.jenvman.2018.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Disinfection by-products (DBPs) are formed primarily by the reaction of natural organic matter and disinfectants. DBPs that are not regulated are referred to as unregulated DBPs (U-DBPs) and they are in majority in total DBPs. U-DBPs can be more toxic than regulated DBPs. U-DBPs such as haloacetonitriles (HANs), haloacetonitriles (HKs) and halonitromethanes (HNMs) are widely present in drinking water supplies in different regions of the world. This study investigated the occurrence of U-DBPs and their variability in drinking water in the Province of Quebec (Canada), using the water quality database of 40 municipal water systems generated by our research group. The concentrations of HANs, HKs, and their compounds, including chloropicrin (CPK), were highly variable in different water systems in Quebec. The concentration range of these U-DBPs is in line with drinking water concentration ranges in different regions of the world. Factors such as system size, water source, season, pH, total organic carbon content, free residual chlorine and disinfectant types cause significant variations in the concentrations of HANs, HKs and their constituent compounds, including CPK, in drinking water in Quebec. This information is valuable for decision making concerning source water selection, water distribution planning, water treatment plant design including disinfection, and overall drinking water quality management related to U-DBPs. Moreover, U-DBPs and regulated DBPs are strongly correlated, although the degree of correlation can vary with water source, system size and season, indicating that regulated DBPs can be used as surrogates of U-DBPs.
Collapse
Affiliation(s)
- Gyan Chhipi-Shrestha
- École Supérieure d'Aménagement du Territoire, Université Laval, 1628 Pavillon Savard, Université Laval, Québec City, QC, G1K 7P4, Canada.
| | - Manuel Rodriguez
- École Supérieure d'Aménagement du Territoire, Université Laval, 1628 Pavillon Savard, Université Laval, Québec City, QC, G1K 7P4, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
31
|
Yin R, Ling L, Shang C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. WATER RESEARCH 2018; 142:452-458. [PMID: 29913386 DOI: 10.1016/j.watres.2018.06.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 05/28/2023]
Abstract
UV-LEDs are considered as the most promising UV light sources, because it has the potential to replace conventional UV lamps in some water treatment applications in the foreseeable future. In this study, UV-LEDs at four wavelengths in the UV-C or near UV-C range (i.e., 257.7, 268, 282.3, and 301.2 nm) were used to investigate the wavelength-dependency on chlorine photolysis and its subsequent radical formation. The fluence-based photodecay rates of hypochlorous acid (HOCl) and hypochlorite (OCl-) were monotonically correlated to their molar absorption coefficients and quantum yields, and the chlorine photodecay rates were much more significantly affected by molar absorption coefficients (β = 0.949) than quantum yields (β = 0.055). An empirical model that incorporated the chlorine photodecay rate constants, quantum yields, and molar absorption coefficients of HOCl and OCl- was established, validated and then used to predict the chlorine photodecay rate at any wavelength (257.7-301.2 nm) and pH (5-10). The modelling results suggested that the maximum fluence-based rate constant (1.46 × 10-4 m2 J-1) was obtained at 289.7 nm and pH 9.95. The wavelength dependency was larger at alkaline pH than at acidic pH, and the pH dependency was the largest at the longest wavelength. The formation of hydroxyl radicals (HO·) and reactive chlorine species (RCS) decreased with increasing wavelength at pH 6, and increased with increasing wavelength at pH 7. More HO· was formed at pH 6 than pH 7, but RCS showed the opposite pH-dependency. The findings in this study provide the fundamental information in selecting UV-LEDs with specific wavelength for enhancing/optimizing chlorine photodecay and/or its radical generation at different pHs in real-world applications.
Collapse
Affiliation(s)
- Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Zhang T, Xu B, Wang A, Cui C. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. CHEMOSPHERE 2018; 195:673-682. [PMID: 29289012 DOI: 10.1016/j.chemosphere.2017.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.
Collapse
Affiliation(s)
- Tianyang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
33
|
Weng S, Yang JY, Li YH, Blatchley ER. UV-induced effects on toxicity of model disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:94-97. [PMID: 28467913 DOI: 10.1016/j.scitotenv.2017.04.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
UV (Ultraviolet)-based treatment has been demonstrated to be effective for removal of some disinfection byproducts (DBPs) and to be beneficial for reduction of genotoxicity and cytotoxicity in chlorinated water. However, to a large extent, UV-induced effects on chemistry and toxicology have been treated as a black box, in the sense that little or no UV dose-dependent behavior has been reported. To address this issue, the effects of UV254 irradiation on 1,4-dibenzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and chlorocreatinine (Cl-Cre) as model DBPs were examined, both in terms of photodegradation and cytotoxicity. These compounds have been identified as DBPs that are relevant in swimming pool settings; however, these compounds will be relevant in other water treatment settings, including drinking water production and wastewater reuse. UV254 irradiation was shown to promote photodecay of all three compounds. However, for BQ and DCBQ, the corresponding cytotoxicity of the UV-irradiated samples remained essentially unchanged, even when the compound was completely photodegraded. These results indicate that the photodegradation products of BQ and DCBQ carry similar cytotoxicity as their respective parent compounds. On the other hand, UV254-irradiation of Cl-Cre yielded a decrease in cytotoxicity that correlated with photodechlorination of Cl-Cre. These experiments also demonstrated a reduction in cytotoxicity in connection with photodechlorination of an N-chlorinated organic compound. Overall, the results of these experiments indicate the importance of defining products of UV photodecay processes, both in terms of chemistry and toxicity; these attributes are expected to be important in many UV-based applications, including potable water production, water reuse, and recreational water settings.
Collapse
Affiliation(s)
- ShihChi Weng
- JHU/MWH Alliance, 615 N. Wolfe St., Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University, IN 47907, USA; Center for Cancer Research, Purdue University, IN 47907, USA
| | - Yen-Hsing Li
- Department of Basic Medical Sciences, Purdue University, IN 47907, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, IN 47907, USA; Division of Environmental and Ecological Engineering, Purdue University, IN 47907, USA.
| |
Collapse
|
34
|
Dong H, Qiang Z, Hu J, Qu J. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes. WATER RESEARCH 2017; 121:178-185. [PMID: 28527979 DOI: 10.1016/j.watres.2017.05.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/12/2023]
Abstract
Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s-1, which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Jun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| |
Collapse
|
35
|
Tardif R, Rodriguez M, Catto C, Charest-Tardif G, Simard S. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study. J Environ Sci (China) 2017; 58:163-172. [PMID: 28774605 DOI: 10.1016/j.jes.2017.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool.
Collapse
Affiliation(s)
- Robert Tardif
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada.
| | - Manuel Rodriguez
- NSERC Industrial Research Chair on Drinking Water, Université Laval, Québec City, Canada
| | - Cyril Catto
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Ginette Charest-Tardif
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Sabrina Simard
- NSERC Industrial Research Chair on Drinking Water, Université Laval, Québec City, Canada
| |
Collapse
|
36
|
Lu X, Shao Y, Gao N, Chen J, Zhang Y, Xiang H, Guo Y. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:139-147. [PMID: 28340369 DOI: 10.1016/j.ecoenv.2017.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (kobs) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO3- or Cl-) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO4•- or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal.
Collapse
Affiliation(s)
- Xian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yisheng Shao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; China Academy of Urban Planning & Design, Beijing, China.
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Juxiang Chen
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, China
| | - Yansen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huiming Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Youluo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview. Int J Hyg Environ Health 2017; 220:591-603. [DOI: 10.1016/j.ijheh.2017.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
38
|
Cheema WA, Kaarsholm KMS, Andersen HR. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. WATER RESEARCH 2017; 110:141-149. [PMID: 28006704 DOI: 10.1016/j.watres.2016.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone dosage prior to contact with chlorine. Furthermore, ozone had a half-life of 5 min in non-UV treated pool water whereas complete consumption of ozone was obtained in less than 2 min in UV treated pool water. The ozonation of UV-treated pool water induced the formation of some DBPs that are not commonly reported in this medium, in particular trichloronitromethane, which is noteworthy for its genotoxicity, though this issue was removed by UV treatment when repeated combined UV/ozone treatment interchanging with chlorination was conducted over a 24-h period. The discovered reaction could form the basis for a new treatment method for swimming pools.
Collapse
Affiliation(s)
- Waqas A Cheema
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Kamilla M S Kaarsholm
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Sun P, Lee WN, Zhang R, Huang CH. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13265-13273. [PMID: 27993038 DOI: 10.1021/acs.est.6b02287] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br- and Cl- may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.
Collapse
Affiliation(s)
- Peizhe Sun
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wan-Ning Lee
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Zare Afifi M, Blatchley ER. Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool. WATER RESEARCH 2016; 105:167-177. [PMID: 27614037 DOI: 10.1016/j.watres.2016.08.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) irradiation and chlorination are commonly used together in treatment of swimming pool water because they function as complementary disinfectants and because UV-based processes have been shown to promote photodecay of chloramines. However, UV-based treatment also has the potential to promote formation of some disinfection byproducts (DBPs). As a result, the overall effects of UV irradiation with chlorination on swimming pool chemistry remain unclear. To address this issue, a three-year study was conducted in a chlorinated, indoor swimming pool under three different operating conditions: conventional chlorination (1st year) which served as a control, chlorination augmented by MP UV irradiation (2nd year), and chlorination augmented by LP UV irradiation (3rd year). Water samples were collected from the pool for measurement of pH, temperature, total alkalinity, free and combined chlorine, eleven volatile DBPs, and urea concentration. After installation of MP UV, the concentrations of most volatile DBPs decreased; similar effects were observed after inclusion of LP UV. Collectively, these results imply an overall improvement in water quality as a result of the inclusion of the both UV systems. In general, MP UV was more efficient than LP UV for reducing the concentrations of most of the volatile DBPs measured in this pool. However, a need exists to standardize the application of UV systems in recreational water settings.
Collapse
Affiliation(s)
- Mehrnaz Zare Afifi
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
41
|
Wu Z, Fang J, Xiang Y, Shang C, Li X, Meng F, Yang X. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. WATER RESEARCH 2016; 104:272-282. [PMID: 27544349 DOI: 10.1016/j.watres.2016.08.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/12/2023]
Abstract
The UV/chlorine process, which forms several reactive species including hydroxyl radicals (HO) and reactive chlorine species (RCS) to degrade contaminants, is being considered to be an advanced oxidation process. This study investigated the kinetics and mechanism of the degradation of trimethoprim (TMP) by the UV/chlorine process. The degradation of TMP was much faster by UV/chlorine compared to UV/H2O2. The degradation followed pseudo first-order kinetics, and the rate constant (k') increased linearly as the chlorine dosage increased from 20 μM to 200 μM and decreased as pH rose from 6.1 to 8.8. k' was not affected by chloride and bicarbonate but decreased by 50% in the presence of 1-mg/L NOM. The contribution of RCS, including Cl, Cl2- and ClO, to the degradation removal rate was much higher than that of HO and increased from 67% to 87% with increasing pH from 6.1 to 8.8 under the experimental condition. The increasing contribution of RCS to the degradation with increasing pH was attributable to the increase in the ClO concentration. Kinetic modeling and radical scavenging tests verified that ClO mainly attacked the trimethoxybenzyl moiety of TMP. RCS reacted with TMP much faster than HOCl/OCl- to form chlorinated products (i.e., m/z 325) and chlorinated disinfection byproducts such as chloroform, chloral hydrate, dichloroacetonitrile and trichloronitromethane. The hydroxylation and demethylation of m/z 325 driven by HO generated m/z 327 and m/z 341. Meanwhile, reactions of m/z 325 with HO and RCS/HOCl/OCl- generated dichlorinated and hydroxylated products (i.e., m/z 377). All the chlorinated products could be further depleted to produce products with less degree of halogenation in the UV/chlorine process, compared to dark chlorination. The acute toxicity to Vibrio fischeri by UV/chlorine was lower than chlorination at the same removal rate of TMP. This study demonstrated the importance of RCS, in particular, ClO, in the degradation of micropollutants in the UV/chlorine process.
Collapse
Affiliation(s)
- Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yingying Xiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
42
|
Zhang TY, Lin YL, Xu B, Cheng T, Xia SJ, Chu WH, Gao NY. Formation of organic chloramines during chlor(am)ination and UV/chlor(am)ination of algae organic matter in drinking water. WATER RESEARCH 2016; 103:189-196. [PMID: 27455415 DOI: 10.1016/j.watres.2016.07.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Surface water are frequently subjected to problems of algal blooms and release of algae organic matter (AOM) from the algae cells, which cause many water quality issues. This study investigated the formation of organic chloramines and nitrogenous disinfection by-products (N-DBPs) during chlor(am)ination and UV/chlor(am)ination of AOM in drinking water. AOM caused higher organic chloramine formation than humic acid and fulvic acid during chlor(am)ination. The formation of organic chloramines increased first and then decreased with the increase of free chlorine dosage, but kept increasing with the increase of NH2Cl dosage. During AOM chlorination, the formation of organic chloramines kept decreasing as the reaction time went by, and the maximum organic chloramine proportion (79.1%) in total chlorine occurred at 8 h. However, during AOM chloramination, the formation of organic chloramines increased first, decreased in the following and then increased again as the reaction time went by, and the maximum organic chloramine proportion (22.1%) in total chlorine occurred at 24 h. UV irradiation pretreatment did not effectively influence organic chloramine formation during AOM chlor(am)ination, but accelerated the degradation of organic chloramines during chloramination. Besides, UV pretreatment enhanced the formation of N-DBPs during the subsequent chlor(am)ination of AOM, especially dichloroacetonitrile.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Tuo Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Sheng-Ji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wen-Hai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Institute of Disinfection By-product Control in Water Treatment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
43
|
Li T, Jiang Y, An X, Liu H, Hu C, Qu J. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. WATER RESEARCH 2016; 102:421-427. [PMID: 27393967 DOI: 10.1016/j.watres.2016.06.051] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The synergistic effect of ultraviolet light (UV) and chlorine on the structural transformation of Humic Acid (HA) and formation of chloro-disinfection byproducts (DBPs) in water were investigated, with chlorination as a reference. The transformation and mineralization of HA were enhanced upon co-exposure to UV and chlorine. Electron spin resonance (ESR) studies revealed that hydroxyl radical (OH) and chlorine radical (Cl) were predominant active species in a pH range from 4 to 7, while Cl dominated at pH 2 and pH higher than 7. The impact of different radicals on the transformation of HA was investigated by UV254, fluorescence and TOC measurements. OH were found to be responsible for the removal of chromophoric groups and mineralization of HA, while Cl mainly reacted with HA and intermediates from HA degradation. Due to the competitive and synergistic reaction of OH and Cl with HA, higher removal of HA and lower formation of chloro-DBPs appeared in UV-chlorine than chlorination, thus the combined UV-chlorine processes should be a promising method for water purification.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Jiang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Liaoning 113001, China
| | - Xiaoqiang An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Zhang X, Li J, Yang JY, Wood KV, Rothwell AP, Li W, Blatchley Iii ER. Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7671-7678. [PMID: 27338715 DOI: 10.1021/acs.est.6b02009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University , Beijing, China
| | - Jer-Yen Yang
- Department of Basic Medical Sciences & Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Karl V Wood
- Campus-Wide Mass Spectrometry Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Arlene P Rothwell
- Campus-Wide Mass Spectrometry Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin, China
| | - Ernest R Blatchley Iii
- Lyles School of Civil Engineering, Purdue University , West Lafayette, Indiana 47907, United States
- Division of Environmental & Ecological Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
Ben W, Sun P, Huang CH. Effects of combined UV and chlorine treatment on chloroform formation from triclosan. CHEMOSPHERE 2016; 150:715-722. [PMID: 26746417 DOI: 10.1016/j.chemosphere.2015.12.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
The co-exposure to UV irradiation and free chlorine may occur in certain drinking water and wastewater treatment systems. This study investigated the effects of simultaneous low pressure ultraviolet (LPUV) irradiation and free chlorination on the formation of chloroform from triclosan which is a commonly used antibacterial agent. Different treatment systems (i.e., combined UV/chlorine, UV alone, and chlorine alone) were applied to examine the degradation of triclosan and formation of chloroform. The fate of representative intermediates, including chlorinated triclosan, dechlorinated triclosan intermediates and 2,4-dichlorophenol, were tracked to deduce the effect of combined UV/chlorine on the transformation of chloroform formation precursors. The relation between intermediates degradation and chloroform formation was investigated in depth by conducting stepwise experiments with UV and chlorine in different sequences. Results indicate that the combined UV/chlorine notably enhanced the chloroform formation from triclosan. From the reaction mechanism perspective the combined UV/chlorine, where the direct photolysis may play an important role, could accelerate the decay of intermediates and facilitate the generation of productive chloroform precursors. The radicals had modest influence on the degradation of triclosan and intermediates and partly hindered the formation of chloroform. These results emphasize the necessity of considering disinfection by-products formation in the application of combined UV/chlorine technology during water treatment.
Collapse
Affiliation(s)
- Weiwei Ben
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Peizhe Sun
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States.
| |
Collapse
|
46
|
Zhang TY, Lin YL, Xu B, Xia SJ, Tian FX, Gao NY. Effect of UV irradiation on the proportion of organic chloramines in total chlorine in subsequent chlorination. CHEMOSPHERE 2016; 144:940-947. [PMID: 26432536 DOI: 10.1016/j.chemosphere.2015.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Sheng-Ji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fu-Xiang Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
47
|
Tang HL, Xie YF. Biologically active carbon filtration for haloacetic acid removal from swimming pool water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:58-64. [PMID: 26398451 DOI: 10.1016/j.scitotenv.2015.09.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/13/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools.
Collapse
Affiliation(s)
- Hao L Tang
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China; Minn Water LLC, Minneapolis, MN 55441, USA.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
48
|
Chowdhury S. Predicting human exposure and risk from chlorinated indoor swimming pool: a case study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:502. [PMID: 26164734 DOI: 10.1007/s10661-015-4719-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
This study predicted human exposure to disinfection by-products (DBPs) in a chlorinated indoor swimming pool. Human exposure was predicted through ingestion, inhalation, and dermal routes while ingestion exposure was accidental with water intake of 18-34 mL/h. The number of pool attendants and duration and frequency of swimming were in the ranges of 14-62 persons/day, 40-85 min/event, and 26-48 times/year, respectively. Trihalomethanes (THMs) in pool water and air were 28.7-95.5 μg/L and 44.1-133.6 μg/m(3), respectively, while haloacetic acids (HAAs) in pool water were 68.9-158.9 μg/L. The brominated THMs in water and air were 95.4 and 94.3% of total THMs, respectively, while brominated HAAs were 94.4 % of total HAAs. Chronic daily intakes of THMs and HAAs were 2.16 × 10(-5)-3.14 × 10(-3) and 8.4 × 10(-8)-4.6 × 10(-6) mg/kg-day, respectively. The cancer risk from three THMs and two HAAs was 2.46 × 10(-5) with a range of 8.1 × 10(-6)-5.7 × 10(-5), in which THMs contributed 99.6% of total risks. Approximately 99.3% of risks were through inhalation and dermal routes, indicating that the ingestion route may be insignificant. The cancer risks from THMs in swimming pool were 4.06-6.64 times to the cancer risks from THMs in drinking water.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia,
| |
Collapse
|
49
|
Spiliotopoulou A, Hansen KMS, Andersen HR. Secondary formation of disinfection by-products by UV treatment of swimming pool water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:96-105. [PMID: 25804876 DOI: 10.1016/j.scitotenv.2015.03.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 05/03/2023]
Abstract
Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant effect on DBP formation was observed due to photo-inducible radical forming molecules NO3- (potentially present in high concentrations in pool water) and H2O2 (added as part of commercially employed DBP reducing practices).
Collapse
Affiliation(s)
- Aikaterini Spiliotopoulou
- Water ApS, Farum Gydevej 64, 3520 Farum, Denmark; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby, Denmark
| | - Kamilla M S Hansen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby, Denmark.
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
50
|
Wang D, Bolton JR, Andrews SA, Hofmann R. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:49-57. [PMID: 25747363 DOI: 10.1016/j.scitotenv.2015.02.094] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).
Collapse
Affiliation(s)
- Ding Wang
- Department of Civil Engineering, University of Toronto, 35. St. George St., Toronto, Ontario M5S 1A4, Canada.
| | - James R Bolton
- Bolton Photosciences Inc., 628 Cheriton Cres., NW, Edmonton, AB T6R 2M5, Canada
| | - Susan A Andrews
- Department of Civil Engineering, University of Toronto, 35. St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Ron Hofmann
- Department of Civil Engineering, University of Toronto, 35. St. George St., Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|