1
|
Li D, Long L, Xia W, Zhao W, Feng L, Xia X, He S, Liu Y, You S, Wei L. Utilization of UV/VUV irradiation for removal of human body fluids related pollutants in swimming pool water. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137549. [PMID: 39952138 DOI: 10.1016/j.jhazmat.2025.137549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Human body fluids related pollutants (BFPs) are primary precursors to disinfection by-products (DBPs) in swimming pool water (SPW). This study evaluated the degradation efficiency of ultraviolet/vacuum ultraviolet (UV/VUV) technology for the removal of three typical BFPs: urea, creatinine, and hippuric acid. The results showed that UV/VUV irradiation significantly enhanced the removal of these pollutants compared to UV alone. In addition, the observed rate constant (kobs) of the UV/VUV system was 1.9-8.0 times higher than that of the UV/H2O2 system, accompanied by a substantial 89.6 % reduction in the electrical energy per order (EEO). Urea degradation primarily involved the cleavage of C-N and C-H bonds within the urea molecule induced by VUV photolysis, whereas the degradation of creatinine and hippuric acid was mainly driven by a series of reactions (including decarboxylation, demethylation, hydroxylation, and ring opening) initiated by •OH. pH variations within the range of 6.8-8.2 exerted minimal impact on pollutant removal. However, NO3, humic acid, and cyanuric acid obviously inhibited the removal of BFPs. Employing UV/VUV system as a pretreatment step prior to chlorination disinfection led to a noteworthy reduction of 63.6 %-69.1 % of the adsorbable chlorine in actual SPW. Results of this study presented a green, chemical-free, and operationally simple method to mitigate DBPs formation in SPW.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangchen Long
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Long L, Wang S, Gao Z, You S, Wei L. Electro-oxidation and UV irradiation coupled method for in-site removing pollutants from human body fluids in swimming pool. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132963. [PMID: 37976850 DOI: 10.1016/j.jhazmat.2023.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
A comprehensive study was conducted to investigate how ultraviolet (UV) irradiation combined with electrochemistry (EC) can efficiently remove human body fluids (HBFs) related pollutants, such as urea/creatinine/hippuric acid, from swimming pool water (SPW). In comparison with the chlorination, UV, EC, and UV/chlorine treatments, the EC/UV treatment exhibited the highest removal rates for these typical pollutants (TPs) from HBFs in synthetic SPW. Specifically, increasing the operating current of the EC/UV process from 20 to 60 mA, as well as NaCl content from 0.5 to 3.0 g/L, improved urea and creatinine degradation while having no influence on hippuric acid. In contrast, EC/UV process was resilient to changes in water parameters (pH, HCO3-, and actual water matrix). Urea removal was primarily attributable to reactive chlorine species (RCS), whereas creatinine and hippuric acid removal were primarily related to hydroxyl radical, UV photolysis, and RCS. In addition, the EC/UV procedure can lessen the propensity for creatinine and hippuric acid to generate disinfection by-products. We can therefore draw the conclusion that the EC/UV process is a green and efficient in-situ technology for removing HBFs related TPs from SPW with the benefits of needless chlorine-based chemical additive, easy operation, continuous disinfection efficiency, and fewer byproducts production.
Collapse
Affiliation(s)
- Liangchen Long
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Shutao Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Roumiguières A, Bouchonnet S, Kinani S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants in Seawater. Part 3: Chromatographic- and Mass Spectrometric-Based Methodologies. Crit Rev Anal Chem 2023; 54:3001-3015. [PMID: 37347617 DOI: 10.1080/10408347.2023.2220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Chlorination of seawater forms a range of secondary oxidative species - collectively called "chlorine-produced oxidants" (CPOs) - having different biocidal, environmental and ecotoxicological properties. The chemical speciation of these compounds is an important step in attempts to assess the effectiveness of chlorination and the potential impacts of its releases. However, comprehensive determination of CPOs represents a significant analytical challenge for many reasons, including the following: CPO species are numerous, highly reactive, with short-lifetimes, difficult to isolate and generally present at low concentrations in a complex salt matrix. Literature review reveals the development of a wide variety of analytical approaches for analysis of CPOs, either collectively via group parameters or individually. A first category of these approaches was the subject of article II (also including sampling and sample preparation) of a trilogy devoted to the chemical speciation of CPOs in seawater. In this third article - which closes the trilogy - emphasis is placed on chromatographic- and mass spectrometric-based approaches. It reviews more than 80 methods, reported from 1981 to date, and thoroughly discusses their principles and performances. Methodologies involving chemical derivatization of CPOs prior to their analysis by gas or liquid chromatography coupled to mass spectrometry provide the best sensitivities, achieving sub-ppb detection limits for species for which suitable derivatization reagents are available. Online mass spectrometry approaches are attracting increasing interest for their ability to analyze multiple CPO species in real time without extensive sample preparation steps, reaching detection limits of about ppb for less polar oxidants. At the current state of metrological development, neither the methodologies based on chromatography nor those based on online mass spectrometry allow complete speciation of CPOs. Future trends and major challenges related to these approaches are discussed.
Collapse
Affiliation(s)
- Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Palaiseau, France
| | - Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
| |
Collapse
|
4
|
Wang Y, Dong H, Qin W, Li J, Qiang Z. Activation of organic chloramine by UV photolysis: A non-negligible oxidant for micro-pollutant abatement and disinfection by-product formation. WATER RESEARCH 2021; 207:117795. [PMID: 34736003 DOI: 10.1016/j.watres.2021.117795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Due to the wide-presence of organic amines in natural waters, organic chloramines are commonly formed during (pre-)chlorination. With the increasing application of UV disinfection in water treatment, both the activation mechanism of organic chloramine by UV photolysis and its subsequent impact on water quality are not clear. Using sarcosine (Sar) as an amine group-containing compound, it was found that organic chloramines (i.e., Cl-Sar) would be firstly formed during chlorination even in the presence of natural organic matter. Compared with self-decay of Cl-Sar, UV photolysis accelerated Cl-Sar decomposition and induced NCl bond cleavage. Using metoprolol (MTP) as a model micro-pollutant, UV-activated Cl-Sar (UV/Cl-Sar) can accelerate micro-pollutant degradation, attributed to reactive radicals formation. HO• and Cl• were important contributors, with a total contribution of 45%‒64%. Moreover, the degradation rate of MTP by UV/Cl-Sar was pH-dependent, which monotonically increased from 0.044 to 0.065 min‒1 under pHs 5.5‒8.5. Although the activation of organic chloramine by UV could accelerate micro-pollutant degradation, UV/Cl-Sar treatment could also enhance disinfection by-products formation. Trichloromethane (TCM) formation was observed during MTP degradation by UV/Cl-Sar. After post-chlorination, TCM, 1,1-dichloropropanone, 1,1,1-trichloropropanone, and dichloroacetonitrile were detected. Their individual and total concentrations were all positively proportional to UV/Cl-Sar treatment time. The total concentration with 30 min treatment (66.93 μg L‒1) was about 2.3 times that with 1 min treatment (28.76 μg L‒1). Finally, the accelerated effect was verified with Cl-glycine and Cl-alanine. It is expected to unravel the non-negligible role of organic chloramine on water quality during UV disinfection.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlei Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Impact of Low-Pressure UV Lamp on Swimming Pool Water Quality and Operating Costs. ENERGIES 2021. [DOI: 10.3390/en14165013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UV lamps are being increasingly used in the treatment of swimming pool water, mainly due to their abilities to disinfect and effectively remove chloramines (combined chlorine). However, the application of UV lamps in a closed loop system, such as that in which swimming pool water is treated, creates conditions under which chlorinated water is then also irradiated with UV. Thus, the advanced oxidation process occurs, which affects the transformation of organic matter and its increased reactivity, and hence the higher usage of chlorine disinfectant. In addition, UV lamps require electrical power and the periodic replacement of filaments. In order to assess whether the application of a low-pressure UV lamp is justified, water quality tests and an analysis of the operating costs (including the energy consumption) of the water treatment system were carried out for two operation variants—those of the low-pressure UV lamp being turned on and off. The experiments were carried out on the real object of the AGH University of Science and Technology sports swimming pool for one year. The consumption of electricity and water treatment reagents was also measured. The following values of the selected parameters of the swimming pool water quality were observed (for without and with UV lamp, respectively): 0.68 and 0.52 mg/L combined chlorine; 3.12 and 3.02 mg/L dissolved organic carbon; 15.70 and 15.26 µg/L trihalomethanes; 7 and 6 cfu/mL mesophilic bacteria; and 6 and 20 cfu/mL psychrophilic bacteria. Generally, the statistically important differences in water quality parameters were not observed, thus the application of the low-pressure UV lamp in the swimming pool water treatment technology did not bring the expected improvement in water quality. However, the higher consumption of electric energy (by 29%) and chlorine disinfectant (by 15%), and the need to periodically replace the lamp filaments significantly increased the operating costs of the water treatment system (by 21%) and its ecological impact, thus this technology cannot be considered as profitable or ecological.
Collapse
|
6
|
Wu T, Földes T, Lee LT, Wagner DN, Jiang J, Tasoglou A, Boor BE, Blatchley ER. Real-Time Measurements of Gas-Phase Trichloramine (NCl 3) in an Indoor Aquatic Center. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8097-8107. [PMID: 34033479 DOI: 10.1021/acs.est.0c07413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
NCl3 is formed as a disinfection byproduct in chlorinated swimming pools and can partition between the liquid and gas phases. Exposure to gas-phase NCl3 has been linked to asthma and can irritate the eyes and respiratory airways, thereby affecting the health and athletic performance of swimmers. This study involved an investigation of the spatiotemporal dynamics of gas-phase NCl3 in an aquatic center during a collegiate swim meet. Real-time (up to 1 Hz) measurements of gas-phase NCl3 were made via a novel on-line derivatization cavity ring-down spectrometer and a proton transfer reaction time-of-flight mass spectrometer. Significant temporal variations in gas-phase NCl3 and CO2 concentrations were observed across varying time scales, from seconds to hours. Gas-phase NCl3 concentrations increased with the number of active swimmers due to swimming-enhanced liquid-to-gas transfer of NCl3, with peak concentrations between 116 and 226 ppb. Strong correlations between concentrations of gas-phase NCl3 with concentrations of CO2 and water (relative humidity) were found and attributed to similar features in their physical transport processes in pool air. A vertical gradient in gas-phase NCl3 concentrations was periodically observed above the water surface, demonstrating that swimmers can be exposed to elevated levels of NCl3 beyond those measured in the bulk air.
Collapse
Affiliation(s)
- Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tomas Földes
- Aquality Technologies Srl, 1050 Brussels, Belgium
- Spectroscopy, Quantum Chemistry, and Atmospheric Remote Sensing, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Lester T Lee
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Danielle N Wagner
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Yang Q, Guo Y, Xu J, Wu X, He B, Blatchley ER, Li J. Photolysis of N-chlorourea and its effect on urea removal in a combined pre-chlorination and UV 254 process. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125111. [PMID: 33485223 DOI: 10.1016/j.jhazmat.2021.125111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Urea is one of the most important nitrogenous organic pollutants in water, and its removal attracts attention because of a growing concern related to water eutrophication. Urea has previously been considered to be largely unaffected by the UV-chlorine process. However, N-chlorourea, an intermediate of urea chlorination, has been shown to absorb ultraviolet radiation, and as such its photolysis is possible. Experiments were conducted to quantify the kinetics of N-chlorourea degradation under UV254 irradiation. The results showed that about 92% of N-chlorourea was degraded under UV254 irradiation. Ammonia and nitrate were detected as the primary nitrogen containing products of the photolysis of N-chlorourea. Solution pH ranging from 3.0 to 7.5 influenced the distribution of these products but not on the degradation rate. Based on these data, a possible pathway of photodegradation of N-chlorourea under UV254 is proposed. The degradation of urea was also achieved by the photolysis of N-chlorourea during the combined pre-chlorination and UV254 process. Insights gained in this study may be useful for exploring the potential of combined pre-chlorination and UV254 process on urea removal in water treatment.
Collapse
Affiliation(s)
- Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xingyi Wu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Bingying He
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
8
|
Ruan X, Xiang Y, Shang C, Cheng S, Liu J, Hao Z, Yang X. Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry. J Environ Sci (China) 2021; 102:24-36. [PMID: 33637249 DOI: 10.1016/j.jes.2020.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
UV/chlorine process, as an emerging advanced oxidation process (AOP), was effective for removing micro-pollutants via various reactive radicals, but it also led to the changes of natural organic matter (NOM) and formation of disinfection byproducts (DBPs). By using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), the transformation of Suwannee River NOM (SRNOM) and the formation of chlorinated DBPs (Cl-DBPs) in the UV/chlorine AOP and subsequent post-chlorination were tracked and compared with dark chlorination. In comparison to dark chlorination, the involvement of ClO•, Cl•, and HO• in the UV/chlorine AOP promoted the transformation of NOM by removing the compounds owning higher aromaticity (AImod) value and DBE (double-bond equivalence)/C ratio and causing the decrease in the proportion of aromatic compounds. Meanwhile, more compounds which contained only C, H, O, N atoms (CHON) were observed after the UV/chlorine AOP compared with dark chlorination via photolysis of organic chloramines or radical reactions. A total of 833 compounds contained C, H, O, Cl atoms (CHOCl) were observed after the UV/chlorine AOP, higher than 789 CHOCl compounds in dark chlorination, and one-chlorine-containing components were the dominant species. The different products from chlorine substitution reactions (SR) and addition reactions (AR) suggested that SR often occurred in the precursors owning higher H/C ratio and AR often occurred in the precursors owning higher aromaticity. Post-chlorination further caused the cleavages of NOM structures into small molecular weight compounds, removed CHON compounds and enhanced the formation of Cl-DBPs. The results provide information about NOM transformation and Cl-DBPs formation at molecular levels in the UV/chlorine AOP.
Collapse
Affiliation(s)
- Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Peng F, Yang F, Lu Y, Li H, Yang Z. Formation of disinfection byproducts during chlorination of mixed nitrogenous compounds in swimming pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142100. [PMID: 32916492 DOI: 10.1016/j.scitotenv.2020.142100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool waters are receiving increasing attention because of their toxicity and widespread occurrence. Current studies rarely investigate the formation of DBPs from typical precursors in swimming pools under mixed exposure. They also rarely investigate the formation of carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs) simultaneously. In this study, the formation of C-DBPs and N-DBPs were investigated during chlorination of mixed precursors (i.e., tryptophan, urea, creatinine, and ammonia). The effects of precursors and operation parameters were also investigated. Among the four precursors, tryptophan had the highest DBP formation potential. Urea and ammonia restrained the formation of C-DBPs but promoted the formation of more toxic N-DBPs. C-DBP yields were significantly higher than N-DBP yields under all experimental conditions. Longer reaction time and higher chlorine dosage promoted the formation of C-DBPs, while higher temperature decreased the concentration of N-DBPs. The presence of bromide not only improved the sum yields of DBPs, but also shifted chlorinated DBPs to brominated species.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Fang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
10
|
Zhang TY, Xu B, Yao S, Hu Y, Lin K, Ye H, Cui C. Conversion of chlorine/nitrogen species and formation of nitrogenous disinfection by-products in the pre-chlorination/post-UV treatment of sulfamethoxazole. WATER RESEARCH 2019; 160:188-196. [PMID: 31151000 DOI: 10.1016/j.watres.2019.05.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Pre-chlorination and UV disinfection are two common processes in drinking water treatment plants. Sulfamethoxazole (SMX), an antibiotic widely detected in source water, was selected as a precursor to study the conversion of chlorine/nitrogen species and DBP formation in pre-chlorination/post-UV process. The combined chlorine (mainly organic chloramines) produced in pre-chlorination of SMX can self-degrade and release free chlorine back again as pre-chlorination time goes on. With free chlorine dose increasing, the self-degradation rate of combined chlorine increased obviously. But the combined chlorine stopped self-degrading and remained stable around 1 mg-Cl2/L after adding 0.30 mM chlorine for 30 min. Post-UV treatment after pre-chlorination can enhance the degradation and achieve a complete removal of combined chlorine (including organic chloramines). Deamination occurred during pre-chlorination/post-UV process and deamination amount (-NH2) per SMX concentration was 0.19 M/M. Radicals in this process had no obvious influence on chlorine/nitrogen species conversion. Direct chlorination of SMX had the lowest DBP formation potentials while the application of pre-chlorination and UV enhanced them. Compared with UV treatment only, dichloroacetonitrile formation potential of SMX reduced by 1.58 × 10-3 mol/mol-SMX (17.37 μg/l) after pre-chlorination/post-UV treatment. During pre-chlorination/post-UV/final-chlorination treatment of SMX, Br- and natural organic matter can enhance DBP formation and toxicity-weighted values. Acid conditions showed a very high DBP risk, while alkaline conditions could cut this risk obviously, especially for the toxicity-weighted values of these DBPs.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Ye
- National Engineering Research Center of Urban Water Resources, Shanghai, 200082, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
11
|
Skibinski B, Uhlig S, Müller P, Slavik I, Uhl W. Impact of Different Combinations of Water Treatment Processes on the Concentration of Disinfection Byproducts and Their Precursors in Swimming Pool Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8115-8126. [PMID: 31180210 DOI: 10.1021/acs.est.9b00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To mitigate microbial activity in swimming pools and to ensure hygienic safety for bathers, pool systems have a recirculating water system ensuring continuous water treatment and disinfection by chlorination. A major drawback associated with the use of chlorine as disinfectant is its potential to react with precursor substances present in pool water to form harmful disinfection byproducts (DBPs). In this study, different combinations of conventional and advanced treatment processes were applied to lower the concentration of DBPs and their precursors in pool water by using a pilot-scale swimming pool model operated under reproducible and fully controlled conditions. The quality of the pool water was determined after stationary concentrations of dissolved organic carbon (DOC) were reached. The relative removal of DOC (Δc cin-1) across the considered treatment trains ranged between 0.1 ± 2.9% and 7.70 ± 4.5%, where conventional water treatment (coagulation and sand filtration combined with granular activated carbon (GAC) filtration) was revealed to be the most effective. Microbial processes in the deeper, chlorine-free regions of the GAC filter have been found to play an important role in the degradation of organic substances. Almost all treatment combinations were capable of removing trihalomethanes to some degree and trichloramine and dichloroacetonitrile almost completely. However, the results demonstrated that effective removal of DBPs across the treatment train does not necessarily result in low DBP concentrations in the basin of a pool. This raises the importance of the DBP formation potential of the organic precursors, which has been shown to depend strongly on the treatment concept applied. Irrespective of the filtration technique employed, treatment combinations employing UV irradiation as a second treatment step revealed higher concentrations of volatile DBPs in the pool compared to those employing GAC filtration as a second treatment step. In the particular case of trichloramine, results confirm that its removal across the treatment train is not a feasible mitigation strategy because it cannot compensate for the fast formation in the basin.
Collapse
Affiliation(s)
- Bertram Skibinski
- Chair of Urban Water Systems Engineering , Technical University of Munich , 85748 Garching , Germany
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Uhlig
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Pascal Müller
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
| | - Irene Slavik
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Wahnbachtalsperrenverband , 53721 Siegburg , Germany
| | - Wolfgang Uhl
- Chair of Water Supply Engineering , Technische Universität Dresden , 01062 Dresden , Germany
- Norwegian Institute for Water Research (NIVA) , 0349 Oslo , Norway
- Norwegian University of Science and Technology (NTNU) , Institute of Civil and Environmental Engineering , 7491 Trondheim , Norway
| |
Collapse
|
12
|
Ra J, Yoom H, Son H, Hwang TM, Lee Y. Transformation of an Amine Moiety of Atenolol during Water Treatment with Chlorine/UV: Reaction Kinetics, Products, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7653-7662. [PMID: 31244072 DOI: 10.1021/acs.est.9b01412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transformation of atenolol (ATN), a micropollutant containing a secondary (2°) amine moiety, can be significantly enhanced in water treatment with sequential and combined use of chlorine and UV (chlorine/UV) through photolysis of the N-Cl bond. This study investigated the transformation kinetics, products, and mechanisms of the amine moiety of ATN in chlorine/UV (254 nm). The fluence-based, photolysis rate constant for N-Cl ATN was 2.0 × 10-3 cm2/mJ. Transformation products (TPs) with primary (1°) amines were mainly produced, but TPs with 2° and 3° amines were also formed, on the basis of liquid chromatography (LC)/quadrupole-time-of-flight/mass spectrometry and LC/UV analyses. The amine-containing TPs could be further transformed in chlorine/UV (with residual chlorine in post UV) via formation and photolysis of new N-Cl bonds. Photolysis of N-Cl 1° amine TPs produced ammonia as a major product. These data could be explained by a reaction mechanism in which the N-Cl bond was cleaved by UV, forming aminyl radicals that were transformed via 1,2-hydrogen shift, β-scission, intramolecular addition, and 1,2-alkyl shift. Among these, the 1,2-alkyl shift is newly discovered in this study. Despite enhanced transformation, only partial mineralization of the ATN's amine moiety was expected, even under chlorine/UV advanced oxidation process conditions. Overall, the kinetic and mechanistic information from this study can be useful for predicting the transformation of amine moieties by chlorine/UV water treatment.
Collapse
Affiliation(s)
- Jiwoon Ra
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute , Gimhae , Gyeongsangnam 621-813 , Republic of Korea
| | - Tae-Mun Hwang
- Water Resources and Environmental Research Division , Korea Institute of Construction Technology , 2311, Goyang , Gyeonggi 411-712 , Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| |
Collapse
|
13
|
Yang L, Chen X, She Q, Cao G, Liu Y, Chang VWC, Tang CY. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. ENVIRONMENT INTERNATIONAL 2018; 121:1039-1057. [PMID: 30392941 DOI: 10.1016/j.envint.2018.10.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The microbial safety of swimming pool waters (SPWs) becomes increasingly important with the popularity of swimming activities. Disinfection aiming at killing microbes in SPWs produces disinfection by-products (DBPs), which has attracted considerable public attentions due to their high frequency of occurrence, considerable concentrations and potent toxicity. We reviewed the latest research progress within the last four decades on the regulation, formation, exposure, and treatment of DBPs in the context of SPWs. This paper specifically discussed DBP regulations in different regions, formation mechanisms related with disinfectants, precursors and other various conditions, human exposure assessment reflected by biomarkers or epidemiological evidence, and the control and treatment of DBPs. Compared to drinking water with natural organic matter as the main organic precursor of DBPs, the additional human inputs (i.e., body fluids and personal care products) to SPWs make the water matrix more complicated and lead to the formation of more types and greater concentrations of DBPs. Dermal absorption and inhalation are two main exposure pathways for trihalomethanes while ingestion for haloacetic acids, reflected by DBP occurrence in human matrices including exhaled air, urine, blood, and plasma. Studies show that membrane filtration, advanced oxidation processes, biodegradation, thermal degradation, chemical reduction, and some hybrid processes are the potential DBP treatment technologies. The removal efficiency, possible mechanisms and future challenges of these DBP treatment methods are summarized in this review, which may facilitate their full-scale applications and provide potential directions for further research extension.
Collapse
Affiliation(s)
- Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Qianhong She
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongdi Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Victor W-C Chang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Department of Civil Engineering, Monash University, VIC 3800, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Zhang T, Xu B, Wang A, Cui C. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. CHEMOSPHERE 2018; 195:673-682. [PMID: 29289012 DOI: 10.1016/j.chemosphere.2017.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.
Collapse
Affiliation(s)
- Tianyang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Weng S, Yang JY, Li YH, Blatchley ER. UV-induced effects on toxicity of model disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:94-97. [PMID: 28467913 DOI: 10.1016/j.scitotenv.2017.04.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
UV (Ultraviolet)-based treatment has been demonstrated to be effective for removal of some disinfection byproducts (DBPs) and to be beneficial for reduction of genotoxicity and cytotoxicity in chlorinated water. However, to a large extent, UV-induced effects on chemistry and toxicology have been treated as a black box, in the sense that little or no UV dose-dependent behavior has been reported. To address this issue, the effects of UV254 irradiation on 1,4-dibenzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and chlorocreatinine (Cl-Cre) as model DBPs were examined, both in terms of photodegradation and cytotoxicity. These compounds have been identified as DBPs that are relevant in swimming pool settings; however, these compounds will be relevant in other water treatment settings, including drinking water production and wastewater reuse. UV254 irradiation was shown to promote photodecay of all three compounds. However, for BQ and DCBQ, the corresponding cytotoxicity of the UV-irradiated samples remained essentially unchanged, even when the compound was completely photodegraded. These results indicate that the photodegradation products of BQ and DCBQ carry similar cytotoxicity as their respective parent compounds. On the other hand, UV254-irradiation of Cl-Cre yielded a decrease in cytotoxicity that correlated with photodechlorination of Cl-Cre. These experiments also demonstrated a reduction in cytotoxicity in connection with photodechlorination of an N-chlorinated organic compound. Overall, the results of these experiments indicate the importance of defining products of UV photodecay processes, both in terms of chemistry and toxicity; these attributes are expected to be important in many UV-based applications, including potable water production, water reuse, and recreational water settings.
Collapse
Affiliation(s)
- ShihChi Weng
- JHU/MWH Alliance, 615 N. Wolfe St., Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Purdue University, IN 47907, USA; Center for Cancer Research, Purdue University, IN 47907, USA
| | - Yen-Hsing Li
- Department of Basic Medical Sciences, Purdue University, IN 47907, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, IN 47907, USA; Division of Environmental and Ecological Engineering, Purdue University, IN 47907, USA.
| |
Collapse
|
16
|
Cheema WA, Kaarsholm KMS, Andersen HR. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water. WATER RESEARCH 2017; 110:141-149. [PMID: 28006704 DOI: 10.1016/j.watres.2016.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone dosage prior to contact with chlorine. Furthermore, ozone had a half-life of 5 min in non-UV treated pool water whereas complete consumption of ozone was obtained in less than 2 min in UV treated pool water. The ozonation of UV-treated pool water induced the formation of some DBPs that are not commonly reported in this medium, in particular trichloronitromethane, which is noteworthy for its genotoxicity, though this issue was removed by UV treatment when repeated combined UV/ozone treatment interchanging with chlorination was conducted over a 24-h period. The discovered reaction could form the basis for a new treatment method for swimming pools.
Collapse
Affiliation(s)
- Waqas A Cheema
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Kamilla M S Kaarsholm
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
E Y, Bai H, Lian L, Li J, Blatchley ER. Effect of chloride on the formation of volatile disinfection byproducts in chlorinated swimming pools. WATER RESEARCH 2016; 105:413-420. [PMID: 27664542 DOI: 10.1016/j.watres.2016.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/17/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Chloride can accumulate in chlorinated swimming pool water. Although substantial efforts have been made to examine the effects of halide ions on the formation of volatile disinfection byproducts (DBPs), most have focused on bromide. The effects of chloride ion concentration on the formation of volatile DBPs in swimming pools remain largely unstudied. In this study, chlorination of typical precursors and body fluid analogue (BFA) were investigated with variable chloride concentration and pH. The formation of three volatile DBPs (NCl3, CHCl3 and CNCHCl2) was observed to be linearly correlated with chloride concentration, both in bench experiments and in actual swimming pool water samples. Free chlorine consumption was also observed to increase with chloride concentration. These behaviors appear to be attributable to shifts in speciation of free chlorine, with higher chloride resulting in higher concentration of molecular chlorine (Cl2), which is much more reactive than HOCl. The results of this work suggest that changes in pool management strategies to promote low chloride concentration could be important for control of volatile DBPs in pools and to economize free chlorine usage.
Collapse
Affiliation(s)
- Yue E
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Hui Bai
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Lushi Lian
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN, 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
18
|
Zare Afifi M, Blatchley ER. Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool. WATER RESEARCH 2016; 105:167-177. [PMID: 27614037 DOI: 10.1016/j.watres.2016.08.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) irradiation and chlorination are commonly used together in treatment of swimming pool water because they function as complementary disinfectants and because UV-based processes have been shown to promote photodecay of chloramines. However, UV-based treatment also has the potential to promote formation of some disinfection byproducts (DBPs). As a result, the overall effects of UV irradiation with chlorination on swimming pool chemistry remain unclear. To address this issue, a three-year study was conducted in a chlorinated, indoor swimming pool under three different operating conditions: conventional chlorination (1st year) which served as a control, chlorination augmented by MP UV irradiation (2nd year), and chlorination augmented by LP UV irradiation (3rd year). Water samples were collected from the pool for measurement of pH, temperature, total alkalinity, free and combined chlorine, eleven volatile DBPs, and urea concentration. After installation of MP UV, the concentrations of most volatile DBPs decreased; similar effects were observed after inclusion of LP UV. Collectively, these results imply an overall improvement in water quality as a result of the inclusion of the both UV systems. In general, MP UV was more efficient than LP UV for reducing the concentrations of most of the volatile DBPs measured in this pool. However, a need exists to standardize the application of UV systems in recreational water settings.
Collapse
Affiliation(s)
- Mehrnaz Zare Afifi
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Zhang X, Li J, Yang JY, Wood KV, Rothwell AP, Li W, Blatchley Iii ER. Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7671-7678. [PMID: 27338715 DOI: 10.1021/acs.est.6b02009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University , Beijing, China
| | - Jer-Yen Yang
- Department of Basic Medical Sciences & Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Karl V Wood
- Campus-Wide Mass Spectrometry Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Arlene P Rothwell
- Campus-Wide Mass Spectrometry Center, Purdue University , West Lafayette, Indiana 47907, United States
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin, China
| | - Ernest R Blatchley Iii
- Lyles School of Civil Engineering, Purdue University , West Lafayette, Indiana 47907, United States
- Division of Environmental & Ecological Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Zhang TY, Lin YL, Xu B, Xia SJ, Tian FX, Gao NY. Effect of UV irradiation on the proportion of organic chloramines in total chlorine in subsequent chlorination. CHEMOSPHERE 2016; 144:940-947. [PMID: 26432536 DOI: 10.1016/j.chemosphere.2015.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Sheng-Ji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fu-Xiang Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
21
|
Soltermann F, Widler T, Canonica S, von Gunten U. Photolysis of inorganic chloramines and efficiency of trichloramine abatement by UV treatment of swimming pool water. WATER RESEARCH 2014; 56:280-291. [PMID: 24699420 DOI: 10.1016/j.watres.2014.02.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
Trichloramine, one of the three inorganic chloramines (mono-, di- and trichloramine), is a problematic disinfection by-product in recreational pool water since it causes skin and eye irritations as well as irritations of the respiratory tract. The most commonly used chloramine mitigation strategy in pool water is UV treatment. Experiments with membrane inlet mass spectrometry (MIMS) confirmed that inorganic chloramines are effectively degraded by UV irradiation with low-pressure (LP) and medium-pressure (MP) mercury lamps (apparent quantum yields (QY): NH2Cl = 0.50 (LP) and 0.31 (MP) mol einstein(-1), NHCl2: 1.06 (LP) and 0.85 (MP) mol einstein(-1)). Trichloramine showed the fastest depletion with a quantum yield slightly above 2 mol einstein(-1) in purified (LP and MP) and pool water (MP). This high quantum yield can partly be explained by reactions involving OH radicals (purified water) and the reaction of trichloramine with moieties formed during UV irradiation of pool water. The presence of free chlorine affects trichloramine degradation (QY: ∼1.5 mol einstein(-1)) since it scavenges OH radicals and competes with trichloramine for reactive species (e.g. organic amines). Measurements in a pool facility revealed that the installed UV reactors degraded trichloramine by 40-50% as expected from laboratory experiments. However, trichloramine reduction in the pools was less pronounced than in the UV reactors. Model calculations combining pool hydraulics with formation/abatement of trichloramine showed that there was a fast trichloramine formation in the pool from the residual chlorine and nitrogenous precursors. The main factors influencing trichloramine concentrations in pool water are the free chlorine concentration and the UV treatment in combination with the recirculation rate through the water treatment system.
Collapse
Affiliation(s)
- Fabian Soltermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Tobias Widler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|