1
|
Wu J, Sun J, Bosker T, Vijver MG, Peijnenburg WJGM. Toxicokinetics and Particle Number-Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2792-2803. [PMID: 36747472 DOI: 10.1021/acs.est.2c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, we investigated to which extent metallic nanoparticles (MNPs) affect the trophic transfer of other coexisting MNPs from lettuce to terrestrial snails and the associated tissue-specific distribution using toxicokinetic (TK) modeling and single-particle inductively coupled plasma mass spectrometry. During a period of 22 days, snails were fed with lettuce leaves that were root exposed to AgNO3 (0.05 mg/L), AgNPs (0.75 mg/L), TiO2NPs (200 mg/L), and a mixture of AgNPs and TiO2NPs (equivalent doses as for single NPs). The uptake rate constants (ku) were 0.08 and 0.11 kg leaves/kg snail/d for Ag and 1.63 and 1.79 kg leaves/kg snail/d for Ti in snails fed with NPs single- and mixture-exposed lettuce, respectively. The elimination rate constants (ke) of Ag in snails exposed to single AgNPs and mixed AgNPs were comparable to the corresponding ku, while the ke for Ti were lower than the corresponding ku. As a result, single TiO2NP treatments as well as exposure to mixtures containing TiO2NPs induced significant biomagnification from lettuce to snails with kinetic trophic transfer factors (TTFk) of 7.99 and 6.46. The TTFk of Ag in the single AgNPs treatment (1.15 kg leaves/kg snail) was significantly greater than the TTFk in the mixture treatment (0.85 kg leaves/kg snail), while the fraction of Ag remaining in the body of snails after AgNPs exposure (36%) was lower than the Ag fraction remaining after mixture exposure (50%). These results indicated that the presence of TiO2NPs inhibited the trophic transfer of AgNPs from lettuce to snails but enhanced the retention of AgNPs in snails. Biomagnification of AgNPs from lettuce to snails was observed in an AgNPs single treatment using AgNPs number as the dose metric, which was reflected by the particle number-based TTFs of AgNPs in snails (1.67, i.e., higher than 1). The size distribution of AgNPs was shifted across the lettuce-snail food chain. By making use of particle-specific measurements and fitting TK processes, this research provides important implications for potential risks associated with the trophic transfer of MNP mixtures.
Collapse
Affiliation(s)
- Juan Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, 310014Hangzhou, China
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EEThe Hague, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RALeiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720 BABilthoven, The Netherlands
| |
Collapse
|
2
|
Chokkattu JJ, Mary DJ, Shanmugam R, Neeharika S. Embryonic Toxicology Evaluation of Ginger- and Clove-mediated Titanium Oxide Nanoparticles-based Dental Varnish with Zebrafish. J Contemp Dent Pract 2022; 23:1157-1162. [PMID: 37073941 DOI: 10.5005/jp-journals-10024-3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
AIM The aim of the study is to evaluate the embryonic toxicology of ginger- and clove-mediated titanium oxide (TiO2) nanoparticles (NPs)-based dental varnish with zebrafish (Danio rerio). MATERIALS AND METHODS Dental varnish was formulated using ginger, clove extract, and titanium dioxide NPs followed by the introduction of this test solution at concentrations of 1, 2, 4, 8, and 16 µL along with a control group with medium zebrafish embryos into a 6-well culture plate. After 2 hours of incubation, the embryos of zebrafish were tested and analyzed for hatchability and mortality rate using one-way ANOVA and post hoc Tukey's tests using statistical package for the social sciences (SPSS) software. RESULTS The hatching rate of zebrafish embryos was greatest at 1 µL in a declining order when compared to the control group, whereas the mortality rate was greatest at 16 µL compared to the control group. On intergroup comparisons, one-way analysis of variance (ANOVA) has revealed a significance (p = 0.00) between the concentrations and testing parameters such as hatchability and mortality. CONCLUSION Within the limitations of the study, the zebrafish embryos exposed acutely to TiO2 NPs at experimental doses have shown significant changes in their rate of deformity and capacity to hatch at 16- and 1-µL concentrations of the dental varnish formulation, respectively. Furthermore, studies are required to prove the efficacy of the formulation. CLINICAL SIGNIFICANCE Research and development of new formulations of various dental products is an ongoing process. One such segment is dental varnishes, wherein herbal resources and NPs mediated for improved efficacy against dental caries is an emerging alternative aiming to counteract the limitations posed by the traditional agents. To develop a new formulation of dental varnish, which is herbal resourced and NPs mediated, for an improved efficacy against dental caries.
Collapse
Affiliation(s)
- Jerry Joe Chokkattu
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India, Phone: +91 9841026569, e-mail:
| | - Ditty J Mary
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Singamsetty Neeharika
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Wilson EAK, Kumar P, Montjoy DG, Kotov NA. Dispersion of Hydrophilic "Hedgehog" Microparticles in Liquid CO 2 Mixtures. ACS NANO 2022; 16:13942-13948. [PMID: 36036608 DOI: 10.1021/acsnano.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid and supercritical CO2 are nontoxic and nonflammable reaction media with pressure-variable physical properties. These states of CO2 also have high solubility limits for gas and liquid hydrocarbons, making them good candidates for "green" hydrophobic solvents in sustainable chemical technologies. However, the dispersion of hydrophilic colloidal nanoscale and microscale particles in CO2 is challenging due to the tendency of polar particles to aggregate in nonpolar media, limiting their available surface area and catalytic efficiencies. Here we show that native hydrophilic semiconductor particles can be effectively dispersed in a liquid CO2 mixture with acetonitrile (ACN) without additional chemical or mechanical dispersion techniques. Using surface corrugation as a method to prevent aggregation, we find that geometrically complex particles with a halo of stiff nanoscale spikes disperse and remain suspended longer in liquid CO2 than those without or with less prominent nanoscale corrugation. For the particles of this size and liquid CO2 mixtures, individual particle mass remains a prominent factor determining particle sedimentation rate even in the absence of aggregation. Particle dispersion and structural stability are confirmed using a combination of UV-vis spectroscopy, finite-difference time-domain modeling, and electron microscopy. The necessity of the cosolvent (ACN) indicates that particle behavior in liquid CO2 is vastly different than in traditional liquid-phase solvents and highlights the need for future studies to understand the wetting behavior of hydrophilic particles in high-pressure nonpolar environments.
Collapse
Affiliation(s)
- Elizabeth A K Wilson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prashant Kumar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Douglas G Montjoy
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
5
|
Evaluation of Zebrafish DNA Integrity after Individual and Combined Exposure to TiO2 Nanoparticles and Lincomycin. TOXICS 2022; 10:toxics10030132. [PMID: 35324757 PMCID: PMC8954801 DOI: 10.3390/toxics10030132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022]
Abstract
Environmental contamination by nanoparticles (NPs) and drugs represents one of the most debated issues of the last years. The aquatic biome and, indirectly, human health are strongly influenced by the negative effects induced by the widespread presence of pharmaceutical products in wastewater, mainly due to the massive use of antibiotics and inefficient treatment of the waters. The present study aimed to evaluate the harmful consequences due to exposure to antibiotics and NPs, alone and in combination, in the aquatic environment. By exploiting some of their peculiar characteristics, such as small size and ability to bind different types of substances, NPs can carry drugs into the body, showing potential genotoxic effects. The research was conducted on zebrafish (Danio rerio) exposed in vivo to lincomycin (100 mg/L) and titanium dioxide nanoparticles (TiO2 NPs) (10 µg/L) for 7 and 14 exposure days. The effects on zebrafish were evaluated in terms of cell viability, DNA fragmentation, and genomic template stability (GTS%) investigated using Trypan blue staining, TUNEL assay, and the random amplification of polymorphic DNA PCR (RAPD PCR) technique, respectively. Our results show that after TiO2 NPs exposure, as well as after TiO2 NPs and lincomycin co-exposure, the percentage of damaged DNA significantly increased and cell viability decreased. On the contrary, exposure to lincomycin alone caused only a GTS% reduction after 14 exposure days. Therefore, the results allow us to assert that genotoxic effect in target cells could be through a synergistic effect, also potentially mediated by the establishment of intermolecular interactions between lincomycin and TiO2 NPs.
Collapse
|
6
|
Noh JH, Park JW, Choi S, Kim S, Maeng SK. Effects of powdered activated carbon and calcium on trihalomethane toxicity of zebrafish embryos and larvae in hybrid membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124530. [PMID: 33243649 DOI: 10.1016/j.jhazmat.2020.124530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/11/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of powdered activated carbon and calcium on trihalomethane toxicity in zebrafish embryos and larvae in hybrid membrane bioreactors. Two hybrid membrane bioreactors were configured with the addition of powdered activated carbon or calcium to reduce the trihalomethane formation potential. Trihalomethane formation decreased by approximately 37.2% and 30.3% in membrane bioreactor-powdered activated carbon and membrane bioreactor-calcium, respectively. Additionally, the toxic effect of trihalomethane formation was examined on zebrafish embryos and larvae. About 35% of the embryos exposed to trihalomethanes (800 ppb) showed signs of deformation, with the majority displaying coagulation within 24 h after exposure. Color preference tests, which were conducted to identify any abnormal activities of the embryos, showed an increase in preference from short to longer wavelengths upon exposure to high levels of trihalomethanes. This may indicate damage to the optical organs in zebrafish when exposed to trihalomethanes. Behavioral analysis showed reduced mobility of zebrafish larvae under different trihalomethane concentrations, indicating a decrease in the average activity time with an increasing trihalomethane concentration. The membrane bioreactor effluents were toxic to zebrafish embryos and larvae in the presence of high trihalomethane concentrations. To understand the mechanism behind trihalomethane toxicity, further studies are needed.
Collapse
Affiliation(s)
- Jin Hyung Noh
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sungpyo Kim
- Bio Monitoring Laboratory, Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
7
|
Mittal K, Rahim AA, George S, Ghoshal S, Basu N. Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish ( Danio rerio). Nanotoxicology 2021; 15:527-541. [PMID: 33756094 DOI: 10.1080/17435390.2021.1897173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Silver (nAg) and titanium dioxide nanoparticles (nTiO2) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO2 released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test). Cells and embryos were exposed to suspensions of pristine nAg or nTiO2, panels (unpainted or painted with nAg or nTiO2) or base paint, after sonication. Cell viability and gene expression were assessed using resazurin assay and qPCR, respectively, while embryo mortality and deformities were scored visually via microscopic examination. In the cell studies, both paint-released nanoparticles did not affect viability, but paint-released nAg resulted in differential expression of a few genes including gclc and ncf1. In embryos, paint-released nAg increased mortality and incidence of deformities, whereas paint-released nTiO2 resulted in differential expression of several genes including gclc, ncf1, txnrd1, gpx1b, and cyp1c1 but without major phenotypic abnormalities. Comparing the two types of exposures, paint-released exposures affected both molecular (gene expression) and apical (embryotoxicity) endpoints, while pristine exposures affected the expression of some genes but had no apical effects. The differing effects of paint-released and pristine nanoparticle exposures suggest that further research is needed to further understand how paint coatings (and the products of their weathering and aging) may influence nanoparticle toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Krittika Mittal
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Saji George
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Yan P, Chen Z, Wang S, Zhou Y, Li L, Yuan L, Shen J, Jin Q, Zhang X, Kang J. Catalytic ozonation of iohexol with α-Fe 0.9Mn 0.1OOH in water: Efficiency, degradation mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123574. [PMID: 32759003 DOI: 10.1016/j.jhazmat.2020.123574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Iohexol, a widely used iodinated X-ray contrast media, is difficult to completely degrade with the traditional water treatment process. Catalytic ozonation with synthesized α-Fe0.9Mn0.1OOH as the catalyst can significantly promote the degradation of iohexol relative to that with ozonation alone. Hydroxyl radicals play a predominant role during the degradation of iohexol. The effect of various factors, including catalyst dose, ozone dose, iohexol concentration and water matrix factors, on the catalytic performance were investigated. The presence of α-Fe0.9Mn0.1OOH in the catalytic system can significantly promote the removal of iohexol and mineralization of the dissolved organic carbon in real water samples. The intermediate products were determined by high-resolution liquid chromatography, and the reaction site was predicted by frontier electron density (FED) calculations. The degradation mechanism of iohexol followed the processes of H-abstraction, amide hydrolysis, amide oxidation, and ·OH substitution. Higher exposure concentrations of iohexol had a negative effect on the survival and hatching rates in the development of zebrafish embryos. The autonomic movement process and heartbeat rate of the zebrafish larvae showed significant differences as the exposure concentration of iohexol increased. The catalytic ozonation process with α-Fe0.9Mn0.1OOH can decrease the toxicity of iohexol containing water.
Collapse
Affiliation(s)
- Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shuyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yanchi Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Lei Yuan
- National and Provincial Joint Engineering Laboratory of Wetland Ecological Conservation, Heilongjiang Academy of Science, Harbin, 150040, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
9
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
10
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Carley LN, Panchagavi R, Song X, Davenport S, Bergemann CM, McCumber AW, Gunsch CK, Simonin M. Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8878-8889. [PMID: 32543178 DOI: 10.1021/acs.est.0c00510] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of novel pesticides containing nanomaterials (nanopesticides) is growing and is considered a promising approach to reduce the impacts of agriculture on the environment and human health. However, the environmental effects of these novel agrochemicals are not fully characterized, and more research is needed to determine the benefits and risks they confer. Here, we assessed the impacts of repeated exposures to a Cu(OH)2 nanopesticide on the soil and sediment biodiversity of target (terrestrial) and nontarget (wetland) ecosystems by performing long-term outdoor mesocosm experiments. As pesticides are often used concomitantly with other agrochemicals, we also tested for interactive effects between nanopesticide exposure and fertilization treatments in both ecosystems. We used high-throughput sequencing on three marker genes to characterize effects on bacterial, fungal, and total eukaryotic community structure and diversity. Interestingly, we found limited effects of nanopesticide exposure on the terrestrial soil communities. Conversely, we found significant shifts in the sediment communities of the wetland mesocosms, especially for eukaryotes (protists, fungi, and algae). In the absence of fertilization, fungal and total eukaryotic community compositions exposed to nanopesticides for long periods of time were distinct from unexposed communities. We identified 60 taxa that were significantly affected by nanopesticide exposure, most of which were microeukaryotes affiliated to cercozoans, Gastrotricha, or unicellular algal taxa. Our study suggests that this nanopesticide has limited effects on the soil biodiversity of a target terrestrial agroecosystem, while nontarget aquatic communities are more sensitive, particularly among protists which are not targeted by this bactericide/fungicide.
Collapse
Affiliation(s)
- Lauren N Carley
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Duke University Program in Ecology, Durham, North Carolina 27708, United States
| | - Renuka Panchagavi
- Computational Science and Engineering Department, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Xin Song
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sade Davenport
- Computational Science and Engineering Department, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Christina M Bergemann
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Durham, North Carolina 27708-0287, United States
| | - Claudia K Gunsch
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Durham, North Carolina 27708-0287, United States
| | - Marie Simonin
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé 49071, France
| |
Collapse
|
12
|
Sayed AEDH, Mekkawy IA, Mahmoud UM, Nagiub M. Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus). SCIENTIFIC AFRICAN 2020; 7:e00230. [DOI: 10.1016/j.sciaf.2019.e00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
13
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
14
|
Pereira AC, Gomes T, Ferreira Machado MR, Rocha TL. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1841-1853. [PMID: 31325757 DOI: 10.1016/j.envpol.2019.06.100] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure.
Collapse
Affiliation(s)
- Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
15
|
Liu S, Cui M, Li X, Thuyet DQ, Fan W. Effects of hydrophobicity of titanium dioxide nanoparticles and exposure scenarios on copper uptake and toxicity in Daphnia magna. WATER RESEARCH 2019; 154:162-170. [PMID: 30782558 DOI: 10.1016/j.watres.2019.01.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) encounter heavy metals in the environment under different scenarios. However, the mechanism of their joint toxicity effects on Daphnia magna remains vague. This study assessed the effects of hydrophobicity of TiO2 NPs (TDONPs) and exposure scenarios on copper uptake and toxicity in Daphnia magna. In the individual exposure scenario, hydrophilic and hydrophobic TDONPs both showed no acute toxicity to Daphnia magna, whereas individual Cu2+ exposure resulted in a 30% mortality rate. Co-exposure and sequential exposure to the two types of TDONP and Cu2+ resulted in mortality rates of 40%-50%. The mechanisms of the increased Cu2+ toxicity caused by hydrophilic and hydrophobic TDONP were different. In the presence of hydrophobic TDONPs, the Cu toxicity could be attributed to the increased bioaccumulation of Cu and Ti, leading to high oxidative stress injury. The Cu toxicity due to hydrophilic TDONPs could be induced by intensified intestinal membrane damage. The obtained data suggest that the hydrophobicity of the TDONPs plays a critical role in regulating the toxicity of Cu2+.
Collapse
Affiliation(s)
- Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Minming Cui
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21211, USA
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Dang Quoc Thuyet
- Institute of Agricultural Machinery, National Agriculture and Food Research Organization, 1-40-2 Nisshin, Kita-ku, Saitama City, Saitama, 331-8537, Japan
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
16
|
Toxic Effects of TiO₂ NPs on Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040523. [PMID: 30781732 PMCID: PMC6406522 DOI: 10.3390/ijerph16040523] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.
Collapse
|
17
|
Monteiro R, Costa S, Coppola F, Freitas R, Vale C, Pereira E. Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:987-995. [PMID: 30308873 DOI: 10.1016/j.scitotenv.2018.08.314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Mytilus galloprovincialis mussels were exposed to seawater contaminated with Ti. Initial concentrations were 4.1, 32, and 66 μg L-1 that declined during the first 24 h of the experiments, and after 48 h values were <2 μg L-1. Experiments were run in triplicate, under constant salinity and temperature. Mussels were fed every two days, and water renewed every seven days and Ti concentrations re-stabilized. During the first 28 days of experimental period, mussels were exposed to four short pulses of contamination, followed by few days of low Ti concentration between weekly contamination renewals. Then mussels were exposed to additional 14-day exposure to Ti uncontaminated seawater. Only residual Ti concentrations were measured in mussels' whole soft tissue after the four pulses of Ti contamination, indicating low Ti accumulation by the organisms. Nevertheless, the biomarkers related to mussels' metabolic capacity (electron transport system activity, ETS), oxidative damage (lipid peroxidation, LPO and reduced glutathione content, GSH), and defense mechanisms (antioxidant and biotransformation enzymes) evidenced the impact of Ti during the 28 days of experimental period. The biomarkers that better indicated the recovery of mussels' biochemical performance were the ETS, LPO, GSH, and the antioxidant enzyme glutathione peroxidase (GPx). LPO was the prime indicator among the analyzed biochemical responses. Organisms appear to hold coping mechanisms to lower the damage induced by Ti, and to recover, albeit the 14 days period of exposure to uncontaminated seawater following the four Ti pulses were not enough for full recovery, as evidenced by results on LPO levels and GSH concentrations. Despite the low solubility of Ti in seawater, the toxicity of this element to a model marine organism was demonstrated.
Collapse
Affiliation(s)
- Rui Monteiro
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos Vale
- CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Monteiro R, Costa S, Coppola F, Freitas R, Vale C, Pereira E. Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:845-854. [PMID: 30390458 DOI: 10.1016/j.envpol.2018.10.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 05/06/2023]
Abstract
Mytilus galloprovincialis was exposed to seawater spiked with 5, 50 and 100 μg L-1 of Titanium (Ti) for 14 days. Seawater was renewed after 96 h and new addition of Ti was done. A parallel experiment conducted in the absence of mussels showed that during the first 24 h after spiking, Ti concentrations in seawater rapidly decreased to values below 2 μg L-1. For this reason, along the entire experimental period (14 days) mussels were exposed to Ti during two short periods, in the beginning of the experiment and after seawater renewal. At 96 h, mussels exhibited low Ti concentrations (<2.5 μg g-1), close or not significantly different from a control condition (1.6 μg g-1 in the absence of Ti). Despite the low accumulated Ti in mussels' tissues after both experimental periods (96 h and 14 days), biochemical markers indicated that mussels developed two main strategies: reduction of their metabolic capacity to avoid the uptake of Ti, and antioxidant and biotransformation defense mechanisms, such as the activation of SOD, CAT, GPx and GSTs enzymes that were triggered to prevent cellular damages. Nevertheless, oxidative stress occurred after 96 h or 14 days. The current study highlights that alterations of biological activity of M. galloprovincialis exposed to Ti goes beyond its accumulation in tissues.
Collapse
Affiliation(s)
- Rui Monteiro
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal; CIIMAR, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Carlos Vale
- CIIMAR, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
19
|
Della Torre C, Maggioni D, Ghilardi A, Parolini M, Santo N, Landi C, Madaschi L, Magni S, Tasselli S, Ascagni M, Bini L, La Porta C, Del Giacco L, Binelli A. The interactions of fullerene C 60 and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:999-1008. [PMID: 30029334 DOI: 10.1016/j.envpol.2018.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to assess the toxicological consequences related to the interaction of fullerene nanoparticles (C60) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C60 and B(α)P alone and to C60 doped with B(α)P. The uptake of pollutants into their tissues and intra-cellular localization were investigated by immunofluorescence and electron microscopy. A set of biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were applied to assess the toxic effects due to C60 interaction with B(α)P. The carrier role of C60 for B(α)P was observed, however adsorption on C60 did not affect the accumulation and localization of B(α)P in the embryos. Instead, C60 doped with B(α)P resulted more prone to sedimentation and less bioavailable for the embryos compared to C60 alone. As for toxicity, our results suggested that C60 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic metabolism. The C60 + B(α)P induced cellular response mechanisms similar to B(α)P alone, but generating greater cellular damages in the exposed embryos.
Collapse
Affiliation(s)
| | | | - Anna Ghilardi
- Department of Biosciences, University of Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Italy
| | - Nadia Santo
- Department of Biosciences, University of Milan, Italy
| | - Claudia Landi
- Department of Life Science, University of Siena, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Italy
| | - Stefano Tasselli
- CNR-IRSA (National Research Council-Water Research Institute), Brugherio, Italy
| | | | - Luca Bini
- Department of Life Science, University of Siena, Italy
| | - Caterina La Porta
- Department of Environmental Science and Policy, University of Milan, Italy
| | | | | |
Collapse
|
20
|
Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1170-1181. [PMID: 29710572 DOI: 10.1016/j.scitotenv.2018.04.180] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.
Collapse
Affiliation(s)
- Steffi Naasz
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
21
|
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2018; 8:42673-42692. [PMID: 28487501 PMCID: PMC5522097 DOI: 10.18632/oncotarget.17349] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,Core Laboratories of Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinqi Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Weidong Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lingjiang Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
22
|
Allur Subramaniyan S, Kang DR, Belal SA, Choe HS, Shim KS. A Comparative Study of Biologically and Chemically Fabricated Synthesized AgNPs’ Supplementation with Respect to Heat-Shock Proteins, Survival, and Hatching Rates of Chicken Embryos: An In Ovo Study. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1319-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ettrup K, Kounina A, Hansen SF, Meesters JAJ, Vea EB, Laurent A. Development of Comparative Toxicity Potentials of TiO 2 Nanoparticles for Use in Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4027-4037. [PMID: 28267926 DOI: 10.1021/acs.est.6b05049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Studies have shown that releases of nanoparticles may take place through the life cycle of products embedding nanomaterials, thus resulting in potential impacts on ecosystems and human health. While several life cycle assessment (LCA) studies have assessed such products, only a few of them have quantitatively addressed the toxic impacts caused by released nanoparticles, thus leading to potential biases in their conclusions. Here, we address this gap and aim to provide a framework for calculating characterization factors or comparative toxicity potentials (CTP) for nanoparticles and derive CTP values for TiO2 nanoparticles (TiO2-NP) for use in LCA. We adapted the USEtox 2.0 consensus model to integrate the SimpleBox4Nano fate model, and we populated the resulting model with TiO2-NP specific data. We thus calculated CTP values for TiO2 nanoparticles for air, water, and soil emission compartments for freshwater ecotoxicity and human toxicity, both cancer effects and noncancer effects. Our results appeared plausible after benchmarking with CTPs for other nanoparticles and substances present in the USEtox database, while large differences were observed with CTP values for TiO2 nanoparticles published in earlier studies. Assumptions, which were performed in those previous studies because of lack of data and knowledge at the time they were made, primarily explain such discrepancies. For future assessment of potential toxic impacts of TiO2 nanoparticles in LCA studies, we therefore recommend the use of our calculated CTP.
Collapse
Affiliation(s)
- Kim Ettrup
- Division for Quantitative Sustainability Assessment (QSA), Department of Management Engineering, Technical University of Denmark , Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Anna Kounina
- Quantis, EPFL Innovation Park , Bât D, 1015 Lausanne, Switzerland
| | - Steffen Foss Hansen
- Department of Environmental Engineering, Technical University of Denmark , Building 115, 2800 Kgs. Lyngby, Denmark
| | - Johannes A J Meesters
- Institute for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen , P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Eldbjørg B Vea
- Division for Quantitative Sustainability Assessment (QSA), Department of Management Engineering, Technical University of Denmark , Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Alexis Laurent
- Division for Quantitative Sustainability Assessment (QSA), Department of Management Engineering, Technical University of Denmark , Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2): Uptake and biological effects in a sea bass cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 63:53-67. [PMID: 28159697 DOI: 10.1016/j.fsi.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - C Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - V Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy.
| | - R Meschini
- Department of Environmental and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies (DiSTABiF), Second University of Naples, Caserta, Italy.
| | - F Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - D Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
25
|
Prasannaraj G, Venkatachalam P. Enhanced Antibacterial, Anti-biofilm and Antioxidant (ROS) Activities of Biomolecules Engineered Silver Nanoparticles Against Clinically Isolated Gram Positive and Gram Negative Microbial Pathogens. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1160-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Joo SH, Zhao D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:29-47. [PMID: 26961405 DOI: 10.1016/j.jhazmat.2016.02.068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 05/25/2023]
Abstract
Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics - both in homogeneous and heterogeneous systems - and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
27
|
Fan W, Peng R, Li X, Ren J, Liu T, Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. WATER RESEARCH 2016; 105:129-137. [PMID: 27611640 DOI: 10.1016/j.watres.2016.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/28/2016] [Indexed: 05/29/2023]
Abstract
Inevitably released into natural water, titanium dioxide nanoparticles (nano-TiO2) may affect the toxicity of other contaminants. Ubiquitous organic matter (OM) may influence their combined toxicity, which has been rarely reported. This study investigated the effect of nano-TiO2 on Cu toxicity to Daphnia magna and the role of OM (dissolved or particle surface bound) in inducing combined effects. The effect of nano-TiO2 on heavy metal accumulation depended on the adsorption capacity for heavy metals of nano-TiO2 and the uptake of nano-TiO2-metal complexes by organisms. Nano-TiO2 significantly decreased Cu accumulation in D. magna, but the reducing effect of nano-TiO2 was eliminated in the presence of humic acid (HA, a model OM). In the Cu and HA solution, nano-TiO2 slightly affected the bioavailability of Cu2+ and Cu-HA complexes and thus slightly influenced Cu toxicity. The nanoparticle surface-bound HA reduced the effect of nano-TiO2 on the speciation of the accumulated Cu; therefore, the combined effects of nano-TiO2 and Cu on biomarkers similarly weakened. HA-altered Cu speciation may be the main factor responsible for the influence of HA on the combined effects of nano-TiO2 and Cu. This study provides insights into the combined effects of nano-TiO2 and heavy metals in natural water.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tong Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiangrui Wang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
28
|
Lin T, Zhou D, Dong J, Jiang F, Chen W. Acute toxicity of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), on zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:97-104. [PMID: 27428706 DOI: 10.1016/j.ecoenv.2016.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Dichloroacetonitrile (DCAN) is a typical nitrogenous disinfection by-product (N-DBP) and its toxicity on aquatic animals is investigated for the first time. The present study was designed to investigate the potential adverse effects of DCAN on zebrafish. DCAN could induce developmental toxicity to zebrafish embryos. A significant decrease in hatchability and an increase in malformation and mortality occurred when DCAN concentration was above 100µg/L. Heart function alteration and neuronal function disturbance occurred at concentration higher than 500 and 100µg/L, respectively. Further, DCAN was easily accumulated in adult zebrafish. The rank order of declining bioconcentration factor (BCF) was liver (1240-1670)> gill (1210-1430)> muscle (644-877). DCAN caused acute metabolism damage to adult zebrafish especially at 8 days exposure, at which time the "Integrated Biomarker Response" (IBR) index value reached 798 at 1mg/L DCAN dose. Acute DNA damage was induced to adult zebrafish by DCAN even at 10µg/L dose.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Dongju Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian Dong
- Suzhou City Water Company Limited, China
| | | | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
29
|
Jang GH, Park CB, Kang BJ, Kim YJ, Lee KH. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:292-303. [PMID: 27288628 DOI: 10.1016/j.envpol.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models.
Collapse
Affiliation(s)
- Gun Hyuk Jang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Chang-Beom Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST Europe), Saarbruecken 66123, Germany.
| | - Benedict J Kang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST Europe), Saarbruecken 66123, Germany.
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
30
|
Lin T, Zhou D, Yu S, Chen W. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish. CHEMOSPHERE 2016; 159:403-411. [PMID: 27337431 DOI: 10.1016/j.chemosphere.2016.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight <1 kDa or >10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Dongju Zhou
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Shilin Yu
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
31
|
Lacave JM, Retuerto A, Vicario-Parés U, Gilliland D, Oron M, Cajaraville MP, Orbea A. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. NANOTECHNOLOGY 2016; 27:325102. [PMID: 27363512 DOI: 10.1088/0957-4484/27/32/325102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l(-1) for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l(-1) of CdS NPs of ∼4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.
Collapse
Affiliation(s)
- José María Lacave
- CBET Research group, Dept of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940, Leioa, Basque Country, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Biosynthesis, Characterization and Antibacterial Effect of Phenolics-Coated Silver Nanoparticles Using Cassia javanica L. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1016-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Kim JI, Park HG, Chang KH, Nam DH, Yeo MK. Trophic transfer of nano-TiO2 in a paddy microcosm: A comparison of single-dose versus sequential multi-dose exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:316-324. [PMID: 26854701 DOI: 10.1016/j.envpol.2016.01.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 05/15/2023]
Abstract
In the present study, replicated paddy microcosm systems were used to investigate the environmental fate and trophic transfer of titanium nanoparticles (NPs) over a period of 14 days. Most TiO2 NPs immediately settled down in the sediment, and high accumulations of nano TiO2 in the sandy loam sediment and biofilm were observed. The test organisms (quillworts, water dropworts, duckweeds, biofilms, river snails, and Chinese muddy loaches) and environmental media (freshwater, sandy loam sediment) were exposed to sequential low doses (2 mg/L at 1 h, 4 days, and 9 days) or a single high-dose (6 mg/L) of TiO2 NPs. The bioconcentration factors (BCFs) of nano-TiO2 in biofilms, quillworts, duckweeds, and Chinese muddy loaches were higher in the sequential multi-dose group than in the single-dose group. Chinese muddy loaches showed higher bioaccumulation factors (BAFs) over their prey than river snails. The difference in the carbon isotope ratios between Chinese muddy loaches and river snails was less than 2‰, and an approximately 4‰ difference in the stable nitrogen isotope ratio was observed in the two aquatic predators from their major prey (e.g., biofilms or particulate organic matter). The trophic levels between biofilms and river snails and between biofilms and Chinese muddy loaches were 2.8 and 2.4 levels, respectively. These results indicate that these two predators consumed biofilm and other alternative preys at a higher level than biofilm. Although the trophic transfer rates of TiO2 are generally low, relatively higher biomagnification factors (BMFs) were found in Chinese muddy loaches (0.04-0.05) than in river snails (0.01-0.02). These results suggest that TiO2 NPs show greater movement in the sediment than in the water and that TiO2 NPs can be retained through aquatic food chains more after a sequential low-dose exposure than after a single high-dose exposure.
Collapse
Affiliation(s)
- Jung In Kim
- Department of Environmental Science and Environmental Research Center, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Hyung-Geun Park
- Department of Environmental Science and Environmental Research Center, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Kwang-Hyeon Chang
- Department of Environmental Science and Environmental Research Center, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - D H Nam
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro Bukgu, Gwangju 61186, Republic of Korea.
| | - Min-Kyeong Yeo
- Department of Environmental Science and Environmental Research Center, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
34
|
Krishnaraj C, Harper SL, Yun SI. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2016; 301:480-91. [PMID: 26414925 PMCID: PMC5755690 DOI: 10.1016/j.jhazmat.2015.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 05/12/2023]
Abstract
The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Soon-Il Yun
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
35
|
Yu S, Lin T, Chen W, Tao H. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water. CHEMOSPHERE 2015; 139:40-46. [PMID: 26037958 DOI: 10.1016/j.chemosphere.2015.05.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.
Collapse
Affiliation(s)
- Shilin Yu
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
36
|
Della Torre C, Balbi T, Grassi G, Frenzilli G, Bernardeschi M, Smerilli A, Guidi P, Canesi L, Nigro M, Monaci F, Scarcelli V, Rocco L, Focardi S, Monopoli M, Corsi I. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2015; 297:92-100. [PMID: 25956639 DOI: 10.1016/j.jhazmat.2015.04.072] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 05/29/2023]
Abstract
We investigated the influence of titanium dioxide nanoparticles (nano-TiO2) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO2, CdCl2, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO2 alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO2 reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO2 and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO2 in sea water media.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | | | - Arianna Smerilli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy
| | - Marco Nigro
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Fabrizio Monaci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta, Italy
| | - Silvano Focardi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Marco Monopoli
- Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin, Ireland
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Italy.
| |
Collapse
|
37
|
Dan Y, Shi H, Stephan C, Liang X. Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma–mass spectrometry. Microchem J 2015. [DOI: 10.1016/j.microc.2015.04.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Massarsky A, Trudeau VL, Moon TW. Predicting the environmental impact of nanosilver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:861-873. [PMID: 25461546 DOI: 10.1016/j.etap.2014.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) are incorporated into many consumer and medical products due to their antimicrobial properties; however, the potential environmental risks of AgNPs are yet to be fully understood. This mini-review aims to predict the environmental impact of AgNPs, thus supplementing previous reviews on this topic. To this end, the AgNP production, environmental release and fate, predicted environmental concentrations in surface water, sediment, and sludge-activated soil, as well as reported toxicity and proposed toxic mechanisms are discussed, focusing primarily on fish. Furthermore, knowledge gaps and recommendations for future research are addressed.
Collapse
Affiliation(s)
- Andrey Massarsky
- Department of Biology & Centre for Advanced, Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | - Vance L Trudeau
- Department of Biology & Centre for Advanced, Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas W Moon
- Department of Biology & Centre for Advanced, Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-2019-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|