1
|
Boontham P, Phattarapattamawong S. Influencing factors on performance of electro-oxidation and UV/electro-oxidation for removal of atrazine: Kinetics, long-term stability and toxicity. CHEMOSPHERE 2025; 374:144187. [PMID: 39951945 DOI: 10.1016/j.chemosphere.2025.144187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Performance of electro-oxidation (EO) and UV/electro-oxidation (UV/EO) on atrazine (ATZ) removal was investigated under various operating factors. Because of synergistic effect on ATZ removal, UV/EO was the most effective process, followed by UV/chlorine, EO, UV irradiation, and chlorination, respectively. Although the energy consumption of UV/EO for 90% removal was similar to that of EO, UV/EO removed ATZ 1.8 times faster than EO. Boron doped diamond (BDD) exhibited greater ATZ removal than dimensionally stable anode (DSA), and performance of BDD was stable for treatment of 50 cycle times (100 h). Performance of EO and UV/EO on ATZ removal increased with higher current density and low pH. ATZ removal by EO and UV/EO was independent to NaCl concentrations (300-1000 mg.L-1). HO• played a major role on ATZ removal, while the role of RCS was minor. The 2nd-order reaction rate constant of HO• with ATZ (kATZ-HO•) was 1.36 × 109 M-1s-1. Although phytotoxicity was a sensitive endpoint to ATZ, different inhibition on germination of Ipomoea aquatica and Oryza sativa L. (Khao Dawk Mali 105) seeds was observed. UV/EO was the most effective process for ATZ detoxication. Germination index of Ipomoea aquatica and Oryza sativa L. (Khao Dawk Mali 105) seeds for samples treated by UV/EO was equivalent or greater than the control sample.
Collapse
Affiliation(s)
- Phattaraphol Boontham
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand.
| |
Collapse
|
2
|
Kong M, Passa EA, Sanan T, Mohammed AN, Forster ALB, Justen PT, de la Cruz A, Westrick JA, O'Shea K, Ren B, Nadagouda MN, Yadav JS, Duan X, Richardson SD, Dionysiou DD. Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl 2 Treatment Be the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1421-1433. [PMID: 39764602 PMCID: PMC11908621 DOI: 10.1021/acs.est.4c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits. Still, much is unknown regarding potential disinfection byproduct formation and associated toxicity, which can occur from the reaction of chlorine and other reactive species with MCs and algal and natural organic matter. To ensure UV/chlorine guarding drinking water for human consumption, the degradation and detoxification of four of the most problematic MC variants, namely, MC-LR, -RR, -YR, and -LA, which differ in amino acid substituents, were evaluated using UV/chlorine and compared to results from chlorination. Overall, UV/chlorine effectively enhanced MC degradation kinetics and generated less halogenated disinfection byproducts in the target analysis of 11 types of DBPs_C1-3 from 7 classes, total organic chlorine, and nontarget analysis revealing 35 higher molecular weight DBPs_C46-52, which maintained the MC structures. Reactivity and cytotoxicity changes varied based on the individual amino acid moieties within the cyclic heptapeptide structure common to all MCs. Analogous trends in MC reactivity were observed in degradation kinetics and mixed MC competition reactions, aligning with individual amino acid structure-reactivity. Cytotoxicity results indicated no significant unintended toxic consequences from MC_DBPs. Our results suggest that UV/chlorine treatment offers an efficient strategy for treating MCs in drinking water.
Collapse
Affiliation(s)
- Minghao Kong
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Evangelia Anna Passa
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Toby Sanan
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Afzaal Nadeem Mohammed
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Patrick T Justen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Armah de la Cruz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kevin O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Bangxing Ren
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mallikarjuna N Nadagouda
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jagjit S Yadav
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
3
|
Dong L, Hu Z, Xia Y, Zheng Y, Zhang M, Xie Y, Qiao W, Wang X, Yang S. Application of novel magnetic lignin hydrogels: Activated persulfate degrades pesticide contaminants. J Colloid Interface Sci 2024; 675:670-682. [PMID: 38996697 DOI: 10.1016/j.jcis.2024.06.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Lignin hydrogels have garnered significant attention due to their distinctive three-dimensional structures and potent swelling ability. In this work, a novel magnetic nanocomposite lignin hydrogel (MNLH) was fabricated through organic synthesis and solution immersion reduction. The obtained MNLH was used to activate persulfate(PDS) for pesticide degradation. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and morphology of MNLH. The influence of factors such as the lignin hydrogel to nano-zero-valent iron (nZVI) and copper oxide (CuO) mass ratio, MNLH dosage, initial pH on the MNLH/PDS/imidacloprid (IMI) system. Remarkably, the MNLH/PDS/IMI system has a removal rate of up to 100%. Quenching and electron paramagnetic resonance (EPR) studies disclosed that the MNLH/PDS system degraded IMI through a combination of free radical and non-free radical pathways, with the latter being dominant. More importantly, in this study, the toxicity and hydrolysis sites of IMI were analyzed using ECOSAR and Gaussian09, respectively, confirming the feasibility of activating persulfate with MNLH. These findings underscore the potential of MNLH as a function material suitable for facilitating the persulfate-activated degradation of organic pollutants.
Collapse
Affiliation(s)
- Luyu Dong
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Zhixin Hu
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Yujin Xia
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Yu Zheng
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Miao Zhang
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Yilin Xie
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Weihan Qiao
- School of Water and Environment, Chang' an University, Xi'an 710064, China
| | - Xueli Wang
- School of Water and Environment, Chang' an University, Xi'an 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang' an University, Xi'an 710064, China.
| | - Shengke Yang
- School of Water and Environment, Chang' an University, Xi'an 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang' an University, Xi'an 710064, China
| |
Collapse
|
4
|
Fernandez HA, Weavers LK. The impact of inorganic salts on the ultrasonic degradation of contaminants: A review. ULTRASONICS SONOCHEMISTRY 2024; 111:107076. [PMID: 39357212 PMCID: PMC11639443 DOI: 10.1016/j.ultsonch.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
This comprehensive review explores the interplay between inorganic salts and ultrasound-assisted degradation of various contaminants. The addition of salt to aqueous matrices has been attributed to increasing contaminant degradation via the salting-out effect. However, research investigating the impact of salt on degradation has yielded inconsistent results. This review incorporated degradation information from 44 studies organizing data according to compound class and ionic strength to analyze the impact of inorganic salts on cavitation bubble dynamics, contaminant behavior, radical species generation, and contaminant degradation. Frequency and salt type were assessed for potential roles in contaminant degradation. The analysis showed that high intensity ultrasound was most beneficial to degradation in salt solutions. Unexpectedly, hydrophilic compounds showed marked enhancement with increasing ionic strength while many hydrophobic compounds did not benefit as greatly. Based on the collected data and analysis, enhanced degradation in the presence of salt appears to be primarily radical-mediated rather than due to the salting-out effect. Finally, the analysis provides guidance for designing sonolytic reactors for contaminant degradation.
Collapse
Affiliation(s)
- Haleigh A Fernandez
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Linda K Weavers
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
5
|
Yang K, Abu-Reesh IM, He Z. Domestic wastewater treatment towards reuse by "self-supplied" microbial electrochemical system assisted UV/H 2O 2 process. WATER RESEARCH 2024; 267:122504. [PMID: 39342707 DOI: 10.1016/j.watres.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Domestic wastewater is a potential source of water for non-potable reuse that may help address the global water, energy, and resource challenges. Herein, a "self-supplied" process through integrating microbial electrochemical system (MES) with UV/H2O2 was developed and investigated for wastewater treatment. H2O2 was "self-supplied" from MES while the MES catholyte was "self-supplied" from the final effluent of UV/H2O2. It was found that the MES accomplished > 80 % degradation of chemical oxygen demand (COD) through bioanode degradation, and produced 18 - 20 mg L-1 H2O2 via oxygen reduction reaction in the gas diffusion cathode. The MES effluent was further treated by the UV/H2O2 process, which achieved the complete removal of recalcitrant diclofenac and > 6 log inactivation of Escherichia coli. The enhanced treatment performance of UV/H2O2 was demonstrated via a comparison with the control experiments (UV or H2O2 treatment) and benefited from ·OH generation and sulfide removal. When treating the actual wastewater, the proposed system exhibited consistent treatment performance for the organic compounds and recalcitrant contaminants, and the quality of the treated water would meet the non-potable water reuse guidelines. The results of this study encourage the further exploration of emerging contaminant removal, system coordination, and use of renewable energy by the cooperation between MES and UV/H2O2.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Wu X, Lian H, Xia C, Deng J, Li X, Zhang C. Mechanistic insights and applications of lignin-based ultraviolet shielding composites: A comprehensive review. Int J Biol Macromol 2024; 280:135477. [PMID: 39250986 DOI: 10.1016/j.ijbiomac.2024.135477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Lignin is a green aromatic polymer constructed from repeating phenylpropane units, incorporating features such as phenolic hydroxyl groups, carbonyl groups, and conjugated double bonds that serve as chromophores. These structural attributes enable it to absorb a wide spectrum of ultraviolet radiation within the 250-400 nm range. The resulting properties make lignin a material of considerable interest for its potential applications in polymers, packaging, architectural decoration, and beyond. By examining the structure of lignin, this research delves into the structural influence on its UV-shielding capabilities. Through a comparative analysis of lignin's use in various UV-shielding applications, the study explores the interplay between lignin's structure and its interactions with other materials. This investigation aims to elucidate the UV-shielding mechanism, thereby offering insights that could inform the development of high-value applications for lignin in UV-shielding composite materials.
Collapse
Affiliation(s)
- Xinyu Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hailan Lian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing, Jiangsu 210037, China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junqian Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changhang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Rehman R, Lu W, Shi L, Yang Y, Li P. The effect of pre-treatments on atrazine removal from source water by microbubble ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55145-55157. [PMID: 39222228 DOI: 10.1007/s11356-024-34829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ozone-based advanced oxidation processes (AOPs) have emerged a promising avenue for water treatment, offering effective removal of micropollutants. Recent research underscores the potential of ozone microbubbles to enhance ozone mass transfer during water treatment, particularly when combined with pre-treatment steps. This study aimed to evaluate the efficacy of three different combined processes (chlorine/KMnO4/PAC pre-treatment followed by ozonation) in removing atrazine, a common micropollutant from natural source water. Results revealed that all combined processes achieved higher atrazine removal rates compared to individual pre-treatment or ozonation methods. Notably, the highest atrazine removal rates were observed under alkaline pH conditions, with treatment outcomes influenced by oxidant dose and pH levels. Among the combined processes, chlorine pre-treatment followed by ozonation emerged as the most effective approach, achieving a removal rate of 59.7% that exceeded the sum of individual treatments. However, this treatment efficacy was affected by water quality parameters, particularly the presence of organic matter and elevated ammonia nitrogen concentration (> 0.5 mg/L). This study highlights the potential for utilizing ozone micro/nanobubbles to enhance ozone mass transfer and offers valuable insights for optimizing the combined application of pre-treatment and ozonation strategies for efficient atrazine removal from natural water sources.
Collapse
Affiliation(s)
- Ratul Rehman
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, P.R. China
| | - Wanmeng Lu
- School of Civil Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou City, Gansu, P.R. China
| | - Lifang Shi
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, P.R. China
| | - Yahong Yang
- School of Civil Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou City, Gansu, P.R. China
| | - Pan Li
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, P.R. China.
- UNEP-Institute of Environment and Sustainable Development (IESD), Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Yu Y, Li J, Zhou J, Cao Y, Guo Q, Liu Y, Yang Y, Jiang J. Nucleophilic hydrolysis of dichloroacetonitrile and trichloroacetonitrile disinfection byproducts by peroxymonosulfate: Kinetics and mechanisms. CHEMOSPHERE 2024; 363:142875. [PMID: 39019182 DOI: 10.1016/j.chemosphere.2024.142875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
In this work, it was found that peroxymonosulfate (PMS) could appreciably accelerate the transformation rates of dichloroacetonitrile (DCAN) and trichloracetonitrile (TCAN) in aqueous solutions, especially under alkaline pHs. The impact of reactive oxygen species scavengers (methyl alcohol for sulfate radical, tert-butyl alcohol for hydroxyl radical, and azide for singlet oxygen) and water matrices (chloride (Cl-), bicarbonate (HCO3-), and natural organic matter (NOM)) on DCAN and TCAN transformation by PMS is evaluated, revealing negligible effects. A nucleophilic hydrolysis pathway, as opposed to an oxidation process, was proposed for the transformation of DCAN and TCAN by PMS, supported by the hydrolyzable characteristics of these compounds and validated through density functional theory calculations. Kinetic analysis indicated that the transformation of DCAN and TCAN by PMS adhered to a second-order kinetic law, with higher reaction rates observed at elevated pH levels within the range of 7.0-10.0. Kinetic modeling incorporating the hydrolytic contributions of water, hydroxyl ion, and protonated and deprotonated PMS (i.e., HSO5- and SO52-) effectively fitted the experimental data. Species-specific second-order rate constants reveal that SO52- exhibited significantly higher reactivity towards DCAN ((1.69 ± 0.22) × 104 M-1h-1) and TCAN ((6.06 ± 0.18) × 104 M-1h-1) compared to HSO5- ((2.14 ± 0.12) × 102 M-1h-1) for DCAN; and (1.378 ± 0.11) × 103 M-1h-1 for TCAN). Comparative analysis of DCAN and TCAN transformation efficiencies by four different oxidants indicated that PMS rivaled chlorine but falls short of hydrogen peroxide, with peroxydisulfate displaying negligible reactivity. Overall, this study uncovers the nucleophilic hydrolysis characteristics of PMS, supplementing its recognized role as an oxidant precursor or mild oxidant, and underscores its significant implications for environmental remediation.
Collapse
Affiliation(s)
- Yangyi Yu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Ying Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongze Liu
- Beijing Key Lab for Sources Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Mulai T, Kumar JE, Kharmawphlang W, Sahoo MK. UV light and Fe 2+ catalysed COD removal of AO 8 using NaOCl as oxidant. CHEMOSPHERE 2024; 356:141747. [PMID: 38556178 DOI: 10.1016/j.chemosphere.2024.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.
Collapse
Affiliation(s)
- Tsungom Mulai
- Department of Chemistry, North-Eastern Hill University, Shillong, 793 022, India
| | - John Elisa Kumar
- Department of Chemistry, North-Eastern Hill University, Shillong, 793 022, India
| | | | - Mihir Kumar Sahoo
- Department of Chemistry, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
10
|
Zhao L, Zhao YG, Jin C, Yang D, Zhang Y, Progress M. Removal of tetracycline by ultraviolet/sodium percarbonate (UV/SPC)advanced oxidation process in water. ENVIRONMENTAL RESEARCH 2024; 247:118260. [PMID: 38272292 DOI: 10.1016/j.envres.2024.118260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Tetracycline (TC) was widely used and frequently detected in various water bodies, where the presence of TC posed a significant threat to the health of aquatic organisms. Furthermore, antibiotics were hardly degraded by biological treatment. Thus, in order to enhance the removal of TC, we proposed the use of a novel ultraviolet/sodium percarbonate (UV/SPC) advanced oxidation process and initiated an in-depth study. The study investigated the influence of oxidant dosage, initial pH, UV intensity, and TC concentration on the removal of TC. The results demonstrated that the UV/SPC system efficiently removed TC, with removal efficiency increasing as the SPC concentration increased. Within the pH range of 3-11, TC degradation exhibited minimal variation, indicating the UV/SPC system's strong adaptability to pH variations. The research on the impact of the water matrix on TC removal revealed that HCO3- had an inhibitory effect on TC degradation, while NO3- promoted TC degradation. Additionally, the presence of free radical species (·OH, ·CO3-, ·O2-) were detected and rate constants for the secondary reactions (k·OH,TC = 6.3 × 109 L mol-1·s-1, k·CO3-,TC = 3.4 × 108 L mol-1·s-1) were calculated, indicating that ·OH exhibited a stronger oxidative performance compared to ·CO3-. This study did not only present a novel strategy via UV/SPC to remove TC but also uncovered the unique role of ·CO3- for contaminant removal.
Collapse
Affiliation(s)
- Liangyu Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Chunji Jin
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Dexiang Yang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mupindu Progress
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
11
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
12
|
Liu S, Chen Z, Shen Y, Chen H, Li Z, Cai L, Yang H, Zhu C, Shen J, Kang J, Yan P. Simultaneous regeneration of activated carbon and removal of adsorbed atrazine by ozonation process: From laboratory scale to pilot studies. WATER RESEARCH 2024; 251:121113. [PMID: 38215539 DOI: 10.1016/j.watres.2024.121113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
A novel treatment technique by coupling granular activated carbon (GAC) adsorption and ozone regeneration was constructed for long-lasting water decontamination. The GAC adsorption showed high performance for atrazine (ATZ) removal (99.9 %), and the ozone regeneration ensured the recyclability of GAC for water purification. The regeneration process was evaluated via several paths to assist the efficient adsorption process. Employing ozone micro-nano bubbles (O3-MNBs) for regenerating GAC showed superior performance compared to traditional ozone. Meantime, inhibiting the formation of bromate (BrO3-). ATZ adsorption process suffered from the pore-filling, hydrogen bonding effect and π-π EDA interaction. The surface phenolic hydroxyl group, carboxyl group and pyridine nitrogen benefitted the triggering of ozone to generate reactive oxygen species, and regenerate the GAC surface. The superior performance of the adsorption and regeneration process was verified via a long-term running by a pilot study. It significantly improved the removal of organic micropollutants, UV254 and permanganate index. Additionally, the intermittent O3-MNBs regeneration process resulted in efficient decontamination within the pores structure of GAC, which also effectively preserved the pore structure from destruction. For actual application, the cost of water production can be saved around 0.63 kWh m-3. This work proposed new ideas and theoretical support for economic water production.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Yang Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Hao Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Zhenxin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Liming Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Hanbin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Congshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 50090, China.
| |
Collapse
|
13
|
Shi X, Zhu M, Lu G. Oxidant-mediated radical reactions of the azole fungicide TEB in aquatic media: Degradation mechanism and toxicity evolution. CHEMOSPHERE 2024; 351:141263. [PMID: 38246496 DOI: 10.1016/j.chemosphere.2024.141263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The degradation of tebuconazole (TEB) by UV/H2O2, UV/NaClO, and ozonation was investigated in this research. The experimental findings unveiled that under the specified conditions, the degradation percentages of TEB were raised to 99% within 40 s, 5 min, and 3 min for UV/H2O2, UV/NaClO and ozonation, respectively. The mineralization percentages within 1 h were 59%, 31% and 8% for the three AOPs. UV/H2O2 and UV/NaClO technologies mainly acted through OH·, while O3 treatment primarily relied on the free radicals such as 1O2 and O2·-. UV-based AOPs achieved almost complete dechlorination within 1 h, whereas O3 treatment had a less effective dechlorination, reaching only 27.61%. Notably, UV alone achieved a dechlorination percentage of 43.07%. By identifying the TPs, we found that the three AOPs shared three similar degradation pathways. The degradation mechanism of TEB mainly entailed the removal of the benzene ring, tert-butyl group and triazolyl group. Toxicity assessment revealed an initial increase followed by a gradual decrease in toxicity for UV/NaClO and O3 treatments, whereas UV/H2O2 treatment exhibited a sustained decrease. This was due to the presence of TP278 and TP303 by UV/NaClO and TP168 and TP153 by ozonation. After estimating the costs of the three AOPs, UV/H2O2 standed out as the best choice for achieving a 90% degradation percentage and exhibiting lower toxicity performance, while O3 treatment was favored for low TOC demands. These research findings provided valuable reference for understanding the degradation mechanism and developing a new technology of the removal of TEB.
Collapse
Affiliation(s)
- Xuan Shi
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Mingshan Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Xiong S, Zeng H, Tang R, Abdullah Al-Dhabi N, Li W, Zhou Z, Li L, Tang W, Gong D, Deng Y. l-Cysteine and barium titanate co-modified enteromorpha biochar as effective peroxymonosulfate activator for atrazine treatment. BIORESOURCE TECHNOLOGY 2024; 396:130461. [PMID: 38369082 DOI: 10.1016/j.biortech.2024.130461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
In this study, pyrolysis and hydrothermal methods were used for Enteromorpha biochar that was co-modified with l-cysteine and barium titanate (LBCBa). It has great environmental tolerance and can remove 93.0 % of atrazine (ATZ, 10 mg·L-1) within 60 mins of ultrasonic treatment. The enhanced hydrophilicity, electron-donating capability, and piezoelectricity of LBCBa are considered to induce excellent performance. The apparent reaction rate of the LBCBa-2/PMS/ATZ system with ultrasonic was 2.87 times that without ultrasonic. The density functional theory points out that, introducing l-cysteine to carbon edges improves the adsorption of ATZ and peroxymonosulfate (PMS), making PMS easier to activate. This work offered unique insights for fabricating effective catalysts and demonstrated the combination of hydrophilic functional groups and piezoelectricity in improving catalytic performance and stability.
Collapse
Affiliation(s)
- Sheng Xiong
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Wenbo Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Daoxin Gong
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaocheng Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Sohn S, Kim MK, Lee YM, Sohn EJ, Choi GY, Chae SH, Zoh KD. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H 2O 2 processes used in drinking water treatment plant. CHEMOSPHERE 2024; 352:141360. [PMID: 38325620 DOI: 10.1016/j.chemosphere.2024.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Grace Y Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Seon-Ha Chae
- Korea Water Resources Corporation, K-water Institute, Deajeon, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
16
|
Wang L, Zheng H, Hu C, Zeng H, Ma X, Li Q, Li X, Zhou S, Deng J. Novel UV-LED-driven photocatalysis-chlorine activation for carbamazepine degradation by sulfur-doped NH 2-MIL 53 (Fe) composites: Electronic modulation effect and the dual role of chlorine. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133037. [PMID: 37995635 DOI: 10.1016/j.jhazmat.2023.133037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Chlorine activation-inefficient and the generation of disinfection by-products (DBPs) has indeed limited the application of UV/chlorine process. In this study, the typical metal-organic frameworks (MOFs) NH2-MIL53(Fe) were successfully modified with organic ligands containing sulfur functional groups and applied to construct a novel UV-LED-driven heterogeneous chlorine activation system. The generation of intermediate energy levels and the charge redistribution effect on Fe-S bond facilitated the excitation of electrons and realized the effective separation of photohole (hvb+) and photoelectron (ecb-). The involvement of S-NH2-MIL53(Fe) improved the efficiency of UV-LED/chlorine process by 6 times. The effective activation of HOCl/OCl- by hvb+ and ecb- significantly enhanced the yield of HO· and Cl·. More importantly, HOCl/OCl- played a dual role in UV-LED/chlorine/S-NH2-MIL53(Fe) process as a precursor for the generation of free radicals and a catalyst for the enhancement of HO· yield, which could achieve efficient removal of the target pollutants at lower chlorine doses. In addition, the presence of low-valent sulfur species and ecb- accelerated the cycle of Fe(II)/Fe(III) and in-situ generation of HO· and Cl·. The known generation of DBPs in UV-LED/chlorine/S-NH2-MIL53(Fe) process decreased by 37.9% compared to UV-LED/chlorine process. Developing novel UV-LED/chlorine/S-NH2-MIL53(Fe) processes provided a reliable strategy to efficiently purify actual micro-polluted water bodies.
Collapse
Affiliation(s)
- Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Huiming Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chenkai Hu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hanxuan Zeng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China.
| |
Collapse
|
17
|
Liu W, Chen B, Yang Y, Li B, Pan H, Luo W. Photo-anammox by vacuum ultraviolet tandem chlorine. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132876. [PMID: 37944232 DOI: 10.1016/j.jhazmat.2023.132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Excessive ammonia (NH4+) discharge can lead to algal blooms and disrupt water sustainability, so its control is imperative. Although microbiology-triggered anammox process is promising, its application is limited due to time-consuming cultivation of specific microorganisms and need for skilled operation. To bypass these barriers, this study proposed and verified a photo-induced anammox technology that removes NH4+ and total nitrogen (TN) from water by ultraviolet (UV)/vacuum UV (VUV)/chlorine under anoxic conditions. Under the Cl/N mass ratio of 5:1, the anoxic VUV/UV/chlorine process achieved 66.8% removal of 10 mg-N/L NH4+ within 10 min along with 57.8% reduction in TN. Besides the evidence from TN loss, this study confirmed nitrogen gas (N2) as the primary degradation product at low dissolved oxygen (DO) concentration of 2.0 mg/L. The selective conversion of NH4+ into N2 was mainly attributed to reactive nitrogen species (RNS, 42.5%) and reactive chlorine species (RCS, 57.5%). The TN removal efficiency was insensitive to certain variations of pH (7.0-9.0), NH4+ concentration (1-30 mg-N/L), chloride (50-125 mg/L), and sulfate (25-100 mg/L), but sensitive to DO and bicarbonate (25-100 mg/L). Given its robustness and high efficiency, the anoxic VUV/UV/chlorine technology may serve as a potentially promising alternative for NH4+ and TN alleviation in wastewater.
Collapse
Affiliation(s)
- Wenzhe Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huimei Pan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wang Luo
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Yoon Y, Cho M. Understanding atrazine elimination via treatment of the enzyme-based Fenton reaction: Kinetics, mechanism, reaction pathway, and metabolites toxicity. CHEMOSPHERE 2024; 349:140982. [PMID: 38103653 DOI: 10.1016/j.chemosphere.2023.140982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
The degradation kinetics and mechanism of atrazine (ATZ) via an enzyme-based Fenton reaction were investigated at various substrate concentrations and pH values. Toxicological assessment was conducted on ATZ and its degradation products, and the associated reaction pathway was examined. The in situ production of hydrogen peroxide (H2O2) was monitored within the range of 3-15 mM, depending on the increase in glucose concentration, while decreasing the pH to 3.2-5.1 (initial pH of 5.8) or 6.5-7.4 (initial pH of 7.7). The degradation efficiency of ATZ was approximately 2-3 times higher at an initial pH of 5.8 with lower glucose concentrations than at an initial pH of 7.7 with higher substrate concentrations during the enzyme-based Fenton reaction. The apparent pseudo-first-order rate constant for H2O2 decomposition under various conditions in the presence of ferric citrate was 1.9-6.3 × 10-5 s-1. The •OH concentration ([•OH]ss) during the enzyme-based Fenton reaction was 0.5-4.1 × 10-14 M, and the second-order rate constant for ATZ degradation was 1.5-3.3 × 109 M-1 s-1. ATZ intrinsically hinders the growth and development of Arabidopsis thaliana, and its inhibitory effect is marginal, depending on the reaction time of the enzyme-based Fenton process. The ATZ transformation during this process occurs through dealkylation, hydroxylation, and dechlorination via •OH-mediated reactions. The degradation kinetics, mechanism, and toxicological assessment in the present study could contribute to the development and application of enzyme-based Fenton reactions for in situ pollutant abatement. Moreover, the enzyme-based Fenton reaction could be an environmentally benign and applicable approach for eliminating persistent organic matter, such as herbicides, using diverse H2O2-producing microbes and ubiquitous ferric iron with organic complexes.
Collapse
Affiliation(s)
- Younggun Yoon
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
19
|
Yu SY, Shi Y, He CS, Dong YD, Sun S, Ning RY, Xiong ZK, Zhou P, Zhang H, Lai B. Accelerated removal of naproxen in the iron-based peracetic acid activation system by chloride ions: Enhancement of reactive oxidative species via the formation of iron-chloride complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132760. [PMID: 37839375 DOI: 10.1016/j.jhazmat.2023.132760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Iron-based PAA activation process is a promising advanced oxidation process for water decontamination which depends on Fe(II) as the main reactive site for PAA activation, resulting in various reactive oxidative species (ROSs) generation. For practical application, the impact of water matrix chloride ion (Cl-) on ROSs production and contaminants removal should be carefully considered. In this study, it's found that the introduction of Cl- (0.1-10 mM) could significantly enhance the reaction rate of the rapid stage (kobs1) up to 2.15 times at the initial pH of 4.25 in the Fe(II)/PAA system. Further studies demonstrated that the improved removal capacity of NAP resulted from Cl- induced R-O• generation as indicated by the exposure dose of R-O• increasing from 7.74 × 10-11 M•s to 1.44 × 10-10 M•s, rather than chlorine-containing radicals' generation. DFT calculation results suggested that the formed Fe(II)-Cl- complexes could easily activate PAA to generate more ROSs for NAP removal. Moreover, Fe(II)/PAA treatment can alleviate the biological toxicity of pollutants via both the Escherichia coli test and toxicity assessment. The obtained new knowledge manifested that Cl- can boost ROSs generation and conversion in iron-based PAA systems, providing guidance for the efficient decontamination of chlorine-containing sewage with PAA-based AOPs.
Collapse
Affiliation(s)
- Si-Ying Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yu-Dan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ru-Yan Ning
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhao-Kun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Zhang S, Wei J, Wu N, Allam AA, Ajarem JS, Maodaa S, Huo Z, Zhu F, Qu R. Assessment of the UV/DCCNa and UV/NaClO oxidation process for the removal of diethyl phthalate (DEP) in the aqueous system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122915. [PMID: 37952917 DOI: 10.1016/j.envpol.2023.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
In this work, the removal and transformation process of diethyl phthalate (DEP) in UV/dichloroisocyanurate (UV/DCCNa) and UV/sodium hypochlorite (UV/NaClO) systems were compared to evaluate the application potential of UV/DCCNa technology. Compared with UV/NaClO, UV/DCCNa process has the advantage of DEP removal and caused a higher degradation efficiency (93.8%) within 45 min of oxidation in ultrapure water due to the sustained release of hypochloric acid (HOCl). Fourteen intermediate products were found by high-resolution mass spectrometry, and the transformation patterns including hydroxylation, hydrolysis, chlorination, cross-coupling, and nitrosation were proposed. The oxidation processes were also performed under quasi-realistic environmental conditions, and it was found that DEP could be effectively removed in both systems, with yields of disinfection byproduct meeting the drinking water disinfection standard (<60.0 μg/L). Comparing the single system, the removal of DEP decreased in the mixed system containing five kinds of PAEs, which could be attributed to the regeneration of DEP and the competitive effect of •OH occurred among the Dimethyl phthalate (DMP), DEP, Dipropyl phthalate (DPrP), Diallyl phthalate (DAP) and Diisobutyl phthalate (DiBP). However, a greater removal performance presented in UV/DCCNa system compared with UV/NaClO system (69.4% > 62.1%). Further, assessment of mutagenicity and developmental toxicity by Toxicity Estimation Software Tool (T.E.S.T) software indicated that UV/DCCNa process has fewer adverse effects on the environment and is a more environmentally friendly chlorination method. This study may provide some guidance for selecting the suitable disinfection technology for drinking water treatment.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
21
|
Guo K, Zhang Y, Wu S, Qin W, Wang Y, Hua Z, Chen C, Fang J. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20339-20348. [PMID: 37946521 DOI: 10.1021/acs.est.3c04641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Reactive bromine species (RBS) are gaining increasing attention in natural and engineered aqueous systems containing bromide ions (Br-). However, their roles in the degradation of structurally diverse micropollutants by advanced oxidation processes (AOPs) were not differentiated. In this study, the second-order rate constants (k) of Br•, Br2•-, BrO•, and ClBr•- were collected and evaluated. Br• is the most reactive RBS toward 21 examined micropollutants with k values of 108-1010 M-1 s-1. Br2•-, ClBr•-, and BrO• are selective for electron-rich micropollutants with k values of 106-108 M-1 s-1. The specific roles of RBS in aqueous micropollutant degradation in AOPs were revealed by using simplified models via sensitivity analysis. Generally, RBS play minimal roles in the UV/H2O2 process but are significant in the UV/peroxydisulfate (PDS) and UV/chlorine processes in the presence of trace Br-. In UV/PDS with ≥1 μM Br-, Br• emerges as the major RBS for removing electron-rich micropollutants. In UV/chlorine, BrO• contributes to the degradation of specific electron-rich micropollutants with removal percentages of ≥20% at 1 μM Br-, while the contributions of BrO• and Br• are comparable to those of reactive chlorine species as Br- concentration increases to several μM. In all AOPs, Br2•- and ClBr•- play minor roles at 1-10 μM Br-. Water matrix components such as HCO3-, Cl-, and natural organic matter (NOM) significantly inhibit Br•, while BrO• is less affected, only slightly scavenged by NOM with a k value of 2.1 (mgC/L)-1 s-1. This study sheds light on the differential roles of multiple RBS in micropollutant abatement by AOPs in Br--containing water.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Sining Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Wenlei Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yuge Wang
- School of Civil Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
22
|
Chai Z, Wang J, Dai Y, Du E, Guo H. Synergy between UV light and trichloroisocyanuric acid on methylisothiazolinone degradation: Performance, kinetics and degradation pathway. ENVIRONMENTAL RESEARCH 2023; 236:116693. [PMID: 37481058 DOI: 10.1016/j.envres.2023.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Methylisothiazolinone (MIT) is widely used in daily chemicals, fungicides, and other fields and its toxicity has posed a threat to water system and human health. In this study, ultraviolet (UV)/trichloroisocyanuric acid (TCCA), which belongs to advanced oxidation processes (AOP), was adopted to degrade MIT. Total chlorine attenuation detection proved that TCCA has medium UV absorption and a strong quantum yield (0.49 mol E-1). At a pH of 7.0, 93.5% of MIT had been decontaminated after 60 min in UV/TCCA system (kobs = 4.4 × 10-2 min-1, R2 = 0.978), which was much higher than that in the UV alone system and TCCA alone system, at 65% (1.7 × 10-2 min-1, R2 = 0.995) and 10% (1.8 × 10-3 s-1, R2 = 0.915), respectively. This system also behaved well in degrading other five kinds of contaminants. Tert-butanol (TBA) and carbonate (CO32-) were separately used in quenching experiments, and the degradation efficiency of MIT decreased by 39.5% and 46.5% respectively, which confirmed that HO• and reactive chlorine species (RCS) were dominant oxidants in UV/TCCA system. With TCCA dosage increasing in a relatively low concentration range (0.02-0.2 mM) and pH decreasing, the effectiveness of this AOP system would be strengthened. The influences of coexisting substances (Cl-, SO42-, CO32-, NO2- and NO3-) were explored. MIT degradation pathways were proposed and sulfur atom oxidation and carboxylation were considered as the dominant removal mechanisms of MIT. Frontier orbital theory and Fukui indexes of MIT were employed to further explore the degradation mechanism.
Collapse
Affiliation(s)
- Zhizhuo Chai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Yixue Dai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
23
|
Ye WK, Tian FX, Chen C, Ye J, Liu FW, Wang B, Hu XJ, Xu B. Performance evaluation of the UV activated chlorite process on trimethoprim: Degradation efficiency, energy consumption and disinfection by-products formation. CHEMOSPHERE 2023; 327:138540. [PMID: 36996925 DOI: 10.1016/j.chemosphere.2023.138540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
As the primary inorganic by-product species of ClO2, chlorite is believed to have negative toxicological effects on human health and therefrom greatly limits the wide application of ClO2 in water treatment. The synergistic trimethoprim (TMP) removal concerning degradation efficiency, energy consumption and disinfection by-products (DBPs) formation in the UV activated chlorite process accompanied by the simultaneously elimination of chlorite was comprehensively evaluated. UV/chlorite integrated process removed TMP far more rapidly than UV (1.52%) or chlorite (3.20%) alone due to the endogenous radicals (Cl•, ClO• and •OH), the contributing proportions of which were 31.96%, 19.20% and 44.12%. The second-order rate constants of TMP reaction with Cl•, ClO• and •OH were determined to be 1.75 × 1010, 1.30 × 109 and 8.66 × 109 M-1 s-1. The effects of main water parameters including chlorite dosage, UV intensity, pH as well as water matrixes (nature organic matter, Cl- and HCO3-) were examined. kobs obeyed the order as UV/Cl2>UV/H2O2≈UV/chlorite>UV, and the cost ranking via electrical energy per order (EE/O, kWh m-3 order-1) parameter was UV/chlorite (3.7034) > UV/H2O2 (1.1625) >UV/Cl2 (0.1631). The operational scenarios can be optimized to achieve the maximum removal efficiencies and the minimum energy costs. The destruction mechanisms of TMP were proposed by LC-ESI-MS analysis. The overall weighted toxicity in subsequent disinfection was assessed as UV/Cl2>UV/chlorite > UV, the values of which in post-chlorination were 6.2947, 2.5806 and 1.6267, respectively. Owing to the vital roles of reactive chlorine species (RCS), UV/chlorite displayed far higher TMP degradation efficiency than UV, and concurrently presented much less toxicity than UV/Cl2. In an effort to determine the viability of the promising combination technology, this study was devoted to reduce and reuse chlorite and synchronously realize the contaminants degradation efficiently.
Collapse
Affiliation(s)
- Wen-Kai Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Chen Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Fu-Wen Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Bo Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Xiao-Jun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
24
|
Yazici Guvenc S, Turk OK, Can-Güven E, Garazade N, Varank G. Norfloxacin removal by ultraviolet-activated sodium percarbonate and sodium hypochlorite: process optimization and anion effect. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2872-2889. [PMID: 37318929 PMCID: wst_2023_159 DOI: 10.2166/wst.2023.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficiency of UV-activated sodium percarbonate (SPC) and sodium hypochlorite (SHC) in Norfloxacin (Norf) removal from an aqueous solution was assessed. Control experiments were conducted and the synergistic effect of the UV-SHC and UV-SPC processes were 0.61 and 2.89, respectively. According to the first-order reaction rate constants, the process rates were ranked as UV-SPC > SPC > UV and UV-SHC > SHC > UV. Central composite design was applied to determine the optimum operating conditions for maximum Norf removal. Under optimum conditions (UV-SPC: 1 mg/L initial Norf, 4 mM SPC, pH 3, 50 min; UV-SHC: 1 mg/L initial Norf, 1 mM SHC, pH 7, 8 min), the removal yields for the UV-SPC and UV-SHC were 71.8 and 72.1%, respectively. HCO3-, Cl-, NO3-, and SO42- negatively affected both processes. UV-SPC and UV-SHC processes were effective for Norf removal from aqueous solution. Similar removal efficiencies were obtained with both processes; however, this removal efficiency was achieved in a much shorter time and more economically with the UV-SHC process.
Collapse
Affiliation(s)
- Senem Yazici Guvenc
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey E-mail:
| | - Oruc Kaan Turk
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey E-mail:
| | - Emine Can-Güven
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey E-mail:
| | - Narmin Garazade
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey E-mail:
| | - Gamze Varank
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey E-mail:
| |
Collapse
|
25
|
Chen H, Lin T, Wang P, Wang Y, Wei W, Zhu S. A novel solar-activated chlorine dioxide process for atrazine degradation in drinking water. WATER RESEARCH 2023; 239:120056. [PMID: 37167851 DOI: 10.1016/j.watres.2023.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
New technologies using advanced oxidation processes (AOPs) with low energy-input to address the presence of micro-contaminants and the formation of disinfection byproducts (DBPs) are required for drinking water safety. In this work, the activation of chlorine dioxide with solar (solar/ClO2 process), a type of renewable and inexhaustible energy, was developed to degrade atrazine (ATZ) and control the formation of DBPs. Results revealed that solar/ClO2 process was effective in degrading ATZ. Hydroxyl radicals (•OH) and chlorine radicals (Cl•) produced in solar/ClO2 process were found to be the predominant agents for ATZ degradation with contribution rates of 55.9% and 44.1%, respectively, based on radical quenching tests and competition kinetics. Reaction pH did not affect the total amount of Cl• and •OH (i.e., [•OH]exp) and [Cl•]exp), while the conversion of Cl• to •OH was responsible for the depressed ATZ degradation efficiency with the increasing pH in solar/ClO2 process. The presence of bicarbonate (HCO3-), chloride (Cl-) and humic acid (HA) retarded the ATZ degradation mainly due to they decreased [•OH]exp) and [Cl•]exp. Using the UPLC-MS/MS analysis, six degradation intermediates of ATZ were tentatively identified, and the three-stage degradation pathway as well as the stepwise detoxification of ATZ were confirmed by the condensed Fukui function (CFF) calculation and ECOSAR prediction. Applying solar/ClO2 as a pretreatment of HA-containing water, the formation of DBPs during post-chlorination was significantly reduced. However, the presence of ATZ during solar/ClO2 pretreatment of HA significantly lowered the control efficiency of DBPs. The major degradation intermediate, i.e., deethyldeisopropylhydroxyatrazine (DEIHA), of ATZ could incorporate into HA and therefore providing more precursors for DBPs. The acute toxicity recorded by the behavior of zebrafish larvae revealed that using chloramine instead of chlorine downstream the solar/ClO2 pretreatment of ATZ and HA could significantly reduce the acute toxicity by decreasing the formation of total DBPs. This study demonstrated the great potential of applying solar/ClO2 process followed by chloramination to simultaneously degrade micro-contaminants and reduce DBPs formation as well as toxic risk in practical applications.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yuchen Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Wei
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, PR China
| | - Shuguang Zhu
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, PR China
| |
Collapse
|
26
|
Yang T, Zhu M, An L, Zeng G, Fan C, Li J, Jiang J, Ma J. Photolysis of chlorite by solar light: An overlooked mitigation pathway for chlorite and micropollutants. WATER RESEARCH 2023; 233:119809. [PMID: 36878179 DOI: 10.1016/j.watres.2023.119809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Chlorite (ClO2-) is an undesirable toxic byproduct commonly produced in the chlorine dioxide and ultraviolet/chlorine dioxide oxidation processes. Various methods have been developed to remove ClO2- but require additional chemicals or energy input. In this study, an overlooked mitigation pathway of ClO2- by solar light photolysis with a bonus for simultaneous removal of micropollutant co-present was reported. ClO2- could be efficiently decomposed to chloride (Cl-) and chlorate by simulated solar light (SSL) at water-relevant pHs with Cl- yield up to 65% at neutral pH. Multiple reactive species including hydroxyl radical (•OH), ozone (O3), chloride radical (Cl•), and chlorine oxide radical (ClO•) were generated in the SSL/ClO2- system with the steady-state concentrations following the order of O3 (≈ 0.8 μΜ) > ClO• (≈ 4.4 × 10-6 μΜ)> •OH (≈ 1.1 × 10-7 μΜ)> Cl• (≈ 6.8 × 10-8 μΜ) at neutral pH under investigated condition. Bezafibrate (BZF) as well as the selected six other micropollutants was efficiently degraded by the SSL/ClO2- system with pseudofirst-order rate constants ranging from 0.057 to 0.21 min-1 at pH 7.0, while most of them were negligibly degraded by SSL or ClO2- treatment alone. Kinetic modeling of BZF degradation by SSL/ClO2- at pHs 6.0 - 8.0 suggested that •OH contributed the most, followed by Cl•, O3, and ClO•. The presence of water background components (i.e., humic acid, bicarbonate, and chloride) exhibited negative effects on BZF degradation by the SSL/ClO2- system, mainly due to their competitive scavenging of reactive species therein. The mitigation of ClO2- and BZF under photolysis by natural solar light or in realistic waters was also confirmed. This study discovered an overlooked natural mitigation pathway for ClO2- and micropollutants, which has significant implications for understanding their fate in natural environments.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Linqian An
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ge Zeng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Chengqian Fan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
27
|
Sun N, Wang X, Liu Z. Acetaminophen degradation in aqueous solution by the UV-LED-EC/Cl 2 process. ENVIRONMENTAL TECHNOLOGY 2023; 44:1035-1046. [PMID: 36546775 DOI: 10.1080/09593330.2022.2161951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this study, electrochemically generated free chlorine (EC/Cl2) was activated by UV irradiation with a light emitting diode (LED) lamp at 275 nm to degrade acetaminophen (AAP, 2 μM) in aqueous solution. The potential at a RuO2-IrO2/Ti plate anode was set at 1.5 V vs. the Ag/AgCl electrode. Chlorine was in situ generated in the presence of Cl at the anode and then it was transformed into various active species such as OH and reactive chlorine species (RCS) under UV-LED irradiation. The degradation of AAP was investigated using batch tests, evaluating the influence of different experimental conditions such as NaCl concentration, phosphate buffer saline concentration, irradiation time and solution pH, keeping constant the UV-LED power and temperature. Results show that AAP could be completely degraded by the hybrid process with a high mineralization ratio (73%), and the degradation process followed a pseudo-first-order kinetics. The value of the Electric Energy per Order (EEO) = 1.272 kWh m3 order?, which is lower than the energy consumption of some other UV-based processes for AAP degradation. Adding 1 mM HCO3 ions slightly decreased the rate of AAP degradation. Luminescent bacteria experiment revealed that the acute toxicity of the reacted solution could be greatly reduced and the ecological risk was effectively abated. The scavenging assay shows that RCS plays a key role in the AAP degradation. The intermediate products were identified, and possible degradation routes were proposed. The system can advantageously replace conventional UV mercury lamp based ones in the degradation of microorganic pollutants.
Collapse
Affiliation(s)
- Na Sun
- Planning and Design Research Institute, East China JiaoTong University, Nanchang, People's Republic of China
| | - Xianglian Wang
- School of Civil Engineering and Architecture, Nanchang Institute of Technology, Nanchang, People's Republic of China
| | - Zhanmeng Liu
- Planning and Design Research Institute, East China JiaoTong University, Nanchang, People's Republic of China
- School of Civil Engineering and Architecture, Nanchang Institute of Technology, Nanchang, People's Republic of China
| |
Collapse
|
28
|
Qu H, Chen L, Yang F, Zhu J, Qi C, Peng G. Synthesis of an Environmentally Friendly Modified Mulberry Branch-Derived Biochar Composite: High Degradation Efficiency of BPA and Mitigation of Toxicity in Silkworm Larvae. Int J Mol Sci 2023; 24:ijms24043609. [PMID: 36835021 PMCID: PMC9961375 DOI: 10.3390/ijms24043609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, mulberry branch-derived biochar CuO (MBC/CuO) composite was successfully synthesized and used as a catalyst to activate persulfate (PS) for the degradation of bisphenol A (BPA). The MBC/CuO/PS system exhibited a high degradation efficiency (93%) of BPA, under the conditions of 0.1 g/L MBC/CuO, 1.0 mM PS, 10 mg/L BPA. Free radical quenching and electron spin-resonance spectroscopy (ESR) experiments confirmed that both free radicals •OH, SO4•- and O2•- and non-radicals 1O2 were involved in the MBC/CuO reaction system. Cl- and NOM displayed negligible influence on the degradation of BPA, while HCO3- promoted the removal of BPA. In addition, the toxicity tests of BPA, MBC/CuO and the degraded BPA solution were conducted by the 5th instar silkworm larvae. The toxicity of BPA was reduced after the treatment in the MBC/CuO/PS system, and no obvious toxicity of the synthesized MBC/CuO composite was found in the toxicity evaluation experiments. This work provides a new value-added utilization of mulberry branches as a cost-effective and environmentally friendly PS activator.
Collapse
Affiliation(s)
- Han Qu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fujian Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chengdu Qi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (C.Q.); (G.P.)
| | - Guilong Peng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (C.Q.); (G.P.)
| |
Collapse
|
29
|
García-Estrada R, Arzate S, Ramírez-Zamora RM. Thiabendazole degradation by photo-NaOCl/Fe and photo-Fenton like processes, using copper slag as an iron catalyst, in spiked synthetic and real secondary wastewater treatment plant effluents. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:620-634. [PMID: 36789708 DOI: 10.2166/wst.2022.424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Thiabendazole degradation (TBZD) in diferent types of water matrices was assessed by applying two Advanced Oxidation Processes, both using simulated solar light (SSL), copper slag (CS) as an iron based catalyst, and separately H2O2 or NaOCl as oxidants. First, optimum conditions for TBZD were evaluated in distilled water, TBZD = 90% at 60 min for CS-H2O2-SSL, and 92% of TBZD in a twelfth of the time by the system CS-NaOCl-SSL; minimum TBZ depletion variations were observed between the first and the fifth reuse test: 88 ± 2% for CS-H2O2-SSL (60 min) and 90 ± 1% for CS-NaOCl-SSL (5 min). Those conditions were tested using a synthetic (SE) and a real secondary effluent (RE) from a wastewater treatment plant. The CS-H2O2-SSL system achieved TBZD of 88 and 77% after 90 min for SE and RE, with kinetic constants of 0.024 and 0.016 min-1, respectively, whereas photo-NaOCl/Fe showed values of 0.365 and 0.385 min-1 for SE and RE, achieving a 94% TBZD removal in both types of water at 10 min. That might be related to the formation of Cl· and HO• during the photo-NaOCl/Fe process, highlighting that the CS-NaOCl-SSL is an attractive option that has great possibilities for scaling up by a better knowledge in real aqueous matrices.
Collapse
Affiliation(s)
- Reyna García-Estrada
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Sandra Arzate
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Rosa-María Ramírez-Zamora
- Coordinación de Ingeniería Ambiental, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
30
|
Gholizade A, Asadollahfardi G, Rezaei R. Reactive Blue 19 dye removal by UV-LED/chlorine advanced oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1704-1718. [PMID: 35922593 DOI: 10.1007/s11356-022-22273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, advanced oxidation processes (AOPs) have indicated the greatest potential in the removal of stable organic compounds, including dyes. In this study, the ultraviolet light-emitting diodes (UV-LEDs) combined with chlorine was evaluated to remove Reactive Blue 19 (RB19) dye from aqueous solution. The effect of key experimental parameters including pH, initial chlorine concentration, initial dye concentration, and reaction time on the performance of UV-LED irradiation, UV-LED/chlorine, and the chlorination method for the removal of RB19 was studied in this research. Results showed that, more than 99% of RB19 was removed after 30 min of reaction time under optimized conditions (pH = 5, [chlorine] = 300 μM, and [RB19] = 20 mg L-1) with apparent kinetic rate constant (kapp) of 17.1 × 10-2 min-1 in UV-LED/chlorine process. However, for the chlorination method, removal efficiency was 64.7% (kapp = 3.41 × 10-2 min-1) with an apparent kinetic rate constant of 0.0341 min-1. Results also showed that UV-LED irradiation is not effective at all in removing RB19. The scavenging assay showed that OH• radicals (67.23%) had the highest contribution in RB19 removal in UV-LED/chlorine process while Cl• (17.82%) and [Formula: see text] (8.56%) had a minor role in the degradation of the dye. The RB19 degradation kinetics analysis revealed that the processes of UV-LED/chlorine and chlorination degradation followed the pseudo-first-order kinetic model. In this study, the impact of chloride, nitrate, bicarbonate, carbonate, sulfate, and sulfite anions on the performance of the process was investigated. It indicated that sulfite anion has the most negative impact on the RB19 removal process. By evaluating the synergistic effect between UV-LED lamp and chlorine, a synergy index of 5.0 was obtained for the UV-LED/chlorine process. The results presented that the UV-LED/chlorine process has a better performance than each of them alone and has the necessary efficiency for RB19 removal. Measuring COD reported its removal efficiency of 98% during the UV-LED/chlorine process under optimized conditions. Experiments continued with textile factory wastewater and indicated 30.9% of its COD removed after treatment when 1.0 μM chlorine was used.
Collapse
Affiliation(s)
- Alireza Gholizade
- MSc of Environmental Engineering, Kharazmi University, 43 Shahid Mofatteh Ave, Tehran, Iran
| | - Gholamreza Asadollahfardi
- Emeritus professor, Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran.
| | - Reza Rezaei
- Aqua Intelligent Technology, 2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
31
|
Yang T, Mai J, Zhu M, Peng Q, Huang C, Wu S, Tan Q, Jia J, Fang J, Ma J. Enhanced Permanganate Activation under UVA-LED Irradiation: Unraveled Mechanism Involving Manganese Species and Hydroxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17720-17731. [PMID: 36469811 DOI: 10.1021/acs.est.2c06290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Permanganate [Mn(VII)] has gained broad attention in water treatment. However, its limited reactivity toward some refractory micropollutants hinders its application for micropollutant degradation. Herein, we introduced UVA-LED photolysis of Mn(VII) (UVA-LED/Mn(VII)) to degrade micropollutants (diclofenac (DCF), 4-chlorophenol (4-CP), atrazine, and nitrobenzene) by selecting DCF and 4-CP as target micropollutants. The effects of operating conditions (e.g., light intensity, radiation wavelengths, pH, and water constituents) on DCF and 4-CP degradation as well as the underlying mechanisms were systematically studied. The degradation rates of DCF and 4-CP linearly decreased with increasing radiation wavelengths (from 365 to 405 nm), likely due to the decreased molar absorption coefficients and quantum yields of Mn(VII). Reactive manganese species (RMnS), including Mn(V), Mn(III), and HO•, were generated in the UVA-LED/Mn(VII) process. Mn(V) and HO• were responsible for DCF degradation, while Mn(III), HO•, and likely Mn(V) accounted for 4-CP degradation. Competitive kinetic results revealed that contributions of RMnS and HO• decreased with increasing radiation wavelengths, wherein RMnS played the dominant role. Increasing pH displayed opposite effects on DCF and 4-CP degradation with higher degradation efficiency obtained at acidic pH for the former one but alkaline pH for the latter one. The presence of water background ions (e.g., Cl-, HCO3-, and Ca2+) barely influenced DCF and 4-CP degradation. Finally, in comparison with Mn(VII) alone, enhanced degradation of DCF and 4-CP by UVA-LED/Mn(VII) was observed in real waters. This work advances the understanding of the photochemistry of manganese species in micropollutant degradation and facilitates Mn(VII) oxidation in practical application.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Qiqi Peng
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Qinying Tan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
32
|
Han T, Li W, Li J, Jia L, Wang H, Qiang Z. Degradation of micropollutants in flow-through UV/chlorine reactors: Kinetics, mechanism, energy requirement and toxicity evaluation. CHEMOSPHERE 2022; 307:135890. [PMID: 35961458 DOI: 10.1016/j.chemosphere.2022.135890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The degradation of three micropollutants (i.e., atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET)) was comprehensively investigated in flow-through UV/chlorine reactors. Results showed that the micropollutants degradation fitted well with pseudo-first-order kinetics (R2 > 0.92) with the order of rate constants following SMX > MET > ATZ. The developed steady-state approximation (SSA) model was roughly applicable in flow-through UV/chlorine reactors with the predictions deviated within 44%. UV photolysis here stood as the major degradation pathway for ATZ while the contribution of non-radical processes (UV photolysis and chlorination) to SMX degradation increased as the reactor internal diameter enlarged. The degradation rates were reduced to varying extents with complex water matrices (chloride, bicarbonate and dissolved organic matter (DOM)) where the inhibition from the DOM was most prominent (up to 73.6%). Although reactors with a larger internal diameter resulted in reduced degradation rate constants, the energy requirements were also lowered. The EEO values of micropollutants degradation by UV/chlorine fell mostly within 1.0 kWh m-3 order-1 in deionized water and under different water matrices. The acute toxicity was observed to be higher after UV/chlorine treatment in tap water, but still stayed low in general. This study revealed the different kinetics and mechanisms of micropollutants degradation in flow-through reactors and demonstrated the potential of the UV/chlorine process in terms of low energy consumption and acute toxicity.
Collapse
Affiliation(s)
- Tao Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Luyao Jia
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Yin H, Zhang Q, Jing J, Wang X, Yin X, Zhou M. An efficient Fe 2+ assisted UV/electrogenerated-chlorine process for carbamazepine degradation: The role of Fe(IV). CHEMOSPHERE 2022; 307:136168. [PMID: 36037944 DOI: 10.1016/j.chemosphere.2022.136168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
To improve the performance and solve the restrictions of UV/chlorine process (e.g., the narrow pH application range and high disinfection by-products (DBPs) formation), a Fe2+ assisted advanced oxidation process with electrochemically generated chlorine (UV/E-Cl/Fe2+) was proposed for carbamazepine (CBZ) degradation, which eliminated CBZ (5 mg/L) within 4 min under the optimal conditions. Compared with UV/electro-generated chlorine (UV/E-Cl) and anodic oxidation-chlorination/Fe2+ (AO-Cl/Fe2+) processes, the apparent first-order kinetics constant in UV/E-Cl/Fe2+ increased by 2.56 and 3.18 times respectively, and the energy consumption was lower (1.15 kWh/m3-log). Simultaneously, the pH application range could be expanded to 9, and DBPs formed in this process were 17.1% less than those in UV/E-Cl. Through quenching tests, electron paramagnetic resonance (EPR) experiments, measurement of •OH concentration, quantification of methyl phenyl sulfoxide (PMSO) and benzosulfone (PMSO2) and processes comparison, possible CBZ degradation pathways and mechanism of UV/E-Cl/Fe2+ were proposed, in which Fe(IV) played the dominant role in the early stage, while the production of radicals (i.e., •OH and Cl•) was enhanced with the increase of chlorine generation, accelerating the CBZ removal. Furthermore, this process demonstrated wide application prospect in treating various contaminants and real wastewaters. In conclusion, this study offers an effective and energy-efficient method for organic pollutants degradation.
Collapse
Affiliation(s)
- Haoran Yin
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaoya Yin
- Tianjin Fisheries Research Institute, Tianjin, 300221, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Li D, Feng Z, Zhou B, Chen H, Yuan R. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157162. [PMID: 35798102 DOI: 10.1016/j.scitotenv.2022.157162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.
Collapse
Affiliation(s)
- Danping Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
35
|
Song Z, Li J, Xu H, Li Y, Zeng Y, Guan B. Heterogeneous catalytic ozonation by amorphous boron for degradation of atrazine in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yan B, Wang S, Liu Z, Wang D, Shi W, Cui F. Degradation mechanisms of cyanobacteria neurotoxin β-N-methylamino-l-alanine (BMAA) during UV 254/H 2O 2 process: Kinetics and pathways. CHEMOSPHERE 2022; 302:134939. [PMID: 35561764 DOI: 10.1016/j.chemosphere.2022.134939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the UV254/H2O2 process was utilized to remove β-N-methylamino-l-alanine (BMAA), a kind of cyanobacteria neurotoxin, and the influence of reaction parameters and environmental factors on the degradation of BMAA has been systematically investigated. The results showed that BMAA could be effectively removed in the UV254/H2O2 system compared to UV or H2O2 alone and OH was confirmed as the main ROS to degrade BMAA. The degradation rate of BMAA increased first and then decreased with the increase of pH and the maximum kobs was 0.1545 min-1 obtained at pH 9. The removal of BMAA in the UV254/H2O2 system was inhibited in actual water, while the degradation rate of BMAA in actual water could still exceed 90% by appropriately extending the reaction time. The decrease in the degradation efficiency of BMAA in actual water was primarily due to the ultraviolet light absorption and competition effects of NOM, and anions (Cl- and HCO3-) would also inhibit the degradation of BMAA. Five by-products ([M - H]- = 118, 103, 88, 87 and 59) were identified in this study and the degradation pathways of BMAA were proposed. The production of by-products was attributed to the fracture of the C-N bond and hydroxylation reaction. This study is worthwhile to deepen the understanding of the degradation mechanism of BMAA in the UV254/H2O2 system.
Collapse
Affiliation(s)
- Boyin Yan
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Songxue Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Zhiquan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory by Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of an Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
37
|
Li J, Cassol GS, Zhao J, Sato Y, Jing B, Zhang Y, Shang C, Yang X, Ao Z, Chen G, Yin R. Superfast degradation of micropollutants in water by reactive species generated from the reaction between chlorine dioxide and sulfite. WATER RESEARCH 2022; 222:118886. [PMID: 35917667 DOI: 10.1016/j.watres.2022.118886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chlorine dioxide (ClO2) is used as an oxidant or disinfectant in (waste)water treatment, whereas sulfite is a prevalent reducing agent to quench the excess ClO2. This study demonstrated that seven micropollutants with structural diversity could be rapidly degraded in the reaction between ClO2 and sulfite under environmentally relevant conditions in synthetic and real drinking water. For example, carbamazepine, which is recalcitrant to standalone ClO2 or sulfite, was degraded by 55%-80% in 10 s in the ClO2/sulfite process at 30-µM ClO2 and 30-µM sulfite concentrations within a pH range of 6.0-11.0. Results from experiments and a kinetic model supported that chlorine monoxide (ClO·) and sulfate radicals (SO4·-) were generated in the ClO2/sulfite process, while hydroxyl radical generation was insignificant. Apart from radicals, dichlorine trioxide (Cl2O3) was generated and largely contributed to micropollutant degradation, supported by experimental results using stopped-flow spectrometry and quantum chemical calculations. The impacts of pH, sulfite dosage, and water matrix components (chloride, bicarbonate, and natural organic matter) on micropollutant abatement in the ClO2/sulfite process were evaluated and discussed. When treating the real potable water, the concentrations of organic (five regulated disinfection byproducts) and inorganic byproducts (chlorite and chlorate) formed in the ClO2/sulfite process were all below the drinking water standards. This study disclosed fundamental knowledge advancements relevant to the reaction mechanisms between ClO2 and sulfite, and highlighed a novel process to abate micropollutants in water and wastewater.
Collapse
Affiliation(s)
- Juan Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai, Hong Kong 519087, China
| | - Gabriela Scheibel Cassol
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Yugo Sato
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Binghua Jing
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai, Hong Kong 519087, China
| | - Yuliang Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Hong Kong 510275, China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhu Hai, Zhu Hai, Hong Kong 519087, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, China.
| |
Collapse
|
38
|
Luo C, Li M, Cheng X, Wu D, Tan F, Li Z, Chen Y, Yu F, Ma Q. Degradation of iopamidol by UV 365/NaClO: Roles of reactive species, degradation mechanism, and toxicology. WATER RESEARCH 2022; 222:118840. [PMID: 35858527 DOI: 10.1016/j.watres.2022.118840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The degradation of iopamidol (IPM) was investigated using a UV365/NaClO system. The reactive species (HO·, ClO·, ozone, Cl·, and Cl2-·) in the system were identified, and the changing trends of the percentage contributions of these reactive species to IPM removal under various conditions were systematically evaluated. The results showed that ClO· and HO· played the most significant roles in the apparent pseudo-first-order rate constants of IPM degradation (kobs, min-1) in the control experiment, and their percentage contributions to kobs were 41.31% and 34.45%, respectively. In addition, Cl· and Cl2-· together contributed 22% to the kobs. Furthermore, the contribution of ozone to the IPM removal could be neglected. The concentrations of these species increased significantly when the concentration of NaClO was increased from 50 µM to 200 µM, while the percentage contribution of ClO· to kobs was greatly increased. The concentrations and percentage contributions of HO· and ClO· decreased significantly as the solution pH increased from 5 to 9, with Cl2-· playing a greater role in the degradation of IPM under alkaline conditions. While Cl- or HCO3-/CO32- significantly promoted the generation of Cl2-· or CO3-·, neither had an obvious effect on kobs, suggesting that Cl2-· and CO3-· should have a certain reactivity with IPM. Compared with that of Cl2-·, the percentage contribution of ClO· and Cl· to kobs was more likely to be inhibited by NOM. In addition, the organic and inorganic oxidation products of IPM were detected. The oxidation mechanisms of IPM degradation in the UV365/NaClO system, such as the H-extraction reaction, deiodination, substitution reaction, amide hydrolysis, and amine oxidation, were proposed according to the obtained 15 organic products. No effect on acute toxicity towards Vibrio fischeri and Photobacterium phosphoreum was detected during the oxidation of IPM by the UV365/NaClO system. Furthermore, the engineering feasibility of the oxidation system was demonstrated, by the effective degradation of IPM in actual water. However, HOI rapidly accumulated during the removal of IPM in the UV365/NaClO system, which poses certain environmental risks and will needs to be investigated.
Collapse
Affiliation(s)
- Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Ming'an Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Zhiquan Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Yongkai Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Fan Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Qiao Ma
- National Engineering Lab of Coal-Fired Pollution Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
39
|
Wu X, Zhao X, Chen R, Liu P, Liang W, Wang J, Teng M, Wang X, Gao S. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. WATER RESEARCH 2022; 221:118825. [PMID: 35949074 DOI: 10.1016/j.watres.2022.118825] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
According to extensive in situ investigations, the microplastics (MPs) determined in current wastewater treatment plants (WWTPs) are mostly aged, with roughened surfaces and varied types of oxygen-containing functional groups (i.e., carbonyl and hydroxyl). However, the formation mechanism of aged MPs in WWTPs is still unclear. This paper systematically reviewed MP fragmentation and generation mechanisms in WWTPs at different treatment stages. The results highlight that MPs are prone to undergo physical abrasion, biofouling, and chemical oxidation-associated weathering in WWTPs at different treatment stages and can be further decomposed into smaller secondary MPs, including in nanoplastics (less than 1000 nm or 100 nm in size), suggesting that WWTPs can act as a formation source for MPs in aquatic environments. Sand associated mechanical crashes in the primary stage, microbes in active sewage sludge-related biodegradation in the secondary stage, and oxidant-relevant chemical oxidation processes (light photons, Cl2, and O3) in the tertiary stage are the dominant causes of MP formation in WWTPs. For MP formation mechanisms in WWTPs, external environmental forces (shear and stress forces, UV radiation, and biodegradation) can first induce plastic chain scission, destroy the plastic molecular arrangement, and create abundant pores and cracks on the MP surface. Then, the physicochemical properties (modulus of elasticity, tensile strength and elongation at break) of MPs shift consequently and finally breakdown into smaller secondary MPs or nanoscale plastics. Overall, this review provides new insights to better understand the formation mechanism, occurrence, fate, and adverse effects of aged microplastics/nanoplastics in current WWTPs.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
40
|
Yu X, Jin X, Wang N, Zheng Q, Yu Y, Tang J, Wang L, Zhou R, Sun J, Zhu L. UV activated sodium percarbonate to accelerate degradation of atrazine: Mechanism, intermediates, and evaluation on residual toxicity by metabolomics. ENVIRONMENT INTERNATIONAL 2022; 166:107377. [PMID: 35779284 DOI: 10.1016/j.envint.2022.107377] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Efficient and safe removal of widely used herbicides such as atrazine has become a recent hotspot. Herein, UV driven sodium percarbonate system (UV/SPC) was established to have many advantages in remediation of atrazine contamination. The mechanism and environmental risk of intermediates were explored, which provided information for the feasibility of UV/SPC. The degradation efficiency of atrazine was significantly enhanced as the increasing dosage of SPC. Quenching assay identified that •OH and CO3•- were committed to degrading atrazine. Humic acid and HPO42- remarkably inhibited atrazine degradation. Several intermediates were generated through the dealkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkyl oxidation and olefination reactions. Toxicity prediction proved that acute toxicity and bioaccumulation of intermediates were mitigated comparing with atrazine. Based on metabolomics results, the alteration of key metabolites such as citrate, L-kynurenine, malic acid, putrescine, glutamine, spermine, ethanolamine and phytosphingosine in various metabolic pathways of E.coli verified that the toxicity of atrazine was weakened after UV/SPC treatment. The application of UV/SPC on atrazine removal in real waters was influenced by environmental factors, and might be improved through coupling with other treatment technologies.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qian Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou 510000, Guangdong, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Luyu Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Rujin Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
41
|
Degradation of Thiabendazole and Its Transformation Products by Two Photo-Assisted Iron-Based Processes in a Raceway Pond Reactor. Top Catal 2022. [DOI: 10.1007/s11244-022-01638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Lou F, Qiang Z, Zou X, Lv J, Li M. Organic pollutant degradation by UV/peroxydisulfate process: Impacts of UV light source and phosphate buffer. CHEMOSPHERE 2022; 292:133387. [PMID: 34952016 DOI: 10.1016/j.chemosphere.2021.133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
In recent years, ultraviolet (UV) based advanced oxidation processes have been extensively studied for degradation of refractory organic pollutants in water and wastewater, and selection of an appropriate UV light source is an important issue. In this study, bench-scale tests were conducted on a mini-fluidic photoreaction system (MFPS) to determine the degradation kinetics of methylene blue (MB) by UV/peroxydisulfate (UV/PDS) process equipped with a low-pressure UV (LPUV), vacuum UV (VUV)/LPUV, or medium-pressure UV (MPUV) mercury vapor lamp. Results indicate that MB degradation by UV/PDS with various light sources all followed the pseudo-first order kinetics, and the photon fluence-based rate constant (kp,λ') had a descending order of: VUV/LPUV/PDS ≫ MPUV/PDS > LPUV/PDS. Moreover, it is noted that phosphate buffer (PB) notably inhibited MB degradation: the kp,LPUV', kp,VUV/LPUV' and kp,MPUV' decreased by 35.0%, 44.9% and 37.5% with the PB concentration increasing from 0 to 20 mM, respectively. The maximal decrease in kp,VUV/LPUV' was ascribed to a strong competition of PB for VUV photons. Thereafter, pilot-scale tests were conducted to evaluate the practical performance of UV/PDS in terms of the electrical energy consumption per order (EEO). It was found again that the VUV/LPUV lamp was the optimal light source in UV/PDS for organic pollutant degradation. This study helps optimize the UV/PDS process for its practical application to water and wastewater treatment.
Collapse
Affiliation(s)
- Fei Lou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xue Zou
- School of Civil Engineering, North China University of Technology, 5 Jinyuanzhuang Road, Beijing, 100144, China
| | - Jinrong Lv
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, 530006, China
| | - Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
43
|
Huang X, Wang S, Wang G, Zhu S, Ye Z. Kinetic and mechanistic investigation of geosmin and 2-methylisoborneol degradation using UV-assisted photoelectrochemical. CHEMOSPHERE 2022; 290:133325. [PMID: 34922967 DOI: 10.1016/j.chemosphere.2021.133325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The taste and odor (T&O) problem represented by 2-methylisoborneol (2-MIB) and geosmin (GSM) in water is the multiple undesirable substances in the drinking water and the aquatic industry. In this study, the UV-assisted photoelectrochemical, a prospective advanced oxidation process (AOP), was evaluated for the degradation of 2-MIB and GSM. In contrast to UV photochemical and electrochemical, the degradation ratio of GSM (2-MIB) increase to 96% (95%) in 25 min. The removal ratio and rate depended on reaction time, electrolyte concentration, current density, and water quality parameters (e.g. pH, HCO3-, natural organic matter, and tap water). Among these parameters, a high concentration of electrolyte and acidic solutions could accelerate the rate and increase the ratio, while alkaline conditions and the impurity content had negative effects. Furthermore, the significant role of various reactive species (e.g. HO∙, Cl, ClO, etc) were highlighted by scavenging experiments. Complex free radicals exist was further verified by electron paramagnetic resonance spectroscopy (EPR) experiments. The intermediates were identified and the possible degradation pathways during the UV-assisted photoelectrochemical reactions of both compounds were proposed. Overall, the UV-assisted photoelectrochemical is beneficial to the removal of GSM and 2-MIB in water.
Collapse
Affiliation(s)
- Xiaoling Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ganxiang Wang
- Pinghu Fisheries Technology Promotion Center, Pinghu, 314200, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316000, China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
44
|
Li Q, Lai C, Yu J, Luo J, Deng J, Li G, Chen W, Li B, Chen G. Degradation of diclofenac sodium by the UV/chlorine process: Reaction mechanism, influencing factors and toxicity evaluation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Degradation Kinetics and Disinfection By-Product Formation of Iopromide during UV/Chlorination and UV/Persulfate Oxidation. WATER 2022. [DOI: 10.3390/w14030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As the detection of micropollutants in various water resources is commonly reported, developing an efficient technology to remove them to maintain water safety has become a major focus in recent years. The degradation kinetics of iopromide, one of a group of iodinated X-ray contrast media (ICM), using advanced oxidation processes of ultraviolet/chlorination (UV/Cl2) and UV/persulfate (UV/PS) oxidation were investigated in this research. The results show that iopromide degradation fitted pseudo-first-order kinetics, and the rate constants were calculated as 2.20 (± 0.01) × 10−1 min−1 and 6.08 (± 0.10) × 10−2 min−1 in UV/Cl2 and UV/PS, respectively. In the two systems, the degradation rates were positively correlated with the initial concentrations of HOCl and PS, respectively. In the UV/Cl2 system, the degradation rate of iopromide reached a maximum at pH 7, while in the UV/PS system, pH had only a slight effect on the degradation rate. Chloride in water had a negligible effect on iopromide degradation, whereas bromide inhibited iopromide degradation in the UV/Cl2 system. The contributions of UV irradiation, •OH, and RCS to iopromide degradation during UV/Cl2 treatment were calculated as 20.8%, 54.1%, and 25.1%, respectively. One carbonated and three nitrogenated disinfection by-products (C-DBP (chloroform) and N-DBPs (dichloroacetonitrile, trichloronitromethane, and trichloroacetone)) were detected at relatively high levels, along with three emerging iodinated DBPs (dichloroiodomethane, monochlorodiiodomethane, and triiodomethane). More C- and N-DBPs were generated in the UV/Cl2 and UV/PS systems than in UV irradiation, while considerably higher I-DBPs were generated in UV irradiation than in the other two systems. Thus, it is essential to pay attention to DBP formation when UV/Cl2 or UV/PS is used to treat iopromide in water. In order to better control the generation of carcinogenic and toxic I-DBPs, Cl2 or PS combined with UV should be adopted for iopromide degradation, instead of UV alone, for providing safe drinking water to the public.
Collapse
|
46
|
Wang X, Ao X, Zhang T, Li Z, Cai R, Chen Z, Wang Y, Sun W. Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151372. [PMID: 34728210 DOI: 10.1016/j.scitotenv.2021.151372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Monochloramine (NH2Cl) oxidant combined with a Ultraviolet (UV)-Light-emitting-diode (LED) light source forms a new advanced oxidation process (AOP), which can achieve high-efficiency degradation of carbamazepine (CBZ). The degradation of CBZ displayed pseudo-first-order reaction kinetics (R2 > 0.98, kCBZ = 0.0043 cm2 mJ-1 at pH 7). The degradation of CBZ was dependent on UV-LED wavelength, with maximum degradation efficiency observed at 265 nm since it was the lowest wavelength studied among UV-LEDs. Variation in pH across the range, which might be expected under normal environmental conditions (pH 6-8), and the presence of Cl- had no significant effect on the degradation efficiency of CBZ, while the presence of HCO3- and natural organic matter (NOM) inhibited degradation. Electron paramagnetic resonance (EPR) experiments detected OH in the system. Probe compounds were used to distinguish the contribution of reactive chlorine species (RCS). It was proved that OH and Cl played major roles and OH was responsible for around 50% of the observed degradation of CBZ. Eight transformative products (TPs) in the degradation process of CBZ were identified, with a generally decreasing toxicity. The concentration of disinfection by-products (DBPs) formed during CBZ degradation was all within limits of WHO and China standard for drinking water. Although the concentration of nitrogen-containing DBPs (N-DBPs) was the lowest, N-DBPs were the main contributors to toxicity, and these would require more attention in practical applications. UV-LED/NH2Cl AOP was identified as an effective way to degrade pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xuelin Wang
- School of Environment, Tsinghua University, Beijing 100084, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Tianyang Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100084, China
| | - Ran Cai
- Beijing Capital Co., Ltd., Beijing 100032, China
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yonglei Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
47
|
Yang T, Mai J, Cheng H, Zhu M, Wu S, Tang L, Liang P, Jia J, Ma J. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1221-1232. [PMID: 34961311 DOI: 10.1021/acs.est.1c03725] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper investigated ultraviolet A light-emitting diode (UVA-LED) irradiation to activate Fe(VI) for the degradation of micropollutants (e.g., sulfamethoxazole (SMX), enrofloxacin, and trimethoprim). UVA-LED/Fe(VI) could significantly promote the degradation of micropollutants, with rates that were 2.6-7.2-fold faster than for Fe(VI) alone. Comparatively, UVA-LED alone hardly degraded selected micropollutants. The degradation performance was further evaluated in SMX degradation via different wavelengths (365-405 nm), light intensity, and pH. Increased wavelengths led to linearly decreased SMX degradation rates because Fe(VI) has a lower molar absorption coefficient at higher wavelengths. Higher light intensity caused faster SMX degradation, owing to the enhanced level of reactive species by stronger photolysis of Fe(VI). Significantly, SMX degradation was gradually suppressed from pH 7.0 to 9.0 due to the changing speciation of Fe(VI). Scavenging and probing experiments for identifying oxidative species indicated that high-valent iron species (Fe(V)/Fe(IV)) were responsible for the enhanced degradation. A kinetic model involving target compound (TC) degradation by Fe(VI), Fe(V), and Fe(IV) was employed to fit the TC degradation kinetics by UVA-LED/Fe(VI). The fitted results revealed that Fe(IV) and Fe(V) primarily contributed to TC degradation in this system. In addition, transformation products of SMX degradation by Fe(VI) and UVA-LED/Fe(VI) were identified and the possible pathways included hydroxylation, self-coupling, bond cleavage, and oxidation reactions. Removal of SMX in real water also showed remarkable promotion by UVA-LED/Fe(VI). Overall, these findings could shed light on the understanding and application of UVA-LED/Fe(VI) for eliminating micropollutants in water treatments.
Collapse
Affiliation(s)
- Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jianbo Jia
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
48
|
Wu Y, Zhang W, Bu L, Zhu S, Wang J, Zhou S. UV-induced activation of organic chloramine: Radicals generation, transformation pathway and DBP formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126459. [PMID: 34365233 DOI: 10.1016/j.jhazmat.2021.126459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Organic chloramines of little disinfection efficacy commonly exist in disinfection process (chlor(am)ination) due to the wide presence of organic amines in water, of which N-chlorodimethylamine (CDMA) is a typical one. For the first time, UV photolysis for the activation of CDMA was investigated. UV photolysis caused the cleavage of N-Cl bond in CDMA to form Cl• and subsequently HO•, both of which are dominant contributors to the destruction of model contaminant bisphenol A (BPA). Typical spectra of HO• were detected by electron paramagnetic resonance (EPR) experiments, while spectra of reactive nitrogen species (RNS) were not detected during UV photolysis of CDMA. The increase of pH (6.0-8.0), HCO3-/CO32-, Cl- and nature organic matter inhibited the degradation of BPA. We proposed pathways of CDMA and BPA degradation based on the identified transformation products. UV photolysis of CDMA and BPA reduced the formation of N-nitrosodimethylamine (NDMA) at pH 8.0, but increased the formation of trichloronitromethane (TCNM) at pH 7.0 and 8.0. The increasing toxicity and the formation of TCNM and NDMA gave us a hint that formation of organic chloramines should be concerned.
Collapse
Affiliation(s)
- Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Yan X, Chen H, Lin T, Chen W, Xu H, Tao H. UV/Chlorination of sulfamethazine (SMZ) and other prescription drugs: kinetics, transformation products and insights into the combined toxicological assessment. ENVIRONMENTAL TECHNOLOGY 2022; 43:411-423. [PMID: 32619137 DOI: 10.1080/09593330.2020.1791969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The UV/chlorination of three prescription drugs, sulfamethazine (SMZ), gemfibrozil (GEM) and antipyrine (ANT) were studied by the investigation of kinetics, transformation products and combined toxicological assessment. The degradation followed pseudo-first-order kinetics, with half-lives significantly affected by chlorine dosage, without being greatly influenced by pH value and bromide concentration. Based on the Frontier Orbital Theory, the structures of products by hydroxylation or chlorine substitution were proposed and the transformation pathways were introduced, with two, two and one never-before-reported products identified for SMZ, GEM and ANT, respectively. Compared to the results of the experiments with artificial water sample, the degradation kinetics of the three prescription drugs was observed with a prolonged half-lives in both Yangtze River and Taihu Lake water, suggesting that aromatic containing transformation products (TPs) may also exist in UV/chlorine treated natural waters. The results of combined toxicity on E. coli showed that the antagonism effect predominated in most binary and ternary combinations. However, the synergistic toxicity of combinations at low concentrations of prescription drugs subjected to UV/chlorine should be cautioned, which was more close to the natural concentration of prescription drugs in waters.
Collapse
Affiliation(s)
- Xiaoshu Yan
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| | - Han Chen
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| | - Tao Lin
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| | - Wei Chen
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| | - Hang Xu
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| | - Hui Tao
- Ministry of Education Key Laboratory o f Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, PR People's Republic of China
- College of Environment, Hohai University, Nanjing, PR People's Republic of China
| |
Collapse
|
50
|
Li M, Lou F, Sun Z, Li W, Bolton JR, Qiang Z. Revealing photon transmission in an ultraviolet reactor: Advanced approaches for measuring fluence rate distribution in water for model validation. J Environ Sci (China) 2021; 110:169-177. [PMID: 34593188 DOI: 10.1016/j.jes.2021.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Fluence rate (FR) distribution (optical field) is of great significance in the optimal design of ultraviolet (UV) reactors for disinfection or oxidation processes in water treatment. Since the 1970s, various simulation models have been developed, which can be combined with computational fluidic dynamic software to calculate the fluence delivered in a UV reactor. These models strive for experimental validation and further improvement, which is a major challenge for UV technology in water treatment. Herein, a review of the simulation models of the FR distribution in a UV reactor and the applications of the current main experimental measurement approaches including conventional flat-type UV detector, spherical actinometer, and micro-fluorescent silica detector (MFSD), is presented. Moreover, FR distributions in a UV reactor are compared between various simulation models and MFSD measurements. In addition, the main influential factors on the FR distribution, including inner-wall reflection, refraction and shadowing effects of adjacent lamps, and turbidity effect are discussed, which is helpful for improving the accuracy of the simulation models and avoiding dark regions in the reactor design. This paper provides an overview on the simulation models and measurement approaches for the FR distribution, which is helpful for the model selection in fluence calculations and gives high confidence on the optimal design of UV reactors in regard to present methods.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Lou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - James R Bolton
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|