1
|
Fang R, Chen T, Han Z, Ji W, Bai Y, Zheng Z, Su Y, Jin L, Xie B, Wu D. From air to airway: Dynamics and risk of inhalable bacteria in municipal solid waste treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132407. [PMID: 37651934 DOI: 10.1016/j.jhazmat.2023.132407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Municipal solid waste treatment (MSWT) system emits a cocktail of microorganisms that jeopardize environmental and public health. However, the dynamics and risks of airborne microbiota associated with MSWT are poorly understood. Here, we analyzed the bacterial community of inhalable air particulates (PM10, n = 71) and the potentially exposed on-site workers' throat swabs (n = 30) along with waste treatment chain in Shanghai, the largest city of China. Overall, the airborne bacteria varied largely in composition and abundance during the treatment (P < 0.05), especially in winter. Compared to the air conditions, MSWT-sources that contributed to 15 ∼ 70% of airborne bacteria more heavily influenced the PM10-laden bacterial communities (PLS-SEM, β = 0.40, P < 0.05). Moreover, our year-span analysis found PM10 as an important media spreading pathogens (104 ∼ 108 copies/day) into on-site workers. The machine-learning identified Lactobacillus and Streptococcus as pharynx-niched featured biomarker in summer and Rhodococcus and Capnocytophaga in winter (RandomForest, ntree = 500, mtry = 10, cross = 10, OOB = 0%), which closely related to their airborne counterparts (Procrustes test, P < 0.05), suggesting that MSWT a dynamic hotspot of airborne bacteria with the pronounced inhalable risks to the neighboring communities.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China.
| |
Collapse
|
2
|
Nittami T, Batinovic S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett Appl Microbiol 2021; 75:759-775. [PMID: 34919734 DOI: 10.1111/lam.13634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023]
Abstract
Activated sludge bulking caused by filamentous bacteria is still a problem in wastewater treatment plants around the world. Bulking is a microbiological problem, and so its solution on species-specific basis is likely to be reached only after their ecology, physiology and metabolism is better understood. Culture-independent molecular methods have provided much useful information about this group of organisms, and in this review, the methods employed and the information they provide are critically assessed. Their application to understanding bulking caused by the most frequently seen filament in Japan, 'Ca. Kouleothrix', is used here as an example of how these techniques might be used to develop control strategies. Whole genome sequences are now available for some of filamentous bacteria responsible for bulking, and so it is possible to understand why these filaments might thrive in activated sludge plants, and provide clues as to how eventually they might be controlled specifically.
Collapse
Affiliation(s)
- T Nittami
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Japan
| | - S Batinovic
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
3
|
Paniagua-López M, Vela-Cano M, Correa-Galeote D, Martín-Peinado F, Garzón FM, Pozo C, González-López J, Aragón MS. Soil remediation approach and bacterial community structure in a long-term contaminated soil by a mining spill (Aznalcóllar, Spain). SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145128. [DOI: 10.1016/j.scitotenv.2021.145128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Muñoz-Palazon B, Rosa-Masegosa A, Hurtado-Martinez M, Rodriguez-Sanchez A, Link A, Vilchez-Vargas R, Gonzalez-Martinez A, Lopez JG. Total and Metabolically Active Microbial Community of Aerobic Granular Sludge Systems Operated in Sequential Batch Reactors: Effect of Pharmaceutical Compounds. TOXICS 2021; 9:93. [PMID: 33922816 PMCID: PMC8146427 DOI: 10.3390/toxics9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
Two aerobic granular sludge (AGS) sequential batch reactors were operated at a mild (15 °C) temperature for 180 days. One of those bioreactors was exposed to a mixture of diclofenac, naproxen, trimethoprim, and carbamazepine. The AGS system, operating under pressure from emerging contaminants, showed a decrease in COD, BOD5, and TN removal capacity, mainly observed during the first 100 days, in comparison with the removal ratios detected in the control bioreactor. After an acclimatisation period, the removal reached high-quality effluent for COD and TN, close to 95% and 90%, respectively. In the steady-state period, trimethoprim and diclofenac were successfully removed with values around 50%, while carbamazepine and naproxen were more recalcitrant. The dominant bacterial OTUs were affected by the presence of a mixture of pharmaceutical compounds, under which the dominant phylotypes changed to OTUs classified among the Pseudomonas, Gemmobacter, and Comamonadaceae. The RT-qPCR and qPCR results showed the deep effects of pharmaceutical compounds on the number of copies of target genes. Statistical analyses allowed for linking the total and active microbial communities with the physico-chemical performance, describing the effects of pharmaceutical compounds in pollution degradation, as well as the successful adaptation of the system to treat wastewater in the presence of toxic compounds.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Aurora Rosa-Masegosa
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Miguel Hurtado-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Alejandro Rodriguez-Sanchez
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
| | - Alexander Link
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto von Guericke University Hospital Magdeburg, 39120 Magdeburg, Germany; (A.L.); (R.V.-V.)
| | - Alejandro Gonzalez-Martinez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez Lopez
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain; (A.R.-M.); (M.H.-M.); (J.G.L.)
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
5
|
Pedrouso A, Correa-Galeote D, Maza-Márquez P, Juárez-Jimenez B, González-López J, Rodelas B, Campos JL, Mosquera-Corral A, Val del Rio A. Understanding the microbial trends in a nitritation reactor fed with primary settled municipal wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Nakajima M, Hirano R, Okabe S, Satoh H. Simple assay for colorimetric quantification of unamplified bacterial 16S rRNA in activated sludge using gold nanoprobes. CHEMOSPHERE 2021; 263:128331. [PMID: 33297260 DOI: 10.1016/j.chemosphere.2020.128331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Domestic and industrial wastewater treatment systems are vital in the protection of natural ecosystems and human health. Identification of microbial communities in the systems is essential to stable treatment performance. However, the current tools of microbial community analysis are labor intensive and time consuming, and require expensive equipment. Therefore, we developed a simple assay for colorimetric quantification of bacterial 16S rRNA extracted from environmental samples. The assay is based on RNA extraction with commercial kits, mixing the unamplified RNA sample with Au-nanoprobes and NaCl, and analyzing the absorbance spectra. Our experimental results confirmed that the assay format was valid. By analyzing the synthesized DNA, we optimized the operational parameters affecting the assay. We achieved adequate capture DNA density by setting the capture DNA probe concentration at 10 μM during the functionalization step. The required incubation time after NaCl addition was 30 min. The binding site of the target had negligible effect on DNA detection. Under the optimized condition, a calibration curve was created using 16S rRNA extracted from activated sludge. The curve was linear above 5.0 × 107 copies/μL of bacterial 16S rRNA concentration, and the limit of detection was 1.17 × 108 copies/μL. Using the calibration curve, the bacterial 16S rRNA concentration in activated sludge samples could be quantified with deviations between 48% and 208% against those determined by RT-qPCR. The findings of our study introduce an innovative tool for the quantification of 16S rRNA concentration as the activity of key bacteria in wastewater treatment processes, achieving stable treatment performance.
Collapse
Affiliation(s)
- Meri Nakajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| | - Reiko Hirano
- Cellspect Co., Ltd., 1-10-82 Kitaiioka, Morioka, Iwate, 020-0857, Japan.
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| |
Collapse
|
7
|
Wang P, Qiao Z, Li X, Su Y, Xie B. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141086. [PMID: 32750579 DOI: 10.1016/j.scitotenv.2020.141086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate microbial community structure dominated metabolic function profiles in large-scale food waste (FW) biotreatment systems, bacterial, archaeal and fungal community associated with metabolic function in high-temperature aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes were comprehensively investigated in this study. The qPCR results showed the higher gene copies of bacteria and fungi in initial and AF-treated FW compared with AcoD-treated FW, as well as bacteria and archaea in AcoD-treated FW were highly abundant among detected samples. Furthermore, the total abundances of archaea ((1.18-4.88) × 106 copies/ng DNA) in AcoD system were 2-3 orders of magnitude higher than that in other samples (P < 0.01), indicating active archaeal activity in AcoD system. Correlation analysis of microbial community and metabolic function indicated that the higher abundances of Kazachstania, Pyrobaculum, Sulfophobococcus, Lactobacillus and Candida in initial FW had close linkages with lipid metabolism (P < 0.05). Abundant Aspergillus, Staphylococcus, Pelomonas, Corynebacterium, Faecalibacterium, Methanobacterium and Xeromyces in AF system were positively and significantly correlated with high metabolic activities of energy metabolism, carbohydrate metabolism, amino acid metabolism, fatty acid metabolism, glycosaminoglycan degradation, sulfur metabolism and nitrogen metabolism. As for AcoD system, dominant genera Methanosaeta, Methanoculleus, Methanobacterium, Fastidiosipila, Rikenellaceae RC9, Bifidobacterium and Xeromyces had close relationships with metabolism of cofactors and vitamins, energy metabolism, methane metabolism, carbohydrate metabolism and glycosaminoglycan degradation (P < 0.05). These results are expected to improve the metabolic efficiency by functional microorganism in different large-scale FW treatment systems.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Wang P, Qiao Z, Li X, Wu D, Xie B. Fate of integrons, antibiotic resistance genes and associated microbial community in food waste and its large-scale biotreatment systems. ENVIRONMENT INTERNATIONAL 2020; 144:106013. [PMID: 32771831 DOI: 10.1016/j.envint.2020.106013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The prevalence and dissemination of antibiotic resistance genes (ARGs) have been globally gained increasing concerns. However, the fate and spread of ARGs in food waste (FW) and its large-scale biotreatment systems are seldomly understood. Here, we investigated the initial and biologically treated FW in two major FW treatment systems of aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes. The total relative abundances of integrons and ARGs significantly increased from initial FW to treated FW. Among targeted ARGs, ermB and strB were predominant ARGs, which accounted for 52.58-95.28% of total abundance across all samples. Mantel test indicated that integrons (intl1 and intl2) were positively and significantly correlated with detected ARGs (Mantel test, r = 0.24, p < 0.05), suggesting integrons display significant contributions on driving ARG alteration during FW treatment processes. RDA results indicated that blaOXA, strB and blaTEM were more likely to be proliferated by potential host of Firmicutes (96.55-99.77%) in initial FW, while blaCTX-M and mefA were potentially enriched by Proteobacteria (17.12-49.82%) in AF system and ermB, sul1, aadA and tetQ were possibly enhanced by Bacteroidetes (27.43-43.71%) in AcoD system. Consideration of the higher enriched abundance of total ARGs (66.88 ± 87.34 times) and the used inoculum sludge in AcoD-treated system, the resource utilization of anaerobically digested products should draw our more attentions. These findings would deepen our understanding of prevalence and proliferation of ARGs in FW treatment systems and serve as a foundation for guiding the application of biologically treated FW.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Wu M, Chen Y, Lin H, Zhao L, Shen L, Li R, Xu Y, Hong H, He Y. Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights. WATER RESEARCH 2020; 181:115932. [PMID: 32454321 DOI: 10.1016/j.watres.2020.115932] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Though sludge foaming often occurs and thus causes serious membrane fouling in membrane bioreactors (MBRs), the fouling mechanisms related with the foaming phenomenon have not been well addressed, hindering better understanding and solving foaming problem. In this work, it was interestingly found that, the foulants during the foaming period possessed extremely high specific filtration resistance (SFR) (over 1016 m kg-1) and strong adhesion ability to membrane surface. Chemical characterization showed that the proteins (178.57 mg/L) and polysaccharides (209.21 mg/L) in the foaming sample were about 6.4 times and 5.4 times of those in the supernatant sample, suggesting existence of a mechanism permitting continuous production of these foulants in the MBR during the foaming period. It was revealed that the fouling caused by foams was associated with gel layer filtration process, and the extremely high SFR can be interpreted by chemical potential change in the gel filtration process depicted in Flory-Huggins theory. Meanwhile, analyses by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed that the strong adhesion ability stemmed from the high interaction energy between the foaming foulants and membrane surface. In addition, 16S rDNA gene sequencing identified that the abundance of the foaming related bacteria species in the sludge suspension during the foaming period was more than 10 times of that during the non-foaming period. This study offered new mechanism insights into foaming fouling in MBRs.
Collapse
Affiliation(s)
- Mengfei Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yifeng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
10
|
Garibay-Valdez E, Martínez-Córdova LR, López-Torres MA, Almendariz-Tapia FJ, Martínez-Porchas M, Calderón K. The implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development. Sci Rep 2020; 10:11428. [PMID: 32651435 PMCID: PMC7351783 DOI: 10.1038/s41598-020-68222-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022] Open
Abstract
This work aimed to evaluate the link between the occurrence/abundance of Vibrio populations and bacterial composition in shrimp’s intestine (Litopenaeus vannamei) during post-larval ontogenetic development and in its culture water, and the correlation of these with environmental parameters. The total and metabolically active populations of Vibrio in the digestive tract of shrimp during its post-larval development were analysed using quantitative PCR (qPCR) and reverse transcription qPCR targeting the 16S rRNA gene sequence. A lab-scale shrimp bioassay was performed for 80 days in a recirculating aquarium under strictly controlled conditions. The results indicate that the Vibrio population from shrimp’s gut is associated with its developmental stage and the environment. Multivariate analyses revealed that the presence of Vibrio spp. drove the studied system, but their metabolically active performance was related to earlier developmental stages in an aqueous environment. Also, the samples taken from water of culture units to compare the influence of the aquatic environment on the intestinal microbial community during shrimp’s ontogenetic development showed significant differences. Finally, our results revealed that Vibrio is an important member of shrimp’s gut microbiota; however, its metabolic activity seems to be highly regulated, possibly by the host and by the rest of the microbiota.
Collapse
Affiliation(s)
- Estefanía Garibay-Valdez
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marco A López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - F Javier Almendariz-Tapia
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
11
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, Santana F, Gonzalez-Lopez J, Mack L, Gonzalez-Martinez A. Polar Arctic Circle biomass enhances performance and stability of aerobic granular sludge systems operated under different temperatures. BIORESOURCE TECHNOLOGY 2020; 300:122650. [PMID: 31911317 DOI: 10.1016/j.biortech.2019.122650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Three bioreactors were inoculated with Polar Arctic Circle-activated sludge, started-up and operated for 150 days at 8, 15 and 26 °C. Removal performances and granular conformation were similar at steady-state, but higher stability from start-up was found when operating at 8 °C. Important changes in the eukaryotic and prokaryotic populations caused by operational temperature were observed, being fungi dominant at 8 °C and 15 °C, while that ciliated organisms were found at 26 °C. The qPCR results showed higher copies of bacteria, and nitrifiers and denitrifying bacteria at cold temperature. The emission of nitrous oxide was linked directly with temperature and the involved microorganisms. This study represents a proof of concept in performance, greenhouse gas emission, granular formation and the role of the Polar Arctic Circle microbial population in AGS technology under different temperatures with the aim to understand the effect of seasonal o daily changes for implementation of AGS at full-scale.
Collapse
Affiliation(s)
- Bárbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Francisco Santana
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Leoni Mack
- Department of Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | |
Collapse
|
12
|
Nishiguchi K, Winkler MKH. Correlating sludge constituents with digester foaming risk using sludge foam potential and rheology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:949-960. [PMID: 32541113 DOI: 10.2166/wst.2020.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Foam potential and viscometer ramp tests (VRTs) were conducted for three municipal wastewater treatment plants to determine if these methods can relate to mechanisms of foaming to physical and biological constituents in sludge. At all plants, digester volatile solids (VS) concentration correlated (R2 > 0.41) with increases in plastic viscosity, a VRT parameter corresponding to foaming risk. Plastic viscosity also correlated with foam-causing bacteria Gordonia (R2 = 0.38). Foam potential test values increased with Microthrix parvicella (R2> 0.28). For one plant, suspected foam-causing bacteria Mycobacterium negatively correlated with parameters representing foam risk. Microscopic filament counting correlated (R2 = 0.97) with quantitative polymerase chain reaction (qPCR) for Gordonia, suggesting that the more accessible counting method can reliably quantify foam-causing bacteria. Foam potential tests and VRTs resulted in plant-specific correlations with foam-related constituents. Therefore, these tests may provide useful evidence when investigating causes of digester foam events.
Collapse
Affiliation(s)
- Kota Nishiguchi
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| |
Collapse
|
13
|
Maza-Márquez P, Castellano-Hinojosa A, González-Martínez A, Juárez-Jiménez B, González-López J, Rodelas B. Abundance of total and metabolically active Candidatus Microthrix and fungal populations in three full-scale wastewater treatment plants. CHEMOSPHERE 2019; 232:26-34. [PMID: 31152900 DOI: 10.1016/j.chemosphere.2019.05.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/10/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The abundances of total and metabolically active populations of Candidatus Microthrix and Fungi were evaluated by quantitative PCR (qPCR) and retrotranscribed qPCR of ribosomal molecular markers in three different full-scale wastewater treatment plants (WWTPs), in absence of bulking/foaming episodes. Significant differences of the abundance of rDNAs and rRNAs of Candidatus Microthrix and Fungi were observed among the three WWTPs. The average relative abundances of 16S rDNA copies of Candidatus Microthrix to those of Bacteria ranged 3.4-8.9%. Biota-environment analysis (BIO-ENV) demonstrated that the number of copies of both 16S rDNA and rRNA of Candidatus Microthrix increased at longer hydraulic and solids' retention times and with higher nitrate concentrations in the activated sludge. The abundance of Candidatus Microthrix correlated strongly and positively with the removal efficiencies of organic matter and total nitrogen in the tested WWTPs, highlighting the role of these particular microbial group in the performance of these engineered systems.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - A Castellano-Hinojosa
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - A González-Martínez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Juárez-Jiménez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Gallardo-Altamirano MJ, Maza-Márquez P, Peña-Herrera JM, Rodelas B, Osorio F, Pozo C. Removal of anti-inflammatory/analgesic pharmaceuticals from urban wastewater in a pilot-scale A 2O system: Linking performance and microbial population dynamics to operating variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1481-1492. [PMID: 30189564 DOI: 10.1016/j.scitotenv.2018.06.284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, the removal rates of eight anti-inflammatory and/or analgesic pharmaceuticals, AIAPs (acetaminophen, ibuprofen, naproxen, ketoprofen, diclofenac, codeine, indomethacin and propyphenazone) were assessed in a pilot-scale A2O system (including anaerobic/anoxic/aerobic zones), long term operated during two experimental phases using different sets of environmental conditions and operating parameters. qPCR was used to quantify the absolute abundances of total Bacteria, total Archaea, mycolic-acid containing filamentous Actinobacteria (Mycolata) and Fungi within the activated sludge microbial community developed in the system. Multivariate analyses and Spearman correlation coefficients were used in search of significant links among the removal rates of the AIAPs, the abundances of the targeted microbial groups in the activated sludge, and the changes of environmental/operating variables in the A2O system. Improved removal efficiencies of several of the AIAPs analyzed (acetaminophen, ibuprofen, naproxen, ketoprofen) were correlated to higher organic load in the influent water, higher concentration of mixed liquor suspended solids (MLSS), lower temperature and lower food-to-microorganisms ratio (F/M). Removal efficiencies of several pharmaceuticals correlated with increased abundances of Mycolata in the A2O system, pointing at this group of bacteria as candidate key players for AIAPs removal in activated sludge.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - J M Peña-Herrera
- Water and Soil Quality Research Group, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
15
|
Maza-Márquez P, Vílchez-Vargas R, González-Martínez A, González-López J, Rodelas B. Assessing the abundance of fungal populations in a full-scale membrane bioreactor (MBR) treating urban wastewater by using quantitative PCR (qPCR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:1-8. [PMID: 29883777 DOI: 10.1016/j.jenvman.2018.05.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The abundance of fungi in a full-scale membrane bioreactor (MBR) treating urban wastewater and experiencing seasonal foaming was assessed by quantitative PCR (qPCR), comparing three different sets of widely used universal fungal primers targeting the gene encoding the small ribosomal subunit RNA, 18S-rDNA, (primers NS1-Fung and FungiQuant) or the internal transcribed spacer ITS2 (primers ITS3-ITS4). Fungi were a numerically important fraction of the MBR microbiota (≥106 18S-rDNA copies/L activated sludge), and occurred both in the aerated and anoxic bioreactors. The numbers of copies of fungal markers/L activated sludge calculated using the NS1-Fung or ITS3-ITS4 primer sets were up to 2 orders of magnitude higher than the quantifications based on the FungiQuant primers. Fungal 18S-rDNA counts derived from the FungiQuant primers decreased significantly during cold seasons, concurring with foaming episodes in the MBR. Redundancy analysis corroborated that temperature was the main factor driving fungi abundance, which was also favored by longer solid retention time (SRT), lower chemical oxygen demand/biochemical oxygen demand at 5 days (COD/BOD5) of influent water, and lower biomass accumulation in the MBR.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain.
| | - R Vílchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - A González-Martínez
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Castellano-Hinojosa A, Maza-Márquez P, Melero-Rubio Y, González-López J, Rodelas B. Linking nitrous oxide emissions to population dynamics of nitrifying and denitrifying prokaryotes in four full-scale wastewater treatment plants. CHEMOSPHERE 2018; 200:57-66. [PMID: 29475029 DOI: 10.1016/j.chemosphere.2018.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Ammonia-oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and N2O-reducing denitrifiers were measured by quantitative real-time PCR (qPCR) in activated sludge samples from four full-scale wastewater treatment plants (WWTPs) in South Spain, and their abundances were linked to the generation of N2O in the samples using multivariate analysis (Non-metric multidimensional scaling, MDS, and BIO-ENV). The average abundances of AOA remained in similar orders of magnitude in all WWTPs (106 copies amoA/L activated sludge mixed liquor), while significant differences were detected for AOB (105-109copies amoA/L) and N2O-reducers (107-1010copies nosZ/L). Average N2O emissions measured in activated sludge samples ranged from 0.10 ± 0.05 to 6.49 ± 8.89 mg N2O-N/h/L activated sludge, and were strongly correlated with increased abundances of AOB and lower counts of N2O-reducers. A significant contribution of AOA to N2O generation was unlikely, since their abundance correlated negatively to N2O emissions. AOB abundance was favoured by higher NO3- and NO2-concentrations in the activated sludge.
Collapse
Affiliation(s)
- A Castellano-Hinojosa
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - Y Melero-Rubio
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
17
|
García-Ruiz MJ, Maza-Márquez P, González-López J, Osorio F. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations. CHEMOSPHERE 2018; 193:591-601. [PMID: 29169135 DOI: 10.1016/j.chemosphere.2017.11.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH4+· L-1) and different concentrations of organic matter (0, 100 and 400 mgCOD·L-1) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L-1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L-1) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter.
Collapse
Affiliation(s)
- María J García-Ruiz
- Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain.
| | - Paula Maza-Márquez
- Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain
| | - Jesús González-López
- Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain
| | - Francisco Osorio
- Institute of Water, University of Granada, Ramón y Cajal Street, 4, 18071, Granada, Spain
| |
Collapse
|
18
|
Liang H, Ye D, Luo L. Unravelling diversity and metabolic potential of microbial consortia at each stage of leather sewage treatment. RSC Adv 2017. [DOI: 10.1039/c7ra07470k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activated sludge is essential for the biological wastewater treatment process and the identification of active microbes enlarges awareness of their ecological functions in this system.
Collapse
Affiliation(s)
- Hebin Liang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
| | - Dongdong Ye
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
| | - Lixin Luo
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering
| |
Collapse
|
19
|
Maza-Márquez P, Vilchez-Vargas R, Kerckhof FM, Aranda E, González-López J, Rodelas B. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment. WATER RESEARCH 2016; 105:507-519. [PMID: 27668995 DOI: 10.1016/j.watres.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - R Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - F M Kerckhof
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - E Aranda
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|