1
|
Huang Y, Mao X, Zheng X, Zhao Y, Wang D, Wang M, Chen Y, Liu L, Wang Y, Polz MF, Zhang T. Longitudinal dynamics and cross-domain interactions of eukaryotic populations in wastewater treatment plants. THE ISME JOURNAL 2025; 19:wraf058. [PMID: 40184632 PMCID: PMC12021597 DOI: 10.1093/ismejo/wraf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Activated sludge is a large reservoir of novel microorganisms and microbial genetic diversity. While much attention has been given to the profile and functions of prokaryotes, the eukaryotic diversity remains largely unexplored. In this study, we analysed longitudinal activated sludge samples spanning 13 years from the largest secondary wastewater treatment plants in Hong Kong, unveiling a wealth of eukaryotic taxa and 681 856 non-redundant protein-coding genes, the majority (416 044) of which appeared novel. Ciliophora was the most dominant phylum with a significant increase after a transient intervention (bleaching event). Our metagenomic analysis reveals close linkage and covariation of eukaryotes, prokaryotes, and prokaryotic viruses (phages), indicating common responses to environmental changes such as transient intervention and intermittent fluctuations. Furthermore, high-resolution cross-domain relationships were interpreted by S-map, demonstrating a predatory role of Arthropoda, Ascomycota, Mucoromycota, and Rotifera. This high-resolution profile of microbial dynamics expands our knowledge on yet-to-be-cultured populations and their cross-domain interactions and highlights the ecological importance of eukaryotes in the activated sludge ecosystem.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xuemei Mao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengying Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
- School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077, China
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, 999078, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
- Shenzhen Innovation and Research Institute, The University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
2
|
Fu Y, Wu J, Wu Y, Yang B, Wang X, Xu R, Meng F. Development of a novel membrane-based quorum-quenching microbial isolator for biofouling control: Process performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130817. [PMID: 38723725 DOI: 10.1016/j.biortech.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jiajie Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaolong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
3
|
Buakaew T, Ratanatamskul C. Effects of microaeration and sludge recirculation on VFA and nitrogen removal, membrane fouling reduction and microbial community of the anaerobic baffled biofilm-membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166248. [PMID: 37582447 DOI: 10.1016/j.scitotenv.2023.166248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
A novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) with microaeration of 0.62 LO2/LFeed was developed to improve VFA and nitrogen removal from building wastewater. Three different membrane bioreactor systems - R1: AnBB-MBR (without microaeration); R2: AnBB-MBR with microaeration; and R3: AnBB-MBR with integrated microaeration and sludge recirculation - were operated in parallel at the same hydraulic retention time of 20 h and sludge retention time of 100 d. The microaeration promoted greater microbial richness and diversity, which could significantly enhance the removal of acetic acid and dissolved methane in the R2 and R3 systems. Moreover, the partial nitrification and the ability of anammox (Candidatus Brocadia) to thrive in R2 enabled NH4+-N removal to be enhanced by up to 57.8 %. The worst membrane fouling was found in R1 due to high amount of protein as well as fine particles (0.5-5.0 μm) acting as foulants that contributed to pore blocking. While the integration of sludge recirculation with microaeration in R3 was able to improve the membrane permeate flux slightly as compared to R2. Therefore, the AnBB-MBR integrated with a microaeration system (R2) can be considered as promising technology for building wastewater treatment when considering VFA and nutrient removal and an energy-saving approach with low aeration intensity.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Inaba T, Hori T, Tsuchiya M, Ihara H, Uchida E, Gu JD, Katayama Y. Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165265. [PMID: 37400029 DOI: 10.1016/j.scitotenv.2023.165265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The Angkor monuments have been registered on the World Cultural Heritage List of UNESCO, while the buildings built mostly of sandstone are suffering from serious deterioration and damage. Microorganisms are one of the leading causes for the sandstone deterioration. Identification of the mechanisms underlying the biodeterioration is of significance because it reveals the biochemical reaction involved so that effective conservation and restoration of cultural properties can be achieved. In this study, the fungal colonization and biodeterioration of sandstone in simulation experiments were examined using confocal reflection microscopy (CRM) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Aspergillus sp. strain AW1 and Paecilomyces sp. strain BY8 isolated from the deteriorated sandstone of Angkor Wat and Bayon of Angkor Thom, respectively, were inoculated and incubated with the sandstone used for construction of Angkor Wat. With CRM, we could visualize that strain AW1 tightly attached to and broke in the sandstone with extension of the hyphae. Quantitative imaging analyses showed that the sandstone surface roughness increased and the cavities formed under the fungal hyphae deepened during the incubation of strains AW1 and BY8. These highlighted that the massive growth of fungi even under the culture conditions was associated with the cavity formation of the sandstone and its expansion. Furthermore, SEM-EDS indicated the flat and Si-rich materials, presumably quartz and feldspar, were found frequently at the intact sandstone surface. But the flatness was lost during the incubation, possibly due to the detachment of the Si-rich mineral particles by the fungal deterioration. Consequently, this study proposed a biodeterioration model of the sandstone in that the hyphae of fungi elongated on the surface of the sandstone to penetrate into the soft and porous sandstone matrix, damaging the matrix and gradually destabilize the hard and Si-rich minerals, such as quartz and feldspar, to the collapse and cavities.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Megumi Tsuchiya
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Ihara
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Etsuo Uchida
- Department of Resources and Environmental Engineering, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
| | - Ji-Dong Gu
- Environmental Science and Engineering Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Jinping District, Shantou, Guangdong 515063, China
| | - Yoko Katayama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties, 13-43 Ueno-Park, Taito-ku, Tokyo 110-8713, Japan.
| |
Collapse
|
5
|
Fikri S, Lessard MH, Perreault V, Doyen A, Labrie S. Candida krusei is the major contaminant of ultrafiltration and reverse osmosis membranes used for cranberry juice production. Food Microbiol 2022; 109:104146. [DOI: 10.1016/j.fm.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
6
|
A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Lequette K, Ait-Mouheb N, Adam N, Muffat-Jeandet M, Bru-Adan V, Wéry N. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143598. [PMID: 33213927 DOI: 10.1016/j.scitotenv.2020.143598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Milli-channel baffle labyrinths are widely used in drip irrigation systems. They induce a pressure drop enabling drip irrigation. However, with a section thickness that is measured in mm2, they are sensitive to clogging, which reduces the performance and service life of a drip irrigation system. The impact of chlorination (1.5 ppm of free chlorine during 1 h application) and pressure flushing (0.18 MPa) on the biofouling of non-pressure-compensating drippers, fed by real reclaimed wastewater, was studied at lab scale using optical coherence tomography. The effect of these treatments on microbial composition (bacteria and eukaryotes) was also investigated by High-throughput DNA sequencing. Biofouling was mainly observed in the inlet, outlet and return areas of the milli-labyrinth channel from drippers. Chlorination reduced biofilm development, particularly in the mainstream of the milli-labyrinth channel, and it was more efficient when combined with pressure flushing. Moreover, chlorination was more efficient in maintaining water distribution uniformity (CU < 95% compared to less than 85% for unchlorinated lines). It reduced more efficiently the bacterial concentration (≈1 log) and the diversity of the bacterial community in the dripper biofilms compared to the pressure flushing method. Chlorination significantly modified the microbial communities, promoting chlorine-resistant bacteria such as Comamonadaceae or Azospira. Inversely, several bacterial groups were identified as sensitive to chlorination such as Chloroflexi and Planctomycetes. Nevertheless, one month after stopping the treatments bacterial diversity recovered and the chlorine-sensitive bacteria such as Chloroflexi phylum and the Saprospiraceae, Spirochaetaceae, Christensenellaceae and Hydrogenophilaceae families re-emerged in conjunction with the growth of biofouling, highlighting the resilience of the bacteria originating from drippers. Based on PCoA analyses, the structure of the bacterial communities still clustered separately from non-chlorinated drippers, showing that the effect of chlorination was still detectable one month after stopping the treatment.
Collapse
Affiliation(s)
- Kévin Lequette
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France; INRAE, University of Montpellier, UMR G-EAU, Avenue Jean-François Breton, 34000 Montpellier, France
| | - Nassim Ait-Mouheb
- INRAE, University of Montpellier, UMR G-EAU, Avenue Jean-François Breton, 34000 Montpellier, France
| | - Nicolas Adam
- University of Toulouse, Centre de recherche Cerveau et Cognition, 31000 Toulouse, France
| | - Marine Muffat-Jeandet
- INRAE, University of Montpellier, UMR G-EAU, Avenue Jean-François Breton, 34000 Montpellier, France
| | - Valérie Bru-Adan
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France
| | - Nathalie Wéry
- INRAE, University of Montpellier, LBE, 102, Avenue des Etangs, 11100 Narbonne, France.
| |
Collapse
|
8
|
An H, Lee JC, Park R, Kim HW. Integration of submerged microfiltration and cold plasma for high-strength livestock excreta. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123280. [PMID: 32653781 DOI: 10.1016/j.jhazmat.2020.123280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Numerous biological treatment techniques have been studied for better management of high-strength livestock urine and manure (LUM) but it is still challenging. To gain an advanced option for LUM management, this study proposes a physicochemical process combining microfiltration (MF) and cold plasma (CP). Experimental design applying single CP, single MF, and the integrated system coupling CP and MF (CP + MF) evaluates the performances of the configurations while reducing hydraulic retention time (HRT) from 3 d to 1 d. Results demonstrate that the CP + MF can maximize the removal efficiencies of total nitrogen (72.4 %), total phosphorus (57.8 %), NH4-N (73.3 %), turbidity (99.1 %), dissolved organic carbon (71.3 %), suspended solids (98.7 %) at HRT 3 d. It was verified that CP, even at the lowest HRT (1 d), significantly reduces membrane resistance (0.4 × 1014 m-1) compared to the control (1.5 × 1014 m-1) which leads to lower transmembrane pressure (TMP, 45.6 kPa) and inclined flux (4.4 L/m2/h) than those of the control (45.6 kPa TMP and 2.2 L/m2/h). These results contribute to the advanced treatment of LUM with a cost-effective and environmentally friendly strategy via technical convergence.
Collapse
Affiliation(s)
- Hyeonmin An
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Jae-Cheol Lee
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Rumi Park
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| | - Hyun-Woo Kim
- Division of Civil/Environmental/Mineral Resources & Energy Engineering, Soil Environment Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
9
|
Inaba T, Aoyagi T, Hori T, Charfi A, Suh C, Lee JH, Sato Y, Ogata A, Aizawa H, Habe H. Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing. CHEMOSPHERE 2020; 254:126810. [PMID: 32334259 DOI: 10.1016/j.chemosphere.2020.126810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is used for the treatment of organic solid waste. Clogging of filtration membrane pores, called membrane fouling, is one of the most serious issues for the sustainable operation of AnMBR. Although the physical and chemical mechanisms of the membrane fouling have been widely studied, the biological mechanisms are still unclear. The biofilm formation and development on the membrane might cause the membrane fouling. In this study, the prokaryotic and eukaryotic microbiomes of the membrane-attached biofilms in an AnMBR treating a model slurry of organic solid waste were investigated by non-destructive microscopy and high-throughput sequencing of 16S and 18S rRNA genes. The non-destructive visualization indicated that the biofilm was layered with different structures. The lowermost residual fouling layer was mesh-like and composed of filamentous microorganisms, while the upper cake layer was mainly the non-dense and non-cell region. The principal coordinate and phylogenetic analyses of the sequence data showed that the biofilm microbiomes were different from the sludge. The lowermost layer consisted of operational taxonomic units that were related to Leptolinea tardivitalis and Methanosaeta concilii (9.53-10.07% and 1.14-1.64% of the total prokaryotes, respectively) and Geotrichum candidum (30.22-82.31% of the total eukaryotes), all of which exhibited the filamentous morphology. Moreover, the upper layer was inhabited by the presumably cake-degrading bacteria and predatory eukaryotes. The biofilm microbiome features were consistent with the microscope-visualized structure. These results demonstrated that the biofilm structure and microbiome were the layer specific, which provides better understanding of biological mechanisms of membrane fouling in the AnMBR.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Amine Charfi
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Changwon Suh
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Jong Hoon Lee
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hidenobu Aizawa
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
10
|
Wang H, Liu Z, Luo S, Khan R, Dai P, Liang P, Zhang X, Xiao K, Huang X. Membrane autopsy deciphering keystone microorganisms stubborn against online NaOCl cleaning in a full-scale MBR. WATER RESEARCH 2020; 171:115390. [PMID: 31865129 DOI: 10.1016/j.watres.2019.115390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
The knowledge about membrane biofouling evolution in full-scale membrane bioreactor (MBR) applications is quite lacking, notwithstanding a few lab-scale investigations. For the first time, this study elaborated the effect of online NaOCl cleaning on the dynamic development of membrane biofilm microbiota during long-term operation of a large-scale MBR for municipal wastewater treatment (40,000 m3/d). Four times of membrane autopsies were conducted during 160 days operation to scrutinize the microbial community and concomitant organic foulants. The transmembrane pressure difference (TMP) development revealed limited effect of 30 min online NaOCl cleaning on long-term biofouling removal. NaOCl not only altered the structure of biofilm communities but also increased the richness and evenness on early fouling stages. Meanwhile, network analysis revealed the keystone taxa f_Comamonadaceae that played key roles in stabilizing community structure and developing anti-cleaning and irreversible fouling propensity of the biofilm. NaOCl cleaning also impacted the evolving of keystone taxa by intensifying the competition between the dominated taxa f_Moraxellaceae and other species during early fouling stages. Furthermore, the succession of the biofilm microbiota synchronously accelerated the TMP increase and the accumulation of organic foulants including polysaccharides, aromatic proteins and soluble microbial products during biofilm maturation. These identified key stubborn foulants shed light on limitations of current online NaOCl cleaning and provide guidance to optimize the efficiency of online chemical cleaning protocols in full-scale MBR operations.
Collapse
Affiliation(s)
- Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shuai Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rashid Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Pan Dai
- Beijing Origin Water Technology Co., Ltd., Beijing, 102206, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Cai W, Han J, Zhang X, Liu Y. Formation mechanisms of emerging organic contaminants during on-line membrane cleaning with NaOCl in MBR. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121966. [PMID: 31896006 DOI: 10.1016/j.jhazmat.2019.121966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
On-line chemical cleaning with sodium hypochlorite (NaOCl) is widely employed for sustaining MBR permeability, during which the inevitable contact between activated sludge and NaOCl had been shown to trigger substantial release of dissolved organic matter (DOM). Therefore, this work further explored the formation mechanisms of such DOM by looking into the respective reactions of intracellular organic matter (IOM) and cell debris in activated sludge with NaOCl. The results showed that DOM was primarily produced from the dissolution of cell wall, while IOM release was insignificant at the NaOCl concentration of 25 mg/L as Cl2. On the basis of experimental observations, a three-step mechanism was proposed for elucidating the DOM formation from activated sludge upon NaOCl exposure: (i) NaOCl first damaged cells by perforating cellular wall, producing a considerable amount of humic-like substances and low-molecular-weight halogenated byproducts; (ii) IOM was released but rapidly degraded and humified by NaOCl, accompanied with the formation of relatively high-molecular-weight halogenated byproducts; (iii) the residual NaOCl and combined chlorine continued to react with cell wall or likely diffused into cells leading to the deactivation of DNA/enzymes. Consequently, this study offers mechanistic insights into the origination of emerging contaminants during on-line membrane cleaning of practical MBR.
Collapse
Affiliation(s)
- Weiwei Cai
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
12
|
Navarro RR, Otsuka Y, Matsuo K, Sasaki K, Sasaki K, Hori T, Habe H, Nakamura M, Nakashimada Y, Kimbara K, Kato J. Combined simultaneous enzymatic saccharification and comminution (SESC) and anaerobic digestion for sustainable biomethane generation from wood lignocellulose and the biochemical characterization of residual sludge solid. BIORESOURCE TECHNOLOGY 2020; 300:122622. [PMID: 31891856 DOI: 10.1016/j.biortech.2019.122622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Simultaneous enzymatic saccharification and comminution (SESC) was used for large-scale anaerobic digestion of wood lignocellulose to generate methane and unmodified lignin. During SESC, 10% aqueous mixture of powdered debarked wood from various species was subjected to bead milling with hydrolytic enzymes to generate particles below 1 μm. This slurry was directly used as a cosubstrate for anaerobic digestion in a 500 L stirred-tank reactor. Temperature and hydraulic retention time (HRT) were maintained at 50 °C and 30 days, respectively. At stable operation periods, an average yield of 224 L of methane per kg of cedar was attained. Comparable yields were achieved with red pine, elm, oak, and cedar bark. High-throughput microbial analysis established the presence of a relevant community to support the elevated level of methane production. The stability of the unmodified lignin in anaerobic digestion was also confirmed, allowing for its recovery as an important by-product.
Collapse
Affiliation(s)
- Ronald R Navarro
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Yuichiro Otsuka
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Kenji Matsuo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Kei Sasaki
- Departmemt of Food, Agriculture and Bio-Recycling, Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1 Nakano Aki-ku, Hiroshima 739-0321, Japan
| | - Ken Sasaki
- Departmemt of Food, Agriculture and Bio-Recycling, Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1 Nakano Aki-ku, Hiroshima 739-0321, Japan
| | - Tomoyuki Hori
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan
| | - Masaya Nakamura
- Microbial Technology Laboratory, Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Naka-ku, Hamamatsu 432-8561, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
13
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 515] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
14
|
Long-term acclimatization of sludge microbiome for treatment of high-strength organic solid waste in anaerobic membrane bioreactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang H, Sun M, Song L, Guo J, Zhang L. Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zhang X, Liu Y. Halogenated organics generated during online chemical cleaning of MBR: An emerging threat to water supply and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:547-549. [PMID: 30529958 DOI: 10.1016/j.scitotenv.2018.11.410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The global wastewater treatment capacity of MBR has been constantly growing due to the strong needs in water reuse/cycle and restrictive availability of land. Recent research revealed generation of a variety of halogenated organics during online chemical cleaning of MBR with sodium hypochlorite (NaClO) which has been commonly practiced for fouling control and permeability recovery of MBR. These exogenous halogenated organics may likely migrate into natural water bodies and soils through the discharge of MBR permeate, while they tend to bioaccumulate in aquatic food chains (e.g. aquatic animals and plants), leading to a dangerous concentration level for human health. It should be realized that the potent environmental and public health risks associated with produced halogenated organics in MBR permeate have not yet been aware and assessed in consideration of the entire water life cycles. Therefore, this article attempts to express serious concern on, while raising scientific and public awareness on this emerging issue.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
17
|
Microbiomes and chemical components of feed water and membrane-attached biofilm in reverse osmosis system to treat membrane bioreactor effluents. Sci Rep 2018; 8:16805. [PMID: 30429505 PMCID: PMC6235981 DOI: 10.1038/s41598-018-35156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022] Open
Abstract
Reverse osmosis (RO) system at a stage after membrane bioreactor (MBR) is used for the wastewater treatment and reclamation. One of the most serious problems in this system is membrane fouling caused by biofilm formation. Here, microbiomes and chemical components of the feed water and membrane-attached biofilm of RO system to treat MBR effluents were investigated by non-destructive confocal reflection microscopy, excitation-emission fluorescence spectroscopy and high-throughput sequencing of 16S rRNA genes. The microscopic visualization indicated that the biofilm contained large amounts of microbial cells (0.5 ± 0.3~3.9 ± 2.3 µm3/µm2) and the extracellular polysaccharides (3.3 ± 1.7~9.4 ± 5.1 µm3/µm2) and proteins (1.0 ± 0.2~1.3 ± 0.1 µm3/µm2). The spectroscopic analysis identified the humic and/or fulvic acid-like substances and protein-like substances as the main membrane foulants. High-throughput sequencing showed that Pseudomonas spp. and other heterotrophic bacteria dominated the feed water microbiomes. Meanwhile, the biofilm microbiomes were composed of diverse bacteria, among which operational taxonomic units related to the autotrophic Hydrogenophaga pseudoflava and Blastochloris viridis were abundant, accounting for up to 22.9 ± 4.1% and 3.1 ± 0.4% of the total, respectively. These results demonstrated that the minor autotrophic bacteria in the feed water played pivotal roles in the formation of polysaccharide- and protein-rich biofilm on RO membrane, thereby causing membrane fouling of RO system.
Collapse
|
18
|
Zhao Y, Cao X, Song X, Zhao Z, Wang Y, Si Z, Lin F, Chen Y, Zhang Y. Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VFCWs). BIORESOURCE TECHNOLOGY 2018; 267:608-617. [PMID: 30056371 DOI: 10.1016/j.biortech.2018.07.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Lacking of electron donor generally causes the low denitrification performance of constructed wetlands (CWs). Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) as novel electron donor-acceptor compounds were added in the denitrification zone of vertical flow constructed wetlands (VFCWs) to enhance the nitrogen removal. The key factors of the SA/Mt-NZVI dosage, the hydraulic retention time (HRT) of VFCWs, and the C/N ratios of influent were explored. SA/Mt-NZVI significantly improved the nitrogen (NO3--N) removal efficiency in VFCWs. When the optimal dosage of SA/Mt-NZVI was set as 2 g and the C/N was set as 6, the highest NO3--N removal efficiency was improved by 32.5 ± 1.0%. The microbial community analysis of by 16S rRNA had revealed that Proteobacteria and Bacteroidetes at phylum level and Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria at class level played an important role in nitrogen removal.
Collapse
Affiliation(s)
- Yufeng Zhao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Cao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhimiao Zhao
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuhui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhihao Si
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fanda Lin
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Chen
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yinjiang Zhang
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
19
|
Sun H, Liu H, Han J, Zhang X, Cheng F, Liu Y. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite. WATER RESEARCH 2018; 140:243-250. [PMID: 29715648 DOI: 10.1016/j.watres.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/31/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
This study characterized the dissolved organic matter (DOM) and byproducts generated after the exposure of activated sludge to ozone and NaClO in ceramic MBR. It was found that NaClO triggered more significant release of DOM than ozone. Proteins with the molecular weight greater than 20 kDa and humic acid like-substances were the principal components of DOM generated by NaClO, while ozone was found to effectively degrade larger biopolymers to low molecular weight substances. The results showed that more than 80% of DOM generated by NaClO and ozone could pass through the 0.2-μm ceramic membrane. Furthermore, total organic chlorine (TOCl) was determined to be the principal species of halogenated byproducts in both cases, while the generation of TOCl by NaClO was much more significant than that by ozone. Only a small fraction of TOCl was removed by the 0.2-μm ceramic membrane. More importantly, the toxic bioassays further revealed that the supernatant of sludge suspension and permeate in the MBR with NaClO cleaning exhibited higher developmental toxicity to the polychaete embryos than those by ozone. The results clearly showed that on-line chemical cleaning with ozone should be a more eco-friendly and safer approach for sustaining long-term membrane permeability in ceramic MBR.
Collapse
Affiliation(s)
- Huifang Sun
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Hang Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
20
|
Bhojani G, Binod Kumar S, Kumar Saha N, Haldar S. Membrane biofouling by chlorine resistant Bacillus spp.: effect of feedwater chlorination on bacteria and membrane biofouling. BIOFOULING 2018; 34:426-439. [PMID: 29726272 DOI: 10.1080/08927014.2018.1461213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
In this study, bacteria isolated from a lake were characterised for their chlorine resistivity and the effects of chlorination on growth, mortality, protein expression and attachment propensity towards membranes. Biofouling and membrane performance were analysed. All isolated chlorine resistant strains, characterised by 16s rRNA gene sequencing, belonged to the genus Bacillus. Chlorination caused limited effects on bacterial growth and mortality. B. safensis and B. lechinoformis suffered the maximum effects due to chlorination. Live-to-dead ratios immediately after chlorination were above 1.3, with some exceptions. The membrane pure water flux recovery was highly strain dependent. Irreversible membrane fouling was observed with B. aquimaris. Membrane flux decreased substantially during ultrafiltration of water containing chlorine resistant bacteria.
Collapse
Affiliation(s)
- Gopal Bhojani
- c Academy of Scientific and Innovative Research , CSIR-Central Salt and Marine Chemicals Research Institute , Bhavnagar , India
| | - Sweta Binod Kumar
- c Academy of Scientific and Innovative Research , CSIR-Central Salt and Marine Chemicals Research Institute , Bhavnagar , India
| | - Nirmal Kumar Saha
- a Membrane Science and Separation Technology Division , CSIR-Central Salt and Marine Chemicals Research Institute , Bhavnagar , India
| | - Soumya Haldar
- b Analytical and Environmental Science Division and Centralized Instrument Facility , CSIR-Central Salt and Marine Chemicals Research Institute , Bhavnagar , India
| |
Collapse
|
21
|
Zhang S, Zhou Z, Li Y, Meng F. Deciphering the core fouling-causing microbiota in a membrane bioreactor: Low abundance but important roles. CHEMOSPHERE 2018; 195:108-118. [PMID: 29258007 DOI: 10.1016/j.chemosphere.2017.12.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Currently, membrane biofouling in membrane bioreactors (MBRs) is normally attributed to the occurrence of abundant bacterial species on membranes, whereas the roles of low-abundance bacteria have not been paid sufficient attention. In this study, the linear discriminant analysis (LDA) effect size (LEfSe) algorithm was used to identify active biomarkers, determining 67 different phylotypes among Bulk sludge, low-fouling Bio-cake (10 kPa), high-fouling Bio-cake (25 kPa) and Membrane pore in a membrane bioreactor with NaOCl backwash. Interestingly, a large proportion of the active biomarkers in bio-cake samples, such as Methylophilaceae, Burkholderiaceae, Paucibacter and Pseudoxanthomonas, did not fall within the abundant taxa (i.e., <0.05% relative abundance), indicating the preferential growth of these low-abundance bacteria on the membrane surface. Furthermore, the characterization of microbial interactions using a random matrix theory (RMT)-based network approach obtained a network consisting of 120 nodes and 228 edges. Specifically, network analysis showed the presence of an intense competition among bacterial species in the fouling-related communities, suggesting that negative interactions have an important effect on determining the microbial community structure. More importantly, the LEfSe algorithm and network analysis showed that most of the core species of the bio-cake, such as Burkholderiaceae, Bacillus and Rhodothermaceae, merely amounted to a very low relative abundance (<1%), suggesting their unrecognized and over-proportional ecological role in triggering the initial biofilm formation and subsequent biofilm maturation during MBR operation. Overall, this work should improve our understanding of the bacterial community structure on the fouled membranes in MBRs.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
22
|
Cai W, Liu Y. Comparative study of dissolved organic matter generated from activated sludge during exposure to hypochlorite, hydrogen peroxide, acid and alkaline: Implications for on-line chemical cleaning of MBR. CHEMOSPHERE 2018; 193:295-303. [PMID: 29145090 DOI: 10.1016/j.chemosphere.2017.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Although on-line chemical cleaning has been extensively employed for maintaining the MBR permeability, little attention has been given to the negative impacts of such prevalent membrane cleaning practice. This study thus comparatively investigated the potential release of dissolved organic matter (DOM) from activated sludge upon the exposure to different kinds of frequently-used cleaning reagents, i.e. NaClO, H2O2, HCl and NaOH. It was found that NaClO at 50 and 80 mg L-1 triggered significant release of DOM, while NaOH strongly promoted soluble nitrogen release. However, the DOM generation induced by H2O2 in the range of 0-80 mg L-1 was nearly negligible. The combined analysis by EEM-PARAFAC and LC-OCD-OND further revealed that NaClO-triggered DOM mainly originated from the breakdown of humic substances and other small humics with molecular weight (MW) less than 500 Da. In contrast, proteins and other biopolymers with higher MW highly contributed to DOM induced by NaOH. Most of DOM detected in this study belonged to low molecular weight (LMW) substances, which were not considered readily biodegradable or physically retainable by microfiltration membrane. It appears from this study that DOM generated from suspended activated sludge during membrane cleaning with different chemicals should be taken into serious consideration when water recycle and reuse are concerned.
Collapse
Affiliation(s)
- Weiwei Cai
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
23
|
Chemical cleaning of ultrafiltration membranes for polymer-flooding wastewater treatment: Efficiency and molecular mechanisms. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.08.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Li ZH, Ma ZB, Yu HQ. Respiration adaptation of activated sludge under dissolved oxygen and hypochlorite stressed conditions. BIORESOURCE TECHNOLOGY 2018; 248:171-178. [PMID: 28736142 DOI: 10.1016/j.biortech.2017.06.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
In this work, the relationship between environmental disturbance and the recovery of activated sludge at a low dissolved oxygen of 0.5mg/l or in the presence of sodium hypochlorite of 1-15mg Cl2/gSS/d was examined. When microorganisms entered their physiological adaptation period, a sharp increase in endogenous respiration rate was observed. The activity recovery potential of sludge depended on the ratio of the endogenous respiration rate to the maximum respiration rate. A subsequent decrease in this ratio after a sharp increase indicates that the disturbance was recoverable. An increase in this ratio to a certain value, e.g., 0.35, suggests that the sludge system could not adapt to the new environments and thus was unrecoverable. In addition, the recoveries of sludge respiration and effluent quality were asynchronous, which was impacted by both sludge activity and operating conditions. These results provide a useful approach for the operation of activated sludge systems.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhi-Bo Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
25
|
Inaba T, Hori T, Sato Y, Aoyagi T, Hanajima D, Ogata A, Habe H. Eukaryotic Microbiomes of Membrane-Attached Biofilms in Membrane Bioreactors Analyzed by High-Throughput Sequencing and Microscopic Observations. Microbes Environ 2017; 33:98-101. [PMID: 29237993 PMCID: PMC5877349 DOI: 10.1264/jsme2.me17112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Limited information is currently available on the contribution of eukaryotes to the reactor performance of membrane bioreactors (MBRs). Using high-throughput Illumina sequencing of 18S rRNA genes and microscopic observations, we investigated eukaryotic microbiomes in membrane-attached biofilms in MBRs treating piggery wastewater. Protozoa preying on bacteria were frequently detected under stable conditions when membrane clogging was suppressed. However, the eukaryotes preying upon protozoa became predominant in biofilms when membrane fouling rapidly progressed. We herein demonstrated that a comprehensive investigation of eukaryotic microbiomes using high-throughput sequencing contributes to a better understanding of the microbial ecology involved in wastewater treatment.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Dai Hanajima
- Dairy Research Division, Hokkaido Agricultural Research Center, National Agricultural and Food Research Organization (NARO)
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
26
|
Yu T, Meng L, Zhao QB, Shi Y, Hu HY, Lu Y. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation. WATER RESEARCH 2017; 113:1-10. [PMID: 28183034 DOI: 10.1016/j.watres.2017.01.068] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Of all of the strategies for controlling reverse osmosis (RO) membrane fouling, chemical cleaning is indispensable. To study the effects of chemical cleaning on membrane foulant removal, a comparative analysis of RO membranes before and after common alkaline and acid cleaning was conducted by dissecting lead and terminal RO membranes in a full-scale municipal wastewater reclamation plant. Most foulants on the membranes were removed by chemical cleaning processes. Calcium was the major inorganic component of the foulants because of its highest concentration in the feed water. Aluminum and iron were also abundant elements on the membranes due to their high deposition ratios and low removal efficiencies. Hydrophilic neutrals (HIN) and hydrophobic neutrals (HON) were the two largest dissolved organic matter (DOM) fractions on the membranes before cleaning. HIN and hydrophilic acids (HIA) were not effectively removed. Chemical cleaning removed 94% and 90% of the total bacteria on the lead and tail membranes and considerably changed the structure of the microbial communities. Bacteria excessively producing extracellular polymeric substance (EPS), such as Pseudomonas and Zoogloea, were much more resistant to the chemical cleaning process. After cleaning, the membrane microbial community structures were more similar to those in the feed water than the structures on the membranes before cleaning. These results shed light on the effects of cleaning in a full-scale RO plant, improves our understanding of the removal of foulants and provides potential research directions for cleaning methods and RO pretreatment processes.
Collapse
Affiliation(s)
- Tong Yu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Lu Meng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qing-Bo Zhao
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Ye Shi
- Beijing Boda Water Co., Ltd, Beijing 100176, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
27
|
Han X, Wang Z, Chen M, Zhang X, Tang CY, Wu Z. Acute Responses of Microorganisms from Membrane Bioreactors in the Presence of NaOCl: Protective Mechanisms of Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3233-3241. [PMID: 28263585 DOI: 10.1021/acs.est.6b05475] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracellular polymeric substances (EPS) are key foulants in membrane bioreactors (MBRs). However, their positive functions of protecting microorganisms from environmental stresses, e.g., during in situ hypochlorite chemical cleaning of membranes, have not been adequately elucidated. In this work, we investigated the response of microorganisms in an MBR to various dosages of NaOCl, with a particular emphasis on the mechanistic roles of EPS. Results showed that functional groups in EPS such as the hydroxyl and amino groups were attacked by NaOCl, causing the oxidation of polysaccharides, denaturation of amino acids, damage to protein secondary structure, and transformation of tryptophan protein-like substances to condensed aromatic ring substances. The presence of EPS alleviated the negative impacts on catalase and superoxide dismutase, which in turn reduced the concentration of reactive oxygen species (ROS) in microbial cells. The direct extracellular reaction and the mitigated intracellular oxidative responses facilitated the maintenance of microbial metabolism, as indicated by the quantity of adenosine triphosphate and the activity of dehydrogenase. The reaction with NaOCl also led to the changes of cell integrity and adhesion properties of EPS, which promoted the release of organic matter into bulk solution. Our results systematically demonstrate the protective roles of EPS and the underlying mechanisms in resisting the environmental stress caused by NaOCl, which provides important implications for in situ chemical cleaning in MBRs.
Collapse
Affiliation(s)
- Xiaomeng Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
- Shanghai Urban Water Resources Development and Utilization National Engineering Center Co. Ltd. , Shanghai 200082, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong , Pokfulam, Hong Kong China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
28
|
Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors. NPJ Biofilms Microbiomes 2017. [PMID: 28649406 PMCID: PMC5445582 DOI: 10.1038/s41522-016-0010-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.
Collapse
|