1
|
Zhang ZF, Fan YY, Lu XM, Min XZ, Ma WL, Liu LY, Li YF, Li WL. Seasonal patterns, fate and ecological risk assessment of pharmaceutical compounds in a wastewater treatment plant with Bacillus bio-reactor treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120732. [PMID: 38560954 DOI: 10.1016/j.jenvman.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Ying-Ying Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Wadsworth Center, New York State Department of Health, Albany, NY, 12237, United States.
| |
Collapse
|
2
|
Peng J, Huang H, Zhong Y, Yin R, Wu Q, Shang C, Yang X. Transformation of dissolved organic matter during biological wastewater treatment and relationships with the formation of nitrogenous disinfection byproducts. WATER RESEARCH 2022; 222:118870. [PMID: 35870395 DOI: 10.1016/j.watres.2022.118870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Nitrogenous disinfection byproducts (N-DBPs) can be produced from dissolved organic matter (DOM) during the disinfection of secondary wastewater effluent. This study examined the transformation of DOM and the abatement of N-DBP precursors during different types of biological wastewater treatment (e.g., anaerobic/anoxic/oxic activated sludge processes and membrane bioreactor) using high-performance size exclusion chromatography (HPSEC) with dissolved organic carbon, UV, and fluorescence detectors. DOM with molecule weight (MW) larger than 3 kDa and protein-like substances smaller than 0.3 kDa was effectively bio-transformed, whereas DOM fractions with MW in the range of 0.3-3 kDa were the most bio-refractory. Complete nitrification was beneficial to the removal of small amino sugar-like and protein-like molecules (< 0.3 kDa). Haloacetonitrile (HAN) precursors were recalcitrant to biological treatment with a median removal of 17%. Halonitromethane (HNM) and N-nitrosamine (NA) precursors tended to be effectively removed in complete nitrification conditions. The abundance of low-molecular-size protein-like substances (< 0.3 kDa) was significantly correlated with the formation potential of HNM, NA, and total N-nitrosamine (TONO) in post-chloramination (r = 0.81, 0.62, and 0.68, respectively, p < 0.01). This study improved the understanding of DOM transformation and the removal of N-DBPs precursors in wastewater treatment and pointed out the benefit of provision of complete nitrification in removing low-molecular-size protein-like substances and NA and HNM precursors.
Collapse
Affiliation(s)
- Jiadong Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Huang Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Sanchís J, Gernjak W, Munné A, Catalán N, Petrovic M, Farré MJ. Fate of N-nitrosodimethylamine and its precursors during a wastewater reuse trial in the Llobregat River (Spain). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124346. [PMID: 33160783 DOI: 10.1016/j.jhazmat.2020.124346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In summer 2019, a full-scale trial was carried out to investigate the effects in drinking water quality when tertiary treated wastewater was discharged into the Llobregat River upstream of the intake of one of the major drinking water treatment plants of Barcelona and its metropolitan area. Two scenarios were investigated, i.e. discharging the reclaimed water with and without chemical disinfection with chlorine. This study investigates the concentration of N-nitrosodimethylamine (NDMA) as the specific disinfection conditions employed in this trial may favor its formation. To this aim, both NDMA and NDMA formation potential, were measured. The river contained NDMA at very low concentrations, but the concentration of NDMA precursors was already high. The NDMA concentration was reduced from discharge to the river to drinking water intake probably due to a combined effect of dilution and photolysis. The formation potential was also reduced probably due to dilution and biodegradation. The concentration of NDMA in the drinking water was always low (<7.3 ng/L), although the formation potential was above 10 ng/L in one sample. Dissolved organic matter characterization by high resolution mass spectrometry revealed differences between the nature of the organic matter in the river before and after reclaimed water discharge.
Collapse
Affiliation(s)
- Josep Sanchís
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, 17003 Girona, Spain; University of Girona, 17071 Girona, Spain
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Antoni Munné
- Catalan Water Agency, C/ Provença 204-208, 08036 Barcelona, Spain
| | - Núria Catalán
- United States Geological Survey, Boulder, CO, USA; Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CEA, CNRS, UVSQ, 91191 Gif-Sur-Yvette, France
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, 17003 Girona, Spain; University of Girona, 17071 Girona, Spain.
| |
Collapse
|
4
|
Sack S, Avisar D, Kaplan A, Lester Y. Detection of N-nitrosodimethylamine (NDMA) and its formation potential in hospital wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14199-14206. [PMID: 33547606 DOI: 10.1007/s11356-021-12785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Hospital wastewaters contain high concentrations of pharmaceutical residues and other chemicals, and may present an important source for NDMA (N-nitrosodimethylamine) and its precursors in the aquatic environment. The present study evaluates the contribution of hospital wastewater to NDMA environmental load and identifies important sources within the hospital itself. For this purpose, wastewaters from five large hospitals in Israel were analyzed, and concentrations of NDMA were found in the range of 20.7-56.7 ng/L, which are similar to NDMA concentrations typically detected in domestic wastewater. The relative contribution of day surgery, oncology, laboratories, and central kitchen (in Sheba hospital) to the daily load of NDMA was calculated as 20.2%, 8.2%, 10%, and 43.2%, respectively. In addition, NDMA concentration in Sheba's mixed wastewater stream, measured throughout a complete working day, was highest at 14:00. This suggests the possible impact of lunchtime on NDMA concentration, and emphasizes the dominant contribution of central kitchen waste. Finally, formation potential of NDMA in the mixed stream was 7300 ng/L, in the upper range of domestic wastewater, but could be decreased by 70% during subsequent aerobic biological wastewater treatment.
Collapse
Affiliation(s)
- Shaanan Sack
- Environmental Technologies, Department of Material Engineering, Azrieli College of Engineering, 9103501, Jerusalem, Israel
| | - Dror Avisar
- The Water Research Center, Porter School for Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School for Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Yaal Lester
- Environmental Technologies, Department of Material Engineering, Azrieli College of Engineering, 9103501, Jerusalem, Israel.
| |
Collapse
|
5
|
Seid MG, Chung J, Choe J, Cho K, Hong SW. Role of ranitidine in N-nitrosodimethylamine formation during chloramination of competing micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144156. [PMID: 33302063 DOI: 10.1016/j.scitotenv.2020.144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Ranitidine (RNT) is a widely known precursor of N-nitrosodimethylamine (NDMA) as evinced by the self-catalytic formation of NDMA during chloramination. In the present study, the NDMA formation potentials (NDMA-FP) of 26 micropollutants were assessed, particularly when mixed with RNT. 11 compounds were identified as individual precursors, including trimebutine and cimetidine, which exhibited substantial NDMA-FP, with up to 10% molar yield. In addition, nitrosamines, other than NDMA, namely N-nitrosodiethylamine and N-nitrosomethylamine, were observed from diethylamine-containing precursors, such as metoclopramide. In a 1:1 mixture of RNT and a competitor, the change in NDMA-FP was mostly comparable (within 20% deviation), while antagonistic interactions were observed for competitors, such as diethylhydroxylamine. The scattered overall NDMA-FP should be considered as a product of competition among the precursors for core substrates and intermediates for NDMA formation. The co-existence of either trimebutine or metoclopramide with RNT led to an exceptionally synergetic NDMA generation. Degradation kinetics and chlorination/nitrosation experiments combined with mass spectroscopy analyses indicated that RNT would accelerate both the initial chlorination and nitrosation of trimebutine and metoclopramide, leading to N-nitroso complexes, which have well-understood NDMA formation pathways, i.e., amination with subsequent aminyl radical generation. This work demonstrates a wide array of precursors with NDMA-FP, suggesting that nitrosamine formation is potentially underestimated in field environments.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaewan Choe
- Department of Civil Engineering, Gwangju University, Gwangju 61743, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 406-840, Republic of Korea.
| | - Seok Won Hong
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea; Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
6
|
Roccaro P, Finocchiaro R, Mamo J, Farré MJ. Monitoring NDMA precursors throughout membrane-based advanced wastewater treatment processes by organic matter fluorescence. WATER RESEARCH 2020; 175:115682. [PMID: 32193028 DOI: 10.1016/j.watres.2020.115682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the potential of fluorescence excitation/emission matrices (EEM) measurement as a tool to predict N-Nitrosodimethylamine (NDMA) formation in water reuse applications. In particular, samples from a pilot-scale membrane biological reactor (MBR) followed by nanofiltration (NF) advanced water treatment plant, are used for the study. Concentrations of both, specific NDMA precursors and NDMA formation potential (FP) are correlated with different EEM peaks. The specific precursors investigated are: erythromycin, azithromycin, clarithromycin, venlafaxine, o-desmethylvenlafaxine, ranitidine and citalopram, while the NDMA FP is conventionally measured by the NDMA formation potential test. EEM peaks investigated are obtained by fluorescence regional integration as well as by the peak picking method generating I1, I2, I3, I4, and I5 peaks. Results showed that protein-like materials are correlated with the bulk NDMA FP and specific NDMA precursors. Additionally, selected fluorescence peaks such as I1, I2 and I4 are strongly correlated with NDMA precursors throughout the MBR-NF pilot plant. The removal of NDMA precursors and EEM peaks also correlated well (R2 > 0.8). This data shows that fluorescence EEM can be a promising tool to monitor the concentration of NDMA precursors and their removal in water reuse application.
Collapse
Affiliation(s)
- Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Renata Finocchiaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Julian Mamo
- Chemical and Environmental Engineering Laboratory (LEQUIA), Institut de Medi Ambient, Campus Montilivi s/n, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Maria José Farré
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain; UdG, Universitat de Girona, 17003, Girona, Spain.
| |
Collapse
|
7
|
Gros M, Marti E, Balcázar JL, Boy-Roura M, Busquets A, Colón J, Sànchez-Melsió A, Lekunberri I, Borrego CM, Ponsá S, Petrovic M. Fate of pharmaceuticals and antibiotic resistance genes in a full-scale on-farm livestock waste treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120716. [PMID: 31279253 DOI: 10.1016/j.jhazmat.2019.05.109] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
This study investigated, for the first time, the distribution and fate of 28 multiple-class veterinary pharmaceuticals and antibiotics (PhACs), and their corresponding antibiotic resistance genes (ARGs), in a full-scale on-farm livestock waste treatment plant. The plant relies on several technologies, including: anaerobic digestion (AD), solid-liquid separation, and two stages reverse osmosis (RO) of the liquid digestate. Tetracycline, fluoroquinolone, lincosamide and pleuromutilin antibiotics, together with anti-helmintic (flubendazole) and anti-inflammatory (flunixin) drugs were the most frequently detected compounds in livestock waste and in slaughterhouse sludge. This last fraction is used as co-substrate in the AD process and showed to be an important input source of PhACs and ARGs. In terms of treatment performance, AD exhibited moderate to low PhACs and ARGs reduction, while a large fraction (<50%) of the PhACs present in the digestate were distributed onto the solid fraction, after solid-liquid separation. Both solid and liquid digestates had relatively high copy numbers of ARGs. Finally, RO showed high rejection percentages for all PhACs (<90%), with concentrations in the low ng L-1 range in permeates, for most target PhACs. Nevertheless, moderate copy numbers of ARGs were detected in permeates.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain.
| | - Elisabet Marti
- Beta Technological Centre (TECNIO Network), University of Vic-Central University of Catalonia, Vic, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain
| | - Mercè Boy-Roura
- Beta Technological Centre (TECNIO Network), University of Vic-Central University of Catalonia, Vic, Spain
| | - Anna Busquets
- Beta Technological Centre (TECNIO Network), University of Vic-Central University of Catalonia, Vic, Spain
| | - Joan Colón
- Beta Technological Centre (TECNIO Network), University of Vic-Central University of Catalonia, Vic, Spain
| | | | - Itziar Lekunberri
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona, Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Sergio Ponsá
- Beta Technological Centre (TECNIO Network), University of Vic-Central University of Catalonia, Vic, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Li X, Liu C, Yin W, Chong TH, Wang R. Design and development of layer-by-layer based low-pressure antifouling nanofiltration membrane used for water reclamation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Llorca M, Castellet-Rovira F, Farré MJ, Jaén-Gil A, Martínez-Alonso M, Rodríguez-Mozaz S, Sarrà M, Barceló D. Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:346-356. [PMID: 30577003 DOI: 10.1016/j.envpol.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential. Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.
Collapse
Affiliation(s)
- Marta Llorca
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Francesc Castellet-Rovira
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - María-José Farré
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Maira Martínez-Alonso
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain.
| | - Montserrat Sarrà
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
10
|
Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1052-1081. [PMID: 30340253 DOI: 10.1016/j.scitotenv.2018.08.130] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
Contaminants of emerging concern (CEC) discharged in effluents of wastewater treatment plants (WWTPs), not specifically designed for their removal, pose serious hazards to human health and ecosystems. Their impact is of particular relevance to wastewater disposal and re-use in agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. This is the reason why the chemical CEC discussed in this review have been selected considering, besides recalcitrance, frequency of detection and entity of potential hazards, their relevance for crop uptake. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been included as microbial CEC because of the potential of secondary wastewater treatment to offer conditions favourable to the survival and proliferation of ARB, and dissemination of ARGs. Given the adverse effects of chemical and microbial CEC, their removal is being considered as an additional design criterion, which highlights the necessity of upgrading conventional WWTPs with more effective technologies. In this review, the performance of currently applied biological treatment methods for secondary treatment is analysed. To this end, technological solutions including conventional activated sludge (CAS), membrane bioreactors (MBRs), moving bed biofilm reactors (MBBRs), and nature-based solutions such as constructed wetlands (CWs) are compared for the achievable removal efficiencies of the selected CEC and their potential of acting as reservoirs of ARB&ARGs. With the aim of giving a picture of real systems, this review focuses on data from full-scale and pilot-scale plants treating real urban wastewater. To achieve an integrated assessment, technologies are compared considering also other relevant evaluation parameters such as investment and management costs, complexity of layout and management, present scale of application and need of a post-treatment. Comparison results allow the definition of design and operation strategies for the implementation of CEC removal in WWTPs, when agricultural reuse of effluents is planned.
Collapse
Affiliation(s)
- Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| | - Popi Karaolia
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
| | - Fanny Gritten
- CEBEDEAU, Research and Expertise Center for Water, Allée de la Découverte 11 (B53), Quartier Polytech 1, B-4000 Liège, Belgium
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
11
|
Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091960. [PMID: 30205535 PMCID: PMC6163456 DOI: 10.3390/ijerph15091960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
This study investigated the removal characteristics of N-Nitrosamines and their precursors at three pilot-scale water reclamation plants. These plants applies different integrated membrane systems: (1) microfiltration (MF)/nanofiltration (NF)/reverse osmosis (RO) membrane; (2) sand filtration/three-stage RO; and (3) ultrafiltration (UF)/NF and UF/RO. Variable removal of N-Nitrosodimethylamine (NDMA) by the RO processes could be attributed to membrane fouling and the feed water temperature. The effect of membrane fouling on N-Nitrosamine removal was extensively evaluated at one of the plants by conducting one month of operation and chemical cleaning of the RO element. Membrane fouling enhanced N-Nitrosamine removal by the pilot-scale RO process. This finding contributes to better understanding of the variable removal of NDMA by RO processes. This study also investigated the removal characteristics of N-Nitrosamine precursors. The NF and RO processes greatly reduced NDMA formation potential (FP), but the UF process had little effect. The contributions of MF, NF, and RO processes for reducing FPs of NDMA, N-Nitrosopyrrolidine and N-Nitrosodiethylamine were different, suggesting different size distributions of their precursors.
Collapse
|
12
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
13
|
Terada A, Usui H, Bao Q, Nakai S, Hosomi M. Feasibility of Biodegradation of Clarithromycin by Nitrosomonas europaea. KAGAKU KOGAKU RONBUN 2017. [DOI: 10.1252/kakoronbunshu.43.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Hinako Usui
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Qian Bao
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| | - Satoshi Nakai
- Graduate School of Engineering, Hiroshima University
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|