• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5066017)   Today's Articles (55)
For: Hawks SA, Knipe JM, Campbell PG, Loeb CK, Hubert MA, Santiago JG, Stadermann M. Quantifying the flow efficiency in constant-current capacitive deionization. Water Res 2018;129:327-336. [PMID: 29161663 DOI: 10.1016/j.watres.2017.11.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Number Cited by Other Article(s)
1
Akinyemi P, Chen W, Kim T. Enhanced Desalination Performance Using Phosphate Buffer-Mediated Redox Reactions of Manganese Oxide Electrodes in a Multichannel System. ACS APPLIED MATERIALS & INTERFACES 2024;16:614-622. [PMID: 38148175 DOI: 10.1021/acsami.3c14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
2
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023;62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
3
He Z, Li Y, Wang Y, Miller CJ, Fletcher J, Lian B, Waite TD. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions. WATER RESEARCH 2023;242:120273. [PMID: 37393810 DOI: 10.1016/j.watres.2023.120273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
4
Elewa MM, El Batouti M, Al-Harby NF. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. MATERIALS (BASEL, SWITZERLAND) 2023;16:4872. [PMID: 37445186 DOI: 10.3390/ma16134872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
5
Surface-Treated Carbon Black for Durable, Efficient, Continuous Flow Electrode Capacitive Deionization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
6
Martinez J, Colán M, Castillón R, Ramos PG, Paria R, Sánchez L, Rodríguez JM. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology. Int J Mol Sci 2023;24:ijms24021409. [PMID: 36674925 PMCID: PMC9866127 DOI: 10.3390/ijms24021409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023]  Open
7
Yoon N, Park S, Son M, Cho KH. Automation of membrane capacitive deionization process using reinforcement learning. WATER RESEARCH 2022;227:119337. [PMID: 36370591 DOI: 10.1016/j.watres.2022.119337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
8
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022;122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
9
Nordstrand J, Dutta J. Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022;38:3350-3359. [PMID: 35257585 PMCID: PMC8945368 DOI: 10.1021/acs.langmuir.1c02806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
10
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
11
Reale ER, Regenwetter L, Agrawal A, Dardón B, Dicola N, Sanagala S, Smith KC. Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control. WATER RESEARCH X 2021;13:100116. [PMID: 34505051 PMCID: PMC8414176 DOI: 10.1016/j.wroa.2021.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
12
Nordstrand J, Dutta J. A new automated model brings stability to finite‐element simulations of capacitive deionization. NANO SELECT 2021. [DOI: 10.1002/nano.202100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
13
Strategies to boost capacitive deionization performance of 3D electrodes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
14
He Z, Liu S, Lian B, Fletcher J, Bales C, Wang Y, Waite TD. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. WATER RESEARCH 2021;204:117646. [PMID: 34543974 DOI: 10.1016/j.watres.2021.117646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
15
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021;203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
16
He C, Lian B, Ma J, Zhang C, Wang Y, Mo H, Waite TD. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. WATER RESEARCH 2021;203:117498. [PMID: 34371229 DOI: 10.1016/j.watres.2021.117498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
17
Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, Liang P. Flow-electrode capacitive deionization: A review and new perspectives. WATER RESEARCH 2021;200:117222. [PMID: 34029869 DOI: 10.1016/j.watres.2021.117222] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
18
Oyarzun DI, Zhan C, Hawks SA, Cerón MR, Kuo HA, Loeb CK, Aydin F, Pham TA, Stadermann M, Campbell PG. Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS APPLIED MATERIALS & INTERFACES 2021;13:23567-23574. [PMID: 33979129 DOI: 10.1021/acsami.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
19
Hasseler TD, Ramachandran A, Tarpeh WA, Stadermann M, Santiago JG. Process design tools and techno-economic analysis for capacitive deionization. WATER RESEARCH 2020;183:116034. [PMID: 32736269 DOI: 10.1016/j.watres.2020.116034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
20
Wang L, Zhang C, He C, Waite TD, Lin S. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis. WATER RESEARCH 2020;181:115917. [PMID: 32505888 DOI: 10.1016/j.watres.2020.115917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
21
Wang L, Liang Y, Zhang L. Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:5874-5883. [PMID: 32216292 DOI: 10.1021/acs.est.9b07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
22
Jin W, Hu M. Cobalt oxide, sulfide and phosphide-decorated carbon felt for the capacitive deionization of lead ions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
23
Pothanamkandathil V, Fortunato J, Gorski CA. Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:3653-3662. [PMID: 32048848 DOI: 10.1021/acs.est.9b07311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
24
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020;169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
25
Ma J, Zhang C, Yang F, Zhang X, Suss ME, Huang X, Liang P. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:1177-1185. [PMID: 31829572 DOI: 10.1021/acs.est.9b04823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
26
Tan C, He C, Fletcher J, Waite TD. Energy recovery in pilot scale membrane CDI treatment of brackish waters. WATER RESEARCH 2020;168:115146. [PMID: 31627136 DOI: 10.1016/j.watres.2019.115146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
27
Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. WATER RESEARCH 2020;168:115186. [PMID: 31655437 DOI: 10.1016/j.watres.2019.115186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
28
Ma J, Ma J, Zhang C, Song J, Collins RN, Waite TD. Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13859-13867. [PMID: 31687806 DOI: 10.1021/acs.est.9b03263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
29
Moreno D, Hatzell MC. Constant chemical potential cycles for capacitive deionization. Phys Chem Chem Phys 2019;21:24512-24517. [PMID: 31663088 DOI: 10.1039/c9cp05032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Zhang C, Wu L, Ma J, Pham AN, Wang M, Waite TD. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13364-13373. [PMID: 31657549 DOI: 10.1021/acs.est.9b04436] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
31
Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13353-13363. [PMID: 31657552 DOI: 10.1021/acs.est.9b04347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
32
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019;165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
33
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019;91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
34
Hawks SA, Cerón MR, Oyarzun DI, Pham TA, Zhan C, Loeb CK, Mew D, Deinhart A, Wood BC, Santiago JG, Stadermann M, Campbell PG. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:10863-10870. [PMID: 31244071 DOI: 10.1021/acs.est.9b01374] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
35
Cerón MR, Zhan C, Campbell PG, Freyman MC, Santoyo C, Echegoyen L, Wood BC, Biener J, Pham TA, Biener MM. Integration of Fullerenes as Electron Acceptors in 3D Graphene Networks: Enhanced Charge Transfer and Stability through Molecular Design. ACS APPLIED MATERIALS & INTERFACES 2019;11:28818-28822. [PMID: 31293150 DOI: 10.1021/acsami.9b06681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
36
Ramachandran A, Oyarzun DI, Hawks SA, Stadermann M, Santiago JG. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation. WATER RESEARCH 2019;155:76-85. [PMID: 30831426 DOI: 10.1016/j.watres.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
37
Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:3366-3378. [PMID: 30802038 DOI: 10.1021/acs.est.8b04858] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
38
Hand S, Shang X, Guest JS, Smith KC, Cusick RD. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:3748-3756. [PMID: 30821148 DOI: 10.1021/acs.est.8b06709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
39
Hawks SA, Ramachandran A, Porada S, Campbell PG, Suss ME, Biesheuvel PM, Santiago JG, Stadermann M. Performance metrics for the objective assessment of capacitive deionization systems. WATER RESEARCH 2019;152:126-137. [PMID: 30665159 DOI: 10.1016/j.watres.2018.10.074] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
40
Bhat AP, Reale ER, del Cerro M, Smith KC, Cusick RD. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. WATER RESEARCH X 2019;3:100027. [PMID: 31193985 PMCID: PMC6549939 DOI: 10.1016/j.wroa.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 05/30/2023]
41
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019;150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
42
Kim M, Cerro MD, Hand S, Cusick RD. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. WATER RESEARCH 2019;148:388-397. [PMID: 30399553 DOI: 10.1016/j.watres.2018.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
43
Ramachandran A, Hawks SA, Stadermann M, Santiago JG. Frequency analysis and resonant operation for efficient capacitive deionization. WATER RESEARCH 2018;144:581-591. [PMID: 30092504 DOI: 10.1016/j.watres.2018.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
44
Hemmatifar A, Ramachandran A, Liu K, Oyarzun DI, Bazant MZ, Santiago JG. Thermodynamics of Ion Separation by Electrosorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018;52:10196-10204. [PMID: 30141621 DOI: 10.1021/acs.est.8b02959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
45
Ramachandran A, Hemmatifar A, Hawks SA, Stadermann M, Santiago JG. Self similarities in desalination dynamics and performance using capacitive deionization. WATER RESEARCH 2018;140:323-334. [PMID: 29734040 DOI: 10.1016/j.watres.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
46
He C, Ma J, Zhang C, Song J, Waite TD. Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018;52:9350-9360. [PMID: 30052435 DOI: 10.1021/acs.est.8b02807] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
47
Moreno D, Hatzell MC. Influence of Feed-Electrode Concentration Differences in Flow-Electrode Systems for Capacitive Deionization. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01626] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
48
Liu S, Smith KC. Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA