1
|
Akinyemi P, Chen W, Kim T. Enhanced Desalination Performance Using Phosphate Buffer-Mediated Redox Reactions of Manganese Oxide Electrodes in a Multichannel System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:614-622. [PMID: 38148175 DOI: 10.1021/acsami.3c14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water desalination mediated by electrochemical reactions to directly capture and release salt at electrode materials offers a low-voltage method for producing freshwater. Developing new system designs has allowed electrode materials to maximize their capacity for salt separation, especially when a multichannel system is used to introduce a separate electrode rinse solution. Here, we show that the use of an additive can provide a new strategy for improving electrode capacity and, hence desalination performance, which so far has been limited to increasing the electrolyte concentration. A custom-built, 2/2-channel flow cell divided by two cation exchange membranes and an anion exchange membrane was fed with 50 mM NaCl as the feed (two inner channels) and 0.5 M NaCl containing up to 0.1 M phosphate as the electrode rinse (two outer channels). Using manganese oxide electrodes with phosphate buffer-mediated redox reactions exhibited an improved desalination capacity of 68.0 ± 5.2 mg g-1 (0.55 mA cm-2) and a rate of 5.6 ± 1.3 mg g-1 min-1 (0.96 mA cm-2). The improvement was attributed to the buffer that served as a proton donor for promoting the H+ insertion reaction of amorphous or poorly crystalline MnO2. Additionally, the buffering capacity against acidification and the creation of insoluble manganese phosphate on the electrode surface prevented the dissolution of Mn2+, which could otherwise occur at the anode due to a decrease in the local pH upon H+ deinsertion. Thus, the use of manganese oxide electrodes coupled with phosphate provides a new strategy of increasing electrode capacity for water desalination.
Collapse
Affiliation(s)
- Paul Akinyemi
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Weikun Chen
- Institute for a Sustainable Environment, Clarkson University, Potsdam, New York 13699, United States
| | - Taeyoung Kim
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
- Institute for a Sustainable Environment, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
2
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
He Z, Li Y, Wang Y, Miller CJ, Fletcher J, Lian B, Waite TD. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions. WATER RESEARCH 2023; 242:120273. [PMID: 37393810 DOI: 10.1016/j.watres.2023.120273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Membrane capacitive deionization (MCDI) is a water desalination technology that involves the removal of charged ions from water under an electric field. While constant-current MCDI coupled with stopped-flow during ion discharge is expected to exhibit high water recovery and good performance stability, previous studies have typically been undertaken using NaCl solutions only with limited investigation of MCDI performance using multi-electrolyte solutions. In the present work, the desalination performance of MCDI was evaluated using feed solutions with different levels of hardness. The increase of hardness resulted in the degradation of desalination performance with the desalination time (Δtd), total removed charge, water recovery (WR) and productivity decreasing by 20.5%, 21.8%, 3.8% and 3.2%, respectively. A more serious degradation of WR and productivity would be caused if Δtd decreases further. Analysis of the voltage profiles and effluent ion concentrations reveal that the insufficient desorption of divalent ions at constant-current discharge to 0 V was the principal reason for the degradation of performance. The Δtd and WR can be improved by discharging the cell using a lower current but the productivity decreased by 15.7% on decreasing the discharging current from 161 to 107 mA. Discharging the cell to a negative potential was shown to be a better option with the Δtd, total removed charge, WR and productivity increasing by 27.4%, 23.9%, 3.6% and 5.3%, respectively, when the cell was discharged to a minimum voltage of - 0.3 V. Use of such a method should be feasible for operation of full scale MCDI plants and would be expected to lead to better regeneration of the electrode, improved desalination performance and, potentially, a significant reduction in the need for use of clean-in-place procedures.
Collapse
Affiliation(s)
- Zhizhao He
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingnan Li
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney 2052, Australia
| | - Boyue Lian
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Elewa MM, El Batouti M, Al-Harby NF. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4872. [PMID: 37445186 DOI: 10.3390/ma16134872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Another technique for desalination, known as membrane capacitive deionization (MCDI), has been investigated as an alternative. This approach has the potential to lower the voltage that is required, in addition to improving the ability to renew the electrodes. In this study, the desalination effectiveness of capacitive deionization (CDI) was compared to that of MCDI, employing newly produced cellulose acetate ion exchange membranes (IEMs), which were utilized for the very first time in MCDI. As expected, the salt adsorption and charge efficiency of MCDI were shown to be higher than those of CDI. Despite this, the unique electrosorption behavior of the former reveals that ion transport via the IEMs is a crucial rate-controlling step in the desalination process. We monitored the concentration of salt in the CDI and MCDI effluent streams, but we also evaluated the pH of the effluent stream in each of these systems and investigated the factors that may have caused these shifts. The significant change in pH that takes place during one adsorption and desorption cycle in CDI (pH range: 2.3-11.6) may cause problems in feed water that already contains components that are prone to scaling. In the case of MCDI, the fall in pH was only slightly more noticeable. Based on these findings, it appears that CDI and MCDI are promising new desalination techniques that has the potential to be more ecologically friendly and efficient than conventional methods of desalination. MCDI has some advantages over CDI in its higher salt removal efficiency, faster regeneration, and longer lifetime, but it is also more expensive and complex. The best choice for a particular application will depend on the specific requirements.
Collapse
Affiliation(s)
- Mahmoud M Elewa
- Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Mervette El Batouti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Nouf F Al-Harby
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Surface-Treated Carbon Black for Durable, Efficient, Continuous Flow Electrode Capacitive Deionization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Martinez J, Colán M, Castillón R, Ramos PG, Paria R, Sánchez L, Rodríguez JM. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology. Int J Mol Sci 2023; 24:ijms24021409. [PMID: 36674925 PMCID: PMC9866127 DOI: 10.3390/ijms24021409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Capacitive deionization (CDI) is a promising and cost-effective technology that is currently being widely explored for removing dissolved ions from saline water. This research developed materials based on activated carbon (AC) materials modified with zinc oxide (ZnO) nanorods and used them as high-performance CDI electrodes for water desalination. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were studied through SEM and XRD. ZnO-coated AC electrodes revealed a better specific absorption capacity (SAC) and an average salt adsorption rate (ASAR) compared to pristine AC, specifically with values of 123.66 mg/g and 5.06 mg/g/min, respectively. The desalination process was conducted using a 0.4 M sodium chloride (NaCl) solution with flow rates from 45 mL/min to 105 mL/min under an applied potential of 1.2 V. Furthermore, the energy efficiency of the desalination process, the specific energy consumption (SEC), and the maximum and minimum of the effluent solution concentration were quantified using thermodynamic energy efficiency (TEE). Finally, this work suggested that AC/ZnO material has the potential to be utilized as a CDI electrode for the desalination of saline water.
Collapse
|
7
|
Yoon N, Park S, Son M, Cho KH. Automation of membrane capacitive deionization process using reinforcement learning. WATER RESEARCH 2022; 227:119337. [PMID: 36370591 DOI: 10.1016/j.watres.2022.119337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Capacitive deionization (CDI) is an alternative desalination technology that uses electrochemical ion separation. Although several attempts have been made to maximize the energy efficiency and productivity of CDI with conventional control methods, it is difficult to optimize the CDI processes because of the complex correlation between the operational conditions and the composition of feed water. To address these challenges, we applied deep reinforcement learning (DRL) to automatically control the membrane capacitive deionization (MCDI) process, which is one of the representative CDI processes, to accomplish high energy efficiency while desalinating water. In the DRL model, the numerical model is combined as the environment that provides states according to the actions. The feed water conditions, that is, the input state of the DRL, were assumed to have a random salt concentration and constant foulant concentration. The model was constructed to minimize energy consumption and maximize desalted water volume per cycle. After training of 1,000 episodes, the DRL model achieved a 22.07% reduction in specific energy consumption (from 0.054 to 0.042 kWh m-3) and 11.60% increase in water desalted water volume per cycle (from 1.96×10-5 to 2.19×10-5 m3), achieving the desired degree of desalination, compared to the first episode. This improved performance was because the trained model selected the optimized operating conditions of current, voltage, and the number and intensity of flushing. Furthermore, it was possible to train the model depending on demand by modifying the reward function of the DRL model. The fundamental principle described in this study for applying the DRL model in MCDI operations can be the cornerstone of a fully automated water desalination process.
Collapse
Affiliation(s)
- Nakyung Yoon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Sanghun Park
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Moon Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Nordstrand J, Dutta J. Langmuir-Based Modeling Produces Steady Two-Dimensional Simulations of Capacitive Deionization via Relaxed Adsorption-Flow Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3350-3359. [PMID: 35257585 PMCID: PMC8945368 DOI: 10.1021/acs.langmuir.1c02806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The growing world population creates an ever-increasing demand for fresh drinkable water, and many researchers have discovered the emerging capacitive deionization (CDI) technique to be highly promising for desalination. Traditional modeling of CDI has focused on charge storage in electrical double layers, but recent studies have presented a dynamic Langmuir (DL) approach as a simple and stable alternative. We here demonstrate, for the first time, that a Langmuir-based approach can simulate CDI in multiple dimensions. This provides a new perspective of different physical pictures that could be used to describe the detailed CDI processes. As CDI emerges, effective modeling of large-scale and pilot CDI modules is becoming increasingly important, but such a modeling could also be especially complex. Leveraging the stability of the DL model, we propose an alternative fundamental approach based on relaxed adsorption-flow computations that can dissolve these complexity barriers. Literature data extensively validate the findings, which show how the Langmuir-based approach can simulate and predict how key changes in operational and structural conditions affect the CDI performance. Crucially, the method is tractable for simple simulations of large-scale and structurally complex systems. Put together, this work presents new avenues for approaching the challenges in modeling CDI.
Collapse
Affiliation(s)
- Johan Nordstrand
- Functional
Materials Group, Applied Physics Department, School of Engineering
Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
| | - Joydeep Dutta
- Functional
Materials Group, Applied Physics Department, School of Engineering
Sciences, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden
- Center
of Nanotechnology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Reale ER, Regenwetter L, Agrawal A, Dardón B, Dicola N, Sanagala S, Smith KC. Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control. WATER RESEARCH X 2021; 13:100116. [PMID: 34505051 PMCID: PMC8414176 DOI: 10.1016/j.wroa.2021.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) show great potential for low-energy Faradaic deionization (FDI) with reversible Na-ion capacity approaching 5 M in the solid-state. However, past continuous-flow demonstrations using PBAs in FDI were unable to desalinate brackish water to potable levels using single-pass architectures. Here, we show that recirculation of effluent from a symmetric cation intercalation desalination cell into brine/diluate reservoirs enables salt removal exceeding 80% at thermodynamic efficiency as high as 80% when cycled with 100 mM NaCl influent and when controlled by a low-volume, automated fluid circuit. This exceptional performance is achieved using a novel heated, alkaline wet phase inversion process that modulates colloidal forces to increase carbon black aggregation within electrode slurries to solidify crack-free, high areal-capacity PBA electrodes that are calendered to minimize cell impedance and electrode porosity. The results obtained demonstrate the need for co-design of auxiliary fluid-control systems together with electrode materials to advance FDI beyond brackish salinity.
Collapse
Affiliation(s)
- Erik R. Reale
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lyle Regenwetter
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Adreet Agrawal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Brian Dardón
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas Dicola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sathvik Sanagala
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kyle C. Smith
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Computational Science and Engineering Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
12
|
Nordstrand J, Dutta J. A new automated model brings stability to finite‐element simulations of capacitive deionization. NANO SELECT 2021. [DOI: 10.1002/nano.202100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Johan Nordstrand
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
| | - Joydeep Dutta
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
- Center of Nanotechnology King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
13
|
|
14
|
He Z, Liu S, Lian B, Fletcher J, Bales C, Wang Y, Waite TD. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. WATER RESEARCH 2021; 204:117646. [PMID: 34543974 DOI: 10.1016/j.watres.2021.117646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Membrane capacitive deionization (MCDI) is an emerging electric field-driven technology for brackish water desalination involving the removal of charged ions from saline source waters. While the desalination performance of MCDI under different operational modes has been widely investigated, most studies have concentrated on different charging conditions without considering discharging conditions. In this study, we investigate the effects of different discharging conditions on the desalination performance of MCDI electrode. Our study demonstrates that low-current discharge (1.0 mA/cm2) can increase salt removal by 20% and decrease volumetric energy consumption by 40% by improving electrode regeneration and increasing energy recovery, respectively, while high-current discharge (3.0 mA/cm2) can improve productivity by 70% at the expense of electrode regeneration and energy recovery. Whether discharging electrodes at the low current or high current is optimal depends on a trade-off between productivity and energy consumption. We also reveal that stopped flow discharge (85%) can achieve higher water recovery than continuous flow discharge (35-59%). However, stopped flow discharge caused a 20-30% decrease in concentration reduction and a 25-50% increase in molar energy consumption, possibly due to the higher ion concentration in the macropores at the end of discharging step. These results reveal that an optimal discharging operation should be obtained from achieving a balance among productivity, water recovery and energy consumption by varying discharging current and flow rate.
Collapse
Affiliation(s)
- Zhizhao He
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Shuai Liu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China.
| | - Boyue Lian
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney 2052, Australia.
| | - Clare Bales
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021; 203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Zixin Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China..
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
He C, Lian B, Ma J, Zhang C, Wang Y, Mo H, Waite TD. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. WATER RESEARCH 2021; 203:117498. [PMID: 34371229 DOI: 10.1016/j.watres.2021.117498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A novel design for a flow-electrode capacitive deionization (FCDI) system consisting of tubular electrodes in a shell and tube heat exchanger configuration is proposed. Each electrode consists of a metallic mesh current collector along the inner circumference of a tubular ion-exchange membrane. This tubular FCDI design is suitable for scale-up as it consists of easily manufactured components which can be assembled in an array. An apparatus with 4 tubular electrodes with a large effective area (202.3 cm2) was constructed and shown to provide a high net salt (NaCl) removal rate (0.15 mg s-1 at 1.2 V applied voltage and ∼2000 mg L-1 influent total dissolved solids concentration). A computational fluid dynamics (CFD) model incorporating ion migration and transport mechanisms was developed to simulate the ion concentration and electrical potential profiles in the water channel. The results of CFD modelling highlighted the need to maximize regions of both high potential gradient and high hydraulic flow in order to achieve optimal salt removal. In brief, this study presents a new design approach for FCDI scale-up and provides a computational tool for optimization of this design and future innovative FCDI designs.
Collapse
Affiliation(s)
- Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Boyue Lian
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hengliang Mo
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing, 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
17
|
Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, Liang P. Flow-electrode capacitive deionization: A review and new perspectives. WATER RESEARCH 2021; 200:117222. [PMID: 34029869 DOI: 10.1016/j.watres.2021.117222] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Flow-electrode capacitive deionization (FCDI), as a novel electro-driven desalination technology, has attracted growing exploration towards brackish water treatment, hypersaline water treatment, and selective resource recovery in recent years. As a flow-electrode-based electrochemical technology, FCDI has similarities with several other electrochemical technologies such as electrochemical flow capacitors and semi-solid fuel cells, whose performance are closely coupled with the characteristics of the flow-electrodes. In this review, we sort out the potentially parallel mechanisms of electrosorption and electrodialysis in the FCDI desalination process, and make clear the importance of the flowable capacitive electrodes. We then adopt an equivalent circuit model to distinguish the resistances to ion transport and electron transport within the electrodes, and clarify the importance of electronic conductivity on the system performance based on a series of electrochemical tests. Furthermore, we discuss the effects of electrode selection and flow circulation patterns on system performance (energy consumption, salt removal rate), review the current treatment targets and system performance, and then provide an outlook on the research directions in the field to support further applications of FCDI.
Collapse
Affiliation(s)
- Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yunfei He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Leon Rosentsvit
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Matthew E Suss
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Faculty of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Xiaori Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tie Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
18
|
Oyarzun DI, Zhan C, Hawks SA, Cerón MR, Kuo HA, Loeb CK, Aydin F, Pham TA, Stadermann M, Campbell PG. Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23567-23574. [PMID: 33979129 DOI: 10.1021/acsami.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.
Collapse
Affiliation(s)
- Diego I Oyarzun
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Cheng Zhan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Helen A Kuo
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Fikret Aydin
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
19
|
Hasseler TD, Ramachandran A, Tarpeh WA, Stadermann M, Santiago JG. Process design tools and techno-economic analysis for capacitive deionization. WATER RESEARCH 2020; 183:116034. [PMID: 32736269 DOI: 10.1016/j.watres.2020.116034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
Abstract
Capacitive deionization (CDI) devices use cyclical electrosorption on porous electrode surfaces to achieve water desalination. Process modeling and design of CDI systems requires accurate treatment of the coupling among input electrical forcing, input flow rates, and system responses including salt removal dynamics, water recovery, energy storage, and dissipation. Techno-economic analyses of CDI further require a method to calculate and compare between a produced commodity (e.g. desalted water) versus capital and operational costs of the system. We here demonstrate a new modeling and analysis tool for CDI developed as an installable Matlab program that allows direct numerical simulation of CDI dynamics and calculation of key performance and cost parameters. The program is provided for free and is used to run open-source Simulink models. The Simulink environment sends information to the program and allows for a drag and drop design space where users can connect CDI cells to relevant periphery blocks such as grid energy, battery, solar panel, waste disposal, and maintenance/labor cost streams. The program allows for simulation of arbitrary current forcing and arbitrary flow rate forcing of one or more CDI cells. We employ validated well-mixed reactor formulations together with a non-linear circuit model formulation that can accommodate a variety of electric double layer sub-models (e.g. for charge efficiency). The program includes a graphical user interface (GUI) to specify CDI plant parameters, specify operating conditions, run individual tests or parameter batch-mode simulations, and plot relevant results. The techno-economic models convert among dimensional streams of species (e.g. feed, desalted water, and brine), energy, and cost and enable a variety of economic estimates including levelized water costs.
Collapse
Affiliation(s)
- Tristan D Hasseler
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
20
|
Wang L, Zhang C, He C, Waite TD, Lin S. Equivalent film-electrode model for flow-electrode capacitive deionization: Experimental validation and performance analysis. WATER RESEARCH 2020; 181:115917. [PMID: 32505888 DOI: 10.1016/j.watres.2020.115917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising configuration for capacitive deionization due to its capability of continuous operation and achieving a relatively large salinity reduction. Due to the complexity of the multi-phase flow involved in FCDI, modeling FCDI system performance has been a challenge with no predictive FCDI model thus far developed. In this study, we developed an equivalent film-electrode (EFE) model for FCDI in which the flow electrodes are approximated as moving film electrodes that behave in a manner similar to conveyor belts. The EFE-FCDI model is validated using results from a series of FCDI experiments and then applied to elucidate the spatial variations of the key properties of the FCDI system and to resolve the contributions of different aspects of the system to energy consumption. The impact of activated carbon loading in the flow electrode and the feed and effluent target concentrations on the overall FCDI performance are also discussed based on model simulation. In summary, the EFE-FCDI model enhances our understanding of the system-level behavior of FCDI systems and can be employed for optimizing FCDI design and operation.
Collapse
Affiliation(s)
- Li Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235-1831, USA
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235-1831, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1604, USA.
| |
Collapse
|
21
|
Wang L, Liang Y, Zhang L. Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5874-5883. [PMID: 32216292 DOI: 10.1021/acs.est.9b07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The energy efficiency of capacitive deionization (CDI) with porous carbon electrodes is limited by the high ionic resistance of the macropores in the electrodes. In this study, we demonstrate a facile approach to improve the energy efficiency by filling the macropores with ion-conductive polyelectrolytes, which is termed polyelectrolyte-infiltrated CDI (pie-CDI or πCDI). In πCDI, the filled polyelectrolyte effectively turns the macropores into a charged ion-selective layer and thus increases the conductivity of macropores. We show experimentally that πCDI can save up to half of the energy consumption compared to membrane CDI, achieving identical desalination during the charging step. The energy consumption can be even lower if the process is operated at a smaller average salt adsorption rate. Further energy breakdown analysis based on a theoretical model confirms that the improved energy efficiency is largely attributed to the increased conductivity in the macropores.
Collapse
Affiliation(s)
- Li Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Yuanzhe Liang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Li Zhang
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
22
|
Jin W, Hu M. Cobalt oxide, sulfide and phosphide-decorated carbon felt for the capacitive deionization of lead ions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Pothanamkandathil V, Fortunato J, Gorski CA. Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3653-3662. [PMID: 32048848 DOI: 10.1021/acs.est.9b07311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One approach for desalinating brackish water is to use electrode materials that electrochemically remove salt ions from water. Recent studies found that sodium-intercalating electrode materials (i.e., materials that reversibly insert Na+ ions into their structures) have higher specific salt storage capacities (mgsalt/gmaterial) than carbon-based electrode materials over smaller or similar voltage windows. These observations have led to the hypothesis that energy demands of electrochemical desalination systems can be decreased by replacing carbon-based electrodes with intercalating electrodes. To test this hypothesis and directly compare intercalation materials, we examined nine electrode materials thought to be capable of sodium intercalation in an electrochemical flow cell with respect to volumetric energy demands (W·h·L-1) and thermodynamic efficiencies as a function of productivity (i.e., the rate of water desalination, L·m-2·h-1). We also examined how the materials' charge-storage capacities changed over 50 cycles. Intercalation materials desalinated brackish water more efficiently than carbon-based electrodes when we assumed that no energy recovery occurred (i.e., no energy was recovered when the cell produced electrical power during cycling) and exhibited similar efficiencies when we assumed complete energy recovery. Nickel hexacyanoferrate exhibited the lowest energy demand among all of the materials and exhibited the highest stability over 50 cycles.
Collapse
Affiliation(s)
- Vineeth Pothanamkandathil
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jenelle Fortunato
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020; 169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Capacitive Deionization (CDI) is an emerging technology representing a potential alternative to the common, energy-intensive desalination methods for low salinity water streams. In CDI an electrical field is applied to separate ionic species from aqueous solutions and electro-adsorb them into a highly porous material. CDI is a complex multi-scale system which requires robust mathematical models to closely describe its performance. Here, a dynamic two-dimensional model is developed coupling the diffusion and advection of the species in the bulk solution with their diffusion and electro-sorption in the porous electrodes. In this model, the adsorption/desorption resistance between the micropores and macropores along with variable non-electrostatic attractive forces in the micropores are also incorporated. The proposed theory is validated against experiments using a circular CDI cell operating under various conditions, where different transport mechanisms are limiting the total ion removal process. Performance of the CDI systems is also evaluated using inclusive figures of merit. The obtained results accentuate the significant effect of the rate-limited transfer of the ionic species from the macropores into the micropores, especially in systems subject to severe ion starvation, where neglecting this electro-sorption resistance leads to up to 50% and 210% overestimation of the energy efficiency and overall desalination performance, respectively. Furthermore, although the commonly used transport theory describing CDI fails to capture the dynamics of the systems at low initial concentration and high adsorption capacity by assuming fast electro-sorption without any resistance, the presented theory closely models the transport mechanisms in such systems. Moreover, we experimentally and numerically demonstrate a trade-off between the energetic and desalination performance in systems with low and high mass Péclet number.
Collapse
Affiliation(s)
- Yasamin Salamat
- Mechanical and Industrial Engineering Department, Northeastern University, 334 Snell Engineering Center, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Carlos H Hidrovo
- Mechanical and Industrial Engineering Department, Northeastern University, 334 Snell Engineering Center, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Ma J, Zhang C, Yang F, Zhang X, Suss ME, Huang X, Liang P. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1177-1185. [PMID: 31829572 DOI: 10.1021/acs.est.9b04823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow-electrode electrochemical desalination (FEED) processes (e.g., flow-electrode capacitive deionization), which use flowable carbon particles as the electrodes, have attracted increasing attention, holding the promise for continuous desalination and high desalting efficiency. While it is generally believed that carbon particles with abundant microporous and large specific capacitances (e.g., activated carbon, AC) should be ideal candidates for FEED electrodes, we provide evidence to the contrary, showing that highly conductive electrodes with low specific surface area can outperform microporous AC-based electrodes. This study revealed that FEED using solely high surface area AC particles (∼2000 m2 g-1, specific capacitance of ∼44 F g-1, average salt adsorption rate of ∼0.15 μmol cm-2 min-1) was vastly outperformed by electrodes based solely on low-surface area carbon black (CB, ∼70 m2 g-1, ∼0.5 F g-1, ∼0.75 μmol cm-2 min-1). Electrochemical impedance spectroscopy results suggest that the electrode formed by CB particles led to more effective electronic charge percolation, likely contributing to the improved desalination performance. In addition, we propose and demonstrate a novel operation mode, termed single cycle (SC), which greatly simplified the FEED cell configuration and enabled simultaneous charging and discharging. Using SC mode with CB flow electrodes delivered an increased average salt removal rate relative to the more traditional short-circuited closed cycle (SCC) mode, achieving up to 1.13 μmol cm-2 min-1. Further investigations demonstrate that up to 50% of energy input would be avoided when using CB flow electrodes operated under SC mode as compared to that of AC flow electrodes operated under SCC mode. In summary, the FEED process presented in this study provided an innovative and promising approach toward high-efficient and low-cost brackish water desalination.
Collapse
Affiliation(s)
- Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney NSW 2052 , Australia
| | - Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Xudong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Matthew E Suss
- Faculty of Mechanical Engineering Technoin , Israel Institute of Technology , Haifa 3200 , Israel
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| |
Collapse
|
26
|
Tan C, He C, Fletcher J, Waite TD. Energy recovery in pilot scale membrane CDI treatment of brackish waters. WATER RESEARCH 2020; 168:115146. [PMID: 31627136 DOI: 10.1016/j.watres.2019.115146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
An energy recovery technique using a high-current bi-directional dc-dc converter for membrane capacitive de-ionization (mCDI) of brackish waters is described and it's performance assessed in a pilot-scale prototype. The energy recovery system is shown to reduce the energy consumption of the pilot-scale mCDI unit, powered by photovoltaics and with battery storage, by between 30 and 40%. Use of a stopped flow process also enables water recovery of up to 87%. The contributions to energy consumption in the system are quantified with the insights gained from this analysis enabling the selection of an optimum voltage range for desorption termination that maximizes the daily recovered energy. The experimental results demonstrate that energy usage by the mCDI process of lower than 0.4 kWh/m3 is achievable with almost 40% of the energy supplied by the batteries recovered.
Collapse
Affiliation(s)
- Cheng Tan
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Calvin He
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
27
|
Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. WATER RESEARCH 2020; 168:115186. [PMID: 31655437 DOI: 10.1016/j.watres.2019.115186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (∼150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m-2 h-1) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved.
Collapse
Affiliation(s)
- Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Junjun Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wenjia Dong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
28
|
Ma J, Ma J, Zhang C, Song J, Collins RN, Waite TD. Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13859-13867. [PMID: 31687806 DOI: 10.1021/acs.est.9b03263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While flow-electrode CDI is a promising desalination technology that has major advantages when the electrodes are operated in the short-circuited closed-cycle (SCC) mode, little attention has been paid to the water recovery rate, which, in the SCC mode, is determined by the need for partial replacement of the saline electrolyte of the flow electrodes. Results of this study show that an extremely high water recovery rate of ∼95% can be achieved when desalting a 1000 mg NaCl L-1 brackish influent to a potable level of 150 mg L-1. The improved performance with regard to the electrical cost is related, at least in part, to the alleviated concentration polarization at the membrane/electrolyte interface during electrosorption. In effect, the current efficiency decreases with an increase in the water recovery rate. This finding is ascribed to inevitable co-ion leakage since the flow electrodes reject ions with the same charge. In addition, water transport across the ion exchange membranes also influences the water recovery rate. The effect of partial replacement of the saline electrolyte during (semi-)continuous operation requires particular consideration because the associated dilution of the carbon content in the flow electrodes results in a decrease in process performance.
Collapse
Affiliation(s)
- Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , P. R. China
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, School of Environment , Henan Normal University , Xinxiang 453007 , P.R. China
| | - Richard N Collins
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
| |
Collapse
|
29
|
Moreno D, Hatzell MC. Constant chemical potential cycles for capacitive deionization. Phys Chem Chem Phys 2019; 21:24512-24517. [PMID: 31663088 DOI: 10.1039/c9cp05032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The primary energy consuming operations which occur within a Capacitive Deionization (CDI) cell, are the ion removal (electrosorption), ion concentrating (electrodesorption), and solution switching processes. In theory the maximum system performance for a CDI system arises when solution switching occurs while maintaining a fixed number of ions (N), and when electrosorption/desorption occurs while maintaining a fixed chemical potential (μ). These fixed state variable based operations are analogous to the Carnot cycle, where heat transfer occurs at constant temperature and compression and expansion occur while maintaining constant entropy. In reality, maintaining a constant number of ions during switching is not practically feasible, thus here we investigate two alternative cycles where switching instead occurs while maintaining constant charge or voltage. Unlike constant number of ions, maintaining charge and voltage constant is feasible using a potentiostat. These theoretical cycles were chosen as they are analogues or ideal-like (Stirling and Ericsson) cycles, which are also practically feasible. The thermodynamic analysis reveals that these alternative cycles provide an avenue to approach the theoretical limit with low saline feed water; however, they are not capable of approximating ideal operations at elevated feed-water concentrations.
Collapse
Affiliation(s)
- Daniel Moreno
- Georgia Institute of Technology, 771 Ferst Drive NW, Love Bldg - Room 316, Atlanta, GA 30332, USA.
| | | |
Collapse
|
30
|
Zhang C, Wu L, Ma J, Pham AN, Wang M, Waite TD. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13364-13373. [PMID: 31657549 DOI: 10.1021/acs.est.9b04436] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is an emerging electrochemically driven technology for brackish and/or sea water desalination with merits of large salt adsorption capacity, high flow efficiency, and easy electrode management. While FCDI holds promise for continuous operation, there are very few investigations with regard to the regeneration/reuse of flowable electrodes and the separation of brine from electrodes with these operation prerequisites for real nonintermittent water desalination. In this study, we propose a novel module design to achieve these critical steps involving integration of an FCDI cell and a ceramic microfiltration (MF) contactor. Our investigations reveal that the brine discharge rate is the dominant factor for stable and efficient operation of the integrated module. Results obtained show that the integrated FCDI/MF system can be used to successfully separate brackish water (of salinities 1, 2 and 5 g L-1) into both a potable stream (<0.5 g L-1) and a brine stream (concentrated by 2-20 times) in a continuous manner with extremely high water recovery rates (up to 97%) and reasonable energy consumption. Another notable characteristic of the integrated system is the high thermodynamic energy efficiency (∼30%) with such efficiencies 4-5 times larger than those of conventional capacitive deionization units and comparable to reverse osmosis and electrodialysis systems achieving similar separation efficiencies. In brief, the results of studies described here indicate that continuous and efficient operation of FCDI is a real possibility and pave the way for scale-up of this emerging technology.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - A Ninh Pham
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
- UNSW Centre for Transformational Environmental Technologies , Yixing , Jiangsu Province 214206 , P. R. China
| |
Collapse
|
31
|
Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13353-13363. [PMID: 31657552 DOI: 10.1021/acs.est.9b04347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capacitive deionization (CDI), a class of electrochemical separation technologies, has been proposed as an energy-efficient brackish water desalination method. Previous studies have focused on improving capacity and energy consumption through material (e.g., ion-selective membranes [IEMs], charged carbon) and operational modifications, but there has been no analysis that directly links lab-scale experimental performance to capital and operating costs of full-scale water production. In this study, we developed a parameterized process model and technoeconomic analysis framework to project capital and operating costs at the million gallon per day scale based on reported material and operational characteristics for constant current CDI with and without low ($20 m-2)- and high-cost ($100 m-2) IEMs. Using this framework, we conducted global sensitivity and uncertainty analyses for water price across the reported CDI design space. Our results show that the operating constraints of brackish water desalination lead to capital costs 2-14 times greater than operating costs (particularly for MCDI). While MCDI outperforms CDI, IEM prices dictate the threshold at which MCDI is more cost-effective. The high relative capital costs highlight the importance of achieving system lifetimes at 2 years or beyond. Last, we set performance and areal cost benchmarks for material-based CDI performance and lifetime improvements.
Collapse
Affiliation(s)
- Steven Hand
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| |
Collapse
|
32
|
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019; 165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Deionization devices that use intercalation reactions to reversibly store and release cations from solution show promise for energy-efficient desalination of alternative water resources. Intercalation materials often display low electronic conductivity that results in increased energy consumption during desalination. Accordingly, we performed experiments to quantify the impact of the size and mass fraction of conductive additives and insulative active particles on the effective electronic conductivity, ionic conductivity, and hydraulic permeability of porous electrodes. We find that Ketjen black conductive additives with nodules <50 nm in diameter produce superior electronic conductivity at lower mass fractions than the larger carbon blacks commonly used in capacitive deionization. Hydraulic permeability and effective ionic conductivity depend weakly on carbon black content and size, though smaller active particles decrease hydraulic permeability. Based on these results we analyzed the energy consumption and salt removal rate of different electrode formulations by constructing an electrochemical Ashby plot predicting the variation of desalination performance with electrode transport properties. Optimized electrodes containing insulative Prussian blue analogue (PBA) particles were then fabricated and used in an experimental cation intercalation desalination (CID) cell with symmetric electrodes. For 100 mM NaCl influent energy consumption varied from 7 to 33 kJ/mol when current density increased from 1 to 8 mA/cm2, approaching ten-fold increased salt removal rate at similar energy consumption levels to past CID demonstrations. Complementary numerical and analytical modeling indicates that further improvements in energy consumption and salt removal rate are attainable by enhancing transport in solution and within PBA agglomerates.
Collapse
Affiliation(s)
- Erik R Reale
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aniruddh Shrivastava
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyle C Smith
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Computational Science and Engineering Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
34
|
Hawks SA, Cerón MR, Oyarzun DI, Pham TA, Zhan C, Loeb CK, Mew D, Deinhart A, Wood BC, Santiago JG, Stadermann M, Campbell PG. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10863-10870. [PMID: 31244071 DOI: 10.1021/acs.est.9b01374] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The contamination of water resources with nitrate is a growing and significant problem. Here we report the use of ultramicroporous carbon as a capacitive deionization (CDI) electrode for selectively removing nitrate from an anion mixture. Through moderate activation, we achieve a micropore-size distribution consisting almost exclusively of narrow (<1 nm) pores that are well suited for adsorbing the planar, weakly hydrated nitrate molecule. Cyclic voltammetry measurements reveal an enhanced capacitance for nitrate when compared to chloride as well as significant ion sieving effects when sulfate is the only anion present. We measure high selectivities (S) of both nitrate over sulfate (SNO3/SO4 = 17.8 ± 3.6 at 0.6 V) and nitrate over chloride (SNO3/Cl = 6.1 ± 0.4 at 0.6 V) when performing a constant voltage CDI separation on 3.33 mM/3.33 mM/1.67 mM Cl/NO3/SO4 feedwater. These results are particularly encouraging considering that a divalent interferant was present in the feed. Using molecular dynamics simulations, we examine the solvation characteristics of these ions to better understand why nitrate is preferentially electrosorbed over sulfate and chloride.
Collapse
Affiliation(s)
- Steven A Hawks
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Diego I Oyarzun
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Cheng Zhan
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Daniel Mew
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Amanda Deinhart
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Juan G Santiago
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore , California 94550 , United States
| |
Collapse
|
35
|
Cerón MR, Zhan C, Campbell PG, Freyman MC, Santoyo C, Echegoyen L, Wood BC, Biener J, Pham TA, Biener MM. Integration of Fullerenes as Electron Acceptors in 3D Graphene Networks: Enhanced Charge Transfer and Stability through Molecular Design. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28818-28822. [PMID: 31293150 DOI: 10.1021/acsami.9b06681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we report a concept that allows the integration of the characteristic properties of [60]fullerene in 3D graphene networks. In these systems, graphene provides high electrical conductivity and surface area while fullerenes add high electron affinity. We use molecular design to optimize the interaction between 3D graphene networks and fullerenes, specifically in the context of stability and charge transfer in an electrochemical environment. We demonstrated that the capacity of the 3D graphene network is significantly improved upon the addition of C60 and C60 monoadducts by providing additional acceptor states in the form of low-lying lowest unoccupied molecular orbitals of C60 and its derivative. Guided by experimental results and first-principles calculations, we synthesized and tested a C60 monoadduct with increased stability by strengthening the 3D graphene-C60 van-der-Waals interactions. The synthesis method and stabilization strategy presented here is expected to benefit the integration of graphene-C60 hybrid materials in solar cell and charge storage applications.
Collapse
Affiliation(s)
- Maira R Cerón
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Cheng Zhan
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Patrick G Campbell
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Megan C Freyman
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Christy Santoyo
- Department of Chemistry , University of Texas at El Paso , 500 W University Avenue , El Paso , Texas 79968 , United States
| | - Luis Echegoyen
- Department of Chemistry , University of Texas at El Paso , 500 W University Avenue , El Paso , Texas 79968 , United States
| | - Brandon C Wood
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Juergen Biener
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Tuan Anh Pham
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| | - Monika M Biener
- Materials Science Division , Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States
| |
Collapse
|
36
|
Ramachandran A, Oyarzun DI, Hawks SA, Stadermann M, Santiago JG. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation. WATER RESEARCH 2019; 155:76-85. [PMID: 30831426 DOI: 10.1016/j.watres.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Water recovery is a measure of the amount of treated water produced relative to the total amount of water processed through the system, and is an important performance metric for any desalination method. Conventional operating methods for desalination using capacitive deionization (CDI) have so far limited water recovery to be about 50%. To improve water recovery for CDI, we here introduce a new operating scheme based on a variable (in time) flow rate wherein a low flow rate during discharge is used to produce a brine volume which is significantly less than the volume of diluent produced. We demonstrate experimentally and study systematically this novel variable flowrate operating scheme in the framework of both constant current and constant voltage charge-discharge modes. We show that the variable flowrate operation can increase water recovery for CDI to very high values of ∼90% and can improve thermodynamic efficiency by about 2- to 3-fold compared to conventional constant flowrate operation. Importantly, this is achieved with minimal performance reductions in salt removal, energy consumption, and volume throughput. Our work highlights that water recovery can be readily improved for CDI at very minimal additional cost using simple flow control schemes.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Diego I Oyarzun
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
37
|
Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3366-3378. [PMID: 30802038 DOI: 10.1021/acs.est.8b04858] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capacitive deionization (CDI) as a class of electrochemical desalination has attracted fast-growing research interest in recent years. A significant part of this growing interest is arguably attributable to the premise that CDI is energy efficient and has the potential to outcompete other conventional desalination technologies. In this review, systematic evaluation of literature data reveals that while the absolute energy consumption of CDI is in general low, most existing CDI systems achieve limited energy efficiency from a thermodynamic perspective. We also analyze the causes for the relatively low energy efficiency and discuss factors that may lead to enhanced energy efficiency for CDI.
Collapse
Affiliation(s)
- Li Wang
- Department of Civil and Environmental Engineering , Vanderbilt University , Nashville , Tennessee 37235-1831 , United States
| | - J E Dykstra
- Department of Environmental Technology , Wageningen University , Bornse Weilanden 9 , 6708 WG Wageningen , The Netherlands
| | - Shihong Lin
- Department of Civil and Environmental Engineering , Vanderbilt University , Nashville , Tennessee 37235-1831 , United States
- Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , Tennessee 37235-1604 , United States
| |
Collapse
|
38
|
Hand S, Shang X, Guest JS, Smith KC, Cusick RD. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3748-3756. [PMID: 30821148 DOI: 10.1021/acs.est.8b06709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Δ c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.
Collapse
|
39
|
Hawks SA, Ramachandran A, Porada S, Campbell PG, Suss ME, Biesheuvel PM, Santiago JG, Stadermann M. Performance metrics for the objective assessment of capacitive deionization systems. WATER RESEARCH 2019; 152:126-137. [PMID: 30665159 DOI: 10.1016/j.watres.2018.10.074] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
In the growing field of capacitive deionization (CDI), a number of performance metrics have emerged to describe the desalination process. Unfortunately, the separation conditions under which these metrics are measured are often not specified, resulting in optimal performance at minimal removal. Here we outline a system of performance metrics and reporting conditions that resolves this issue. Our proposed system is based on volumetric energy consumption (Wh/m3) and throughput productivity (L/h/m2) reported for a specific average concentration reduction, water recovery, and feed salinity. To facilitate and rationalize comparisons between devices, materials, and operation modes, we propose a nominal standard separation of removing 5 mM from a 20 mM NaCl feed solution at 50% water recovery. We propose this particular separation as a standard, but emphasize that the rationale presented here applies irrespective of separation details. Using our proposed separation, we compare the desalination performance of a flow-through electrode (fte-CDI) cell and a flow between membrane (fb-MCDI) device, showing how significantly different systems can be compared in terms of generally desirable desalination characteristics. In general, we find that performance analysis must be considered carefully so to not allow for ambiguous separation conditions or the maximization of one metric at the expense of another. Additionally, for context and clarity, we discuss a number of important underlying performance indicators and cell characteristics that are not performance measures in and of themselves but can be examined to better understand differences in performance.
Collapse
Affiliation(s)
- Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, United States
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Slawomir Porada
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands; Soft Matter, Fluidics and Interfaces Group, Faculty of Science and Technology, University of Twente, Meander ME 314, 7500 AE, Enschede, the Netherlands
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, United States
| | - Matthew E Suss
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, United States.
| |
Collapse
|
40
|
Bhat AP, Reale ER, del Cerro M, Smith KC, Cusick RD. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. WATER RESEARCH X 2019; 3:100027. [PMID: 31193985 PMCID: PMC6549939 DOI: 10.1016/j.wroa.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 05/30/2023]
Abstract
Capacitive deionization (CDI) with electric double layers is an electrochemical desalination technology in which porous carbon electrodes are polarized to reversibly store ions. Planar composite CDI electrodes exhibit poor energetic performance due the resistance associated with salt depletion and tortuous diffusion in the macroporous structure. In this work, we investigate the impact of bi-tortuosity on desalination performance by etching macroporous patterns along the length of activated carbon porous electrodes in a flow-by CDI architecture. Capacitive electrodes were also coated with thin asymmetrically charged polyelectrolytes to improve ion-selectivity while maintaining the bitortuous macroporous channels. Under constant current operation, the equivalent circuit resistance in CDI cells operating with bi-tortuous electrodes was approximately 2.2 times less than a control cell with unpatterned electrodes, leading to significant increases in working capacitance (20-22 to 26.7-27.8 F g-1), round-trip efficiency (52-71 to 71-80%), and charge efficiency (33-59 to 35-67%). Improvements in these key performance indicators also translated to enhanced salt adsorption capacity, rate, and most importantly, the thermodynamic efficiency of salt separation (1.0-2.0 to 2.2-4.1%). These findings demonstrate that the use of bi-tortuous electrodes is a novel approach of reducing impedance to ionic flux in CDI.
Collapse
Affiliation(s)
- Akash P. Bhat
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R. Reale
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Martina del Cerro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kyle C. Smith
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Computational Science and Engineering Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Study, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Roland D. Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019; 150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Substantial consumption and widespread contamination of the available freshwater resources necessitate a continuing search for sustainable, cost-effective and energy-efficient technologies for reclaiming this valuable life-sustaining liquid. With these key advantages, capacitive deionization (CDI) has emerged as a promising technology for the facile removal of ions or other charged species from aqueous solutions via capacitive effects or Faradaic interactions, and is currently being actively explored for water treatment with particular applications in water desalination and wastewater remediation. Over the past decade, the CDI research field has progressed enormously with a constant spring-up of various cell architectures assembled with either capacitive electrodes or battery electrodes, specifically including flow-by CDI, membrane CDI, flow-through CDI, inverted CDI, flow-electrode CDI, hybrid CDI, desalination battery and cation intercalation desalination. This article presents a timely and comprehensive review on the recent advances of various CDI cell architectures, particularly the flow-by CDI and membrane CDI with their key research activities subdivided into materials, application, operational mode, cell design, Faradaic reactions and theoretical models. Moreover, we discuss the challenges remaining in the understanding and perfection of various CDI cell architectures and put forward the prospects and directions for CDI future development.
Collapse
Affiliation(s)
- Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Di He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| |
Collapse
|
42
|
Kim M, Cerro MD, Hand S, Cusick RD. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. WATER RESEARCH 2019; 148:388-397. [PMID: 30399553 DOI: 10.1016/j.watres.2018.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Capacitive deionization (CDI) performance, as measured by salt adsorption capacity (SAC) and energy normalized adsorption of salt (ENAS), is frequently limited by anion repulsion at the positive electrode. In this work, we investigate the ability to prevent co-ion repulsion by increasing complementary fixed charged within the electrode macropores by binding composite CDI electrodes with the ionically charged structural polysaccharides chitosan and carboxymethyl cellulose. When employing asymmetrically charged electrode binders, co-ion repulsion was prevented, resulting in SAC and ENAS values that were three times greater than composite electrodes bound with polyvinylidene fluoride (PVDF) and similar to CDI electrodes composed of chemically modified carbon. Polysaccharide binders did not modify the charge balance in the carbon micropores but did shift the discharge voltage of maximum adsorption, enabling a shift in operating voltage that prolonged cycle lifetime without a significant loss in performance. The mechanism of improved salt accumulation with polysaccharide binders was explored with a one-dimensional model that integrated CDI and ion-exchange membrane covered (MCDI) sub-units. Model simulations indicate that carbon macropores covered with thin layers of charged polysaccharides increase adsorption by a sequential accumulation and release of salt to depleted uncovered pores.
Collapse
Affiliation(s)
- Martin Kim
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3217 Newmark Civil Engineering Laboratory, Urbana, IL 61801, USA
| | - Martina Del Cerro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3217 Newmark Civil Engineering Laboratory, Urbana, IL 61801, USA
| | - Steven Hand
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3217 Newmark Civil Engineering Laboratory, Urbana, IL 61801, USA
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3217 Newmark Civil Engineering Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Ramachandran A, Hawks SA, Stadermann M, Santiago JG. Frequency analysis and resonant operation for efficient capacitive deionization. WATER RESEARCH 2018; 144:581-591. [PMID: 30092504 DOI: 10.1016/j.watres.2018.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant time-scale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (∼95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DC-offset sinusoidal forcing for CDI operation.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
44
|
Hemmatifar A, Ramachandran A, Liu K, Oyarzun DI, Bazant MZ, Santiago JG. Thermodynamics of Ion Separation by Electrosorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10196-10204. [PMID: 30141621 DOI: 10.1021/acs.est.8b02959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a simple, top-down approach for the calculation of minimum energy consumption of electrosorptive ion separation using variational form of the (Gibbs) free energy. We focus and expand on the case of electrostatic capacitive deionization (CDI). The theoretical framework is independent of details of the double-layer charge distribution and is applicable to any thermodynamically consistent model, such as the Gouy-Chapman-Stern and modified Donnan models. We demonstrate that, under certain assumptions, the minimum required electric work energy is indeed equivalent to the free energy of separation. Using the theory, we define the thermodynamic efficiency of CDI. We show that the thermodynamic efficiency of current experimental CDI systems is currently very low, around 1% for most existing systems. We applied this knowledge and constructed and operated a CDI cell to show that judicious selection of the materials, geometry, and process parameters can lead to a 9% thermodynamic efficiency and 4.6 kT per removed ion energy cost. This relatively high thermodynamic efficiency is, to our knowledge, by far the highest thermodynamic efficiency ever demonstrated for traditional CDI. We hypothesize that efficiency can be further improved by further reduction of CDI cell series resistances and optimization of operational parameters.
Collapse
Affiliation(s)
- Ali Hemmatifar
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics , Stanford University , Stanford , California 94305 , United States
| | - Kang Liu
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Diego I Oyarzun
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Martin Z Bazant
- Departments of Chemical Engineering and Mathematics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Juan G Santiago
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
45
|
Ramachandran A, Hemmatifar A, Hawks SA, Stadermann M, Santiago JG. Self similarities in desalination dynamics and performance using capacitive deionization. WATER RESEARCH 2018; 140:323-334. [PMID: 29734040 DOI: 10.1016/j.watres.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Ali Hemmatifar
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
46
|
He C, Ma J, Zhang C, Song J, Waite TD. Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9350-9360. [PMID: 30052435 DOI: 10.1021/acs.est.8b02807] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While flow-electrode capacitive deionization (FCDI) is an emerging desalination technology, reduction in water hardness using this technology has so far received minimal attention. In this study, treatment of influents containing both monovalent and divalent cations using FCDI was carried out with flow-electrodes operated in short-circuited closed-cycle (SCC) configuration. Divalent Ca2+ cations were selectively removed compared to monovalent Na+ with the selectivity becoming dominant when the FCDI unit was operated at lower current densities and hydraulic retention times. Results showed that SCC FCDI operation was much more energy-efficient for brackish water softening compared to operation in isolated closed-cycle (ICC) mode, particularly with implementation of energy recovery. This finding was largely ascribed to (i) charge neutralization of the flow-electrodes in SCC configuration and (ii) regeneration of the active materials to maintain pseudo "infinite" capacity during electrosorption. In addition, mixing of the flow-electrodes in SCC operation significantly inhibited pH excursion in the flow-electrode with resultant alleviation of calcium precipitation on the carbon surface.
Collapse
Affiliation(s)
- Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
47
|
Moreno D, Hatzell MC. Influence of Feed-Electrode Concentration Differences in Flow-Electrode Systems for Capacitive Deionization. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01626] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Moreno
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, United States
| | - Marta C. Hatzell
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, United States
| |
Collapse
|
48
|
Liu S, Smith KC. Quantifying the trade-offs between energy consumption and salt removal rate in membrane-free cation intercalation desalination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|