1
|
Hofstetter J, Holcomb DA, Kahler AM, Rodrigues C, da Silva ALBR, Mattioli MC. Performance of Conditional Random Forest and Regression Models at Predicting Human Fecal Contamination of Produce Irrigation Ponds in the Southeastern United States. ACS ES&T WATER 2024; 4:5844-5855. [PMID: 39734778 PMCID: PMC11672865 DOI: 10.1021/acsestwater.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Irrigating fresh produce with contaminated water contributes to the burden of foodborne illness. Identifying fecal contamination of irrigation waters and characterizing fecal sources and associated environmental factors can help inform fresh produce safety and health hazard management. Using two previously collected data sets, we developed and evaluated the performance of logistic regression and conditional random forest models for predicting general and human-specific fecal contamination of ponds in southwest Georgia used for fresh produce irrigation. Generic Escherichia coli served as a general fecal indicator, and human-associated Bacteroides (HF183), crAssphage, and F+ coliphage genogroup II were used as indicators of human fecal contamination. Increased rainfall in the previous 7 days and the presence of a building within 152 m (a proxy for proximity to septic systems) were associated with increased odds of human fecal contamination in the training data set. However, the models did not accurately predict the presence of human-associated fecal indicators in a second data set collected from nearby irrigation ponds in different years. Predictive statistical models should be used with caution to assess produce irrigation water quality as models may not reliably predict fecal contamination at other locations and times, even within the same growing region.
Collapse
Affiliation(s)
- Jessica Hofstetter
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States; Chenega Enterprise Systems & Solutions, LLC, Chesapeake, Virginia 23320, United States; Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | - David A Holcomb
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Amy M Kahler
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, Alabama 36849, United States
| | | | - Mia C Mattioli
- Waterborne Disease Prevention Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| |
Collapse
|
2
|
Mucheye Y, Reddythota D. Investigation of the impact of municipal solid waste disposal site leachate on surface water resources in Hosanna Town, Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44049-44067. [PMID: 38922466 DOI: 10.1007/s11356-024-34017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Surface water resources are the most precious, yet they are also the most vulnerable to pollution. Consequently, maintaining the sustainability of water supplies is critical for livestock support to achieve SDG goals. Landfill leachate poses a significant threat to water resources in developing countries. This study aims to determine how the Hosanna town landfill site affects the Jewie River by analysing the quality of the Alela and Ajew streams and the landfill leachate in both wet and dry seasons. Furthermore, assess the suitability of the water quality for agricultural purposes. The leachate pollution index (LPI), Canadian Council Member of the Environment Water Quality Index (CCMEWQI), and irrigation water quality indices (IWQI) were computed for both seasons using two composite leachate samples and five flow-pace composite river samples. In the wet season, the leachate pollution indices for L1 and L2 ranged from 20.87 to 22.47, respectively. During the dry season, the leachate pollutant index of L1 and L2 was found to be 24.42 and 27.98. Only the Ajew River stream was affected during the dry season because the landfill site is only 46 m away. Both the Ajew and Alela River streams are infested during the rainy season. Irrigation index concentrations revealed that the river water is suitable for cultivation. The early stages of landfill waste maturation are evident from the LPI results. Relocating the dump site is necessary to safeguard water resources because leachate has entered the river streams.
Collapse
Affiliation(s)
- Yibeltal Mucheye
- Faculty of Water Supply and Environmental Engineering, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, SNNPR, Ethiopia
| | - Daniel Reddythota
- Faculty of Water Supply and Environmental Engineering, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, SNNPR, Ethiopia.
| |
Collapse
|
3
|
Moreira J, McCarter K, Benitez JA, Fontenot K, King JM, Adhikari A. Effect of Type of Mulch on Microbial Food Safety Risk on Cucumbers Irrigated with Contaminated Water. J Food Prot 2023; 86:100164. [PMID: 37739314 DOI: 10.1016/j.jfp.2023.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Mulches are used to block light and retain soil moisture which may affect the survival of bacterial pathogens on soil. This study examined the effectiveness of different types of mulches to minimize microbial risk from contaminated water used for irrigation of cucumbers. A production bed of 120 ft2 with 18 beds (30 ft long) covered with five different types of mulch (paper, paper with fertilizer incorporated (PF), maize-based mulch, biodegradable plastic covering, and conventional plastic) including three beds with no cover was planted with Dasher 2 Variety cucumber. Soil samples from each bed were collected for the first five weeks to examine natural E. coli and coliforms. Well water contaminated with or without nalidixic acid-resistant mutant of E. coli (8 Log CFU/mL) was used for drip irrigation for 7 days before harvesting. Prior to irrigation with contaminated water, naturally present E. coli and coliform in the soil samples with or without mulch were in the range of 3.45-3.78 Log CFU/g and 4.18-5.31 Log CFU/g, respectively. E. coli levels on cucumbers harvested from mulched beds and irrigated with contaminated irrigation water had significantly higher (P < 0.05) levels of E. coli as compared with samples from similar beds irrigated with noncontaminated water. However, Cucumber, harvested within each irrigation water quality were not significantly different regardless of the type of mulch with E. coli levels from 1.72 to 3.30 Log CFU/cm2 (contaminated water) and 0.28-1.86 Log CFU/cm2 (noncontaminated water). A significant die-off of inoculated E. coli was observed on cucumber within 3 days (>1.17 Log CFU/cm2) and >1.38 Log CFU/cm2 after 4 days. Beds with maize mulch were effective on minimizing E. coli contamination on cucumber from contaminated irrigation water.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kevin McCarter
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Julysa Abril Benitez
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Kathryn Fontenot
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Joan M King
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 261 Knapp Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
4
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Irrigation water and contamination of fresh produce with bacterial foodborne pathogens. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Zara ES, Vital PG. Phylogroup typing and carbapenem resistance of Escherichia coli from agricultural samples in Metro Manila, Philippines. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:644-656. [PMID: 35852239 DOI: 10.1080/03601234.2022.2096988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary production environment is considered as reservoir of Escherichia coli contamination of produce. E. coli is classified into eight phylogroups which differ in ecological niches, evolutionary history, and phenotypic properties. To understand the population genetic structure and composition of E. coli in primary production environments in Metro Manila, Philippines, a total of 80 E. coli recovered from irrigation water, soil, vegetables, and feces of cat, carabao, chicken, dog, and goat were allocated into distinct phylogroups based on the presence and absence of genetic markers. Results showed that the most prevalent phylogroup was B1 (71.3%), followed by A (18.6%), D (6.3%), B2 (1.3%), E (1.3%), and an unknown phylogroup (1.3%). The most prevalent genetic marker was arpA, followed by TspE4.C2, yjaA, and chuA. The carbapenem resistance of 24 E. coli isolates representing different phylogroups was also evaluated. Intriguingly, all isolates exhibited uniform susceptibility. This is the first report to provide insights into the phylogroup structure and composition, as well as carbapenem resistance of E. coli from primary production in the Philippines, which highlights possible source of and solution for gastrointestinal and enteric diseases.
Collapse
Affiliation(s)
- Enrico S Zara
- Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Pierangeli G Vital
- Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
7
|
Li Y, Ma L, Li Y, Abdyzhapar Uulu S, Abuduwaili J. Exploration of the driving factors and distribution of fecal coliform in rivers under a traditional agro-pastoral economy in Kyrgyzstan, Central Asia. CHEMOSPHERE 2022; 286:131700. [PMID: 34333187 DOI: 10.1016/j.chemosphere.2021.131700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Fecal coliform (FC) in river water is one of the threats to human health. To explore the pollution status of FC in rivers of Kyrgyzstan, a mountainous country with traditional agro-pastoral economy, 184 water samples from the rivers of Kyrgyzstan in low and high river flow period were analyzed. Spatial autocorrelation and classical statistical methods were used to analyze the spatiotemporal distribution and driving factors of FC. The results showed that the surface water quality of Kyrgyz rivers was good, and the concentration range of FC was 0-23 MPN/100 mL. Temporally, the maximum FC concentration was 4 MPN/100 mL in low river flow period, while in the period of high river flow, the highest value reached to 23 MPN/100 mL. Spatially, the concentration of FC in high altitude areas was low, while that in the lowland areas was relatively high, which indicated that animal husbandry in high altitude areas contributed little to FC in rivers, and urban domestic sewage and agricultural activities in lowlands were the main pollution sources of FC in rivers. There was no correlation between FC and hardness, electrical conductivity (EC), pH and total organic carbon (TOC) in river water of Kyrgyzstan, and the distribution of FC in high river flow period was mainly driven by population and human modification of terrestrial systems. The results can provide a basis for the prevention and control of surface water FC pollution and related diseases in Kyrgyzstan.
Collapse
Affiliation(s)
- Yizhen Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaoming Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Salamat Abdyzhapar Uulu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Institute of Geology, National Academy of Sciences of Kyrgyzstan, Bishkek, 720461, Kyrgyzstan
| | - Jilili Abuduwaili
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Guo X, Hu H, Meng H, Liu L, Xu X, Zhao T. Vertical distribution and affecting factors of Escherichia coli over a 0-400 cm soil profile irrigated with sewage effluents in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111357. [PMID: 32979799 DOI: 10.1016/j.ecoenv.2020.111357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Quantification and evaluation of the spatial distribution and the primary factors that affect Escherichia coli (E. coli) distribution in soils is important to assess soil pollution and potential contamination of groundwater. However, little information is available on distribution of E. coli in deep soil layers. To analyze the spatial distribution and factors affecting E. coli over a 0-400 cm soil profile, soil samples were collected from two land use type in the sewage irrigation fields. The primary factors dominating the spatial distribution of E. coli were quantified by the model of principal component analysis with multiple linear regression (PCA-MLR). The results indicated that the number of E. coli under cropland decreased greatly with soil depth. The average number of E. coli over the 0-400 cm profile under forestland was 49 × 104 colony-forming unit/g (cfu/g), which was significantly higher than that under cropland (20 × 104 cfu/g). For forestland and cropland, the average number of E. coli at depths of 300-400 cm decreased by 85% and 88%, respectively, compared to that at depths of 0-100 cm. The presence of E. coli at the depths of 300-400 cm was at high level (forestland: 3 × 104 cfu/g; cropland: 2 × 104 cfu/g) for the potential risks of shallow groundwater. The PCA-MLR model estimated that the factors of soil organism, soil salt and land type use contributed 28%, 29% and 43%, respectively, to the distribution of E. coli. According to the Monte Carlo simulation, the average number of E. coli over the 0-400 cm profile was 46 ± 17 × 104 cfu/g in the sewage irrigated area, and the interval distribution with a probability of 95% varied between 14 × 104 cfu/g and 78 × 104 cfu/g. The findings of this study are useful for understanding negative effects of sewage irrigation on pathogens in deep soil and are critical to assess the potential risks of groundwater pollution.
Collapse
Affiliation(s)
- Xiaoming Guo
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Hui Hu
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Hongqi Meng
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Lin Liu
- Nanjing Center, China Geological Survey, Nanjing, 210016, China
| | - Xiaotao Xu
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Tongqian Zhao
- Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo, 454003, China.
| |
Collapse
|
9
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
10
|
Aryal N, Wood J, Rijal I, Deng D, Jha MK, Ofori-Boadu A. Fate of environmental pollutants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1587-1594. [PMID: 32671926 DOI: 10.1002/wer.1404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.
Collapse
Affiliation(s)
- Niroj Aryal
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Jonae Wood
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Ishara Rijal
- Agricultural Research Program, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, North Carolina
| | - Dongyang Deng
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| | - Manoj K Jha
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, North Carolina
| | - Andrea Ofori-Boadu
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
11
|
Li X, Sivaganesan M, Kelty CA, Zimmer-Faust A, Clinton P, Reichman JR, Johnson Y, Matthews W, Bailey S, Shanks OC. Large-scale implementation of standardized quantitative real-time PCR fecal source identification procedures in the Tillamook Bay Watershed. PLoS One 2019; 14:e0216827. [PMID: 31170166 PMCID: PMC6553688 DOI: 10.1371/journal.pone.0216827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Fecal pollution management remains one of the biggest challenges for water quality authorities worldwide. Advanced fecal pollution source identification technologies are now available that can provide quantitative information from many animal groups. As public interest in these methodologies grows, it is vital to use standardized procedures with clearly defined data acceptance metrics and conduct field studies demonstrating the use of these techniques to help resolve real-world water quality challenges. Here we apply recently standardized human-associated qPCR methods with custom data acceptance metrics (HF183/BacR287 and HumM2), along with established procedures for ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution sources to (i) demonstrate the feasibility of implementing standardized qPCR procedures in a large-scale field study, and (ii) characterize trends in fecal pollution sources in the research area. A total of 602 water samples were collected over a one-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries in the Tillamook Bay Watershed (OR, USA). Host-associated qPCR results were combined with high-resolution geographic information system (GIS) land use and general indicator bacteria (E. coli) measurements to elucidate water quality fecal pollution trends. Results demonstrate the feasibility of implementing standardized fecal source identification qPCR methods with established data acceptance metrics in a large-scale field study leading to new investigative leads suggesting that elevated E. coli levels may be linked to specific pollution sources and land use activities in the Tillamook Bay Watershed.
Collapse
Affiliation(s)
- Xiang Li
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Catherine A. Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| | - Amity Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Pat Clinton
- U.S. Environmental Protection Agency, Office of Research and Development, Newport, OR, United States of America
| | - Jay R. Reichman
- U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR, United States of America
| | - York Johnson
- Oregon Department of Environmental Quality & Tillamook Estuaries Partnership, Garibaldi, Oregon, United States of America
| | - William Matthews
- Oregon Department of Agriculture, Salem, Oregon, United States of America
| | - Stephanie Bailey
- U.S. Environmental Protection Agency, Region 10 Manchester Laboratory, Port Orchard, WA, United States of America
| | - Orin C. Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States of America
| |
Collapse
|