1
|
Diao Z, Ping X, Zhang X, Hui B, Zhu F, Zhang Y, Wang J, Yu Y, Zhang L, Hui W, Xie X, Zhang X, Wang S, Yuan X. Seasonal characteristics, source apportionment and ecological risk assessment of priority and emerging contaminants using passive samplers in the coastal water. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138398. [PMID: 40286660 DOI: 10.1016/j.jhazmat.2025.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/29/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The presence of priority and emerging contaminants in aquatic environments is a worldwide concern. This study utilized the diffusive gradients in thin-films (DGT) technique for in situ monitoring of polycyclic aromatic hydrocarbons (PAHs) and synthetic musks (SMs) in coastal waters over a year. DGT provided time-integrated and reliable pollutant measurements, outperforming grab sampling in terms of repeatability and stability. Seasonal and spatial variations in PAH and SM concentrations were observed, influenced by proximity to vehicle and maritime transport and tourist areas. Source apportionment using diagnostic ratios, positive matrix factorization, and principal component analysis indicated mixed pollutant origins. High ecological risks for certain PAHs emerged in the summer, highlighting significant seasonal threats. These findings provide critical insights for the long-term monitoring and management of PAHs and SMs, offering valuable regional data to support pollution mitigation efforts in the coastal water.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianyin Ping
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yinjie Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Lin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wenjia Hui
- Weihai Institute for Interdisciplinary Research, Shandong University, Weihai, Shandong, 264209, PR China
| | - Xiaomin Xie
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong 264209, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
2
|
Lu Y, Li C, Wang Y, Liu C, Wang Z, Liu J, Fan H, Feng Z, Sun T. A recyclable SERS-DGT device for in-situ sensing of sulfamethazine by Au@g-C 3N 4NS in water. WATER RESEARCH 2024; 253:121307. [PMID: 38377930 DOI: 10.1016/j.watres.2024.121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Although diffusion gradient in thin-film technique (DGT) has realized the in-situ sampling Sulfamethazine (SMT), the traditional DGT devices cannot be served as sensing devices but in-situ sampling devices. Here we report a recyclable surface enhanced Raman scattering (SERS) responsive DGT sensing device (recyclable SERS-DGT Sensing Device) capable of in-situ sensing of SMT in water. This is achieved by innovatively utilizing a recyclable SERS responsive liquid suspension of Au nanoparticles supported on g-C3N4 (Au@g-C3N4NS) as DGT binding phase. Au@g-C3N4NS is synthesized via in-situ growth method and embed in DGT binding phase, which exhibits good SERS activity, aqueous stability recyclable and adsorption performance. The SERS-DGT Sensing Device is valid for measuring SMT under a wide range of conditions (i.e., deployment time 24∼180 h, concentrations range of 1.031∼761.9 ng mL-1, pH 5∼9, ionic strength 0.0001∼0.05 mol L-1 NaCl, DOM concentrations 0∼100 mg L-1, four recycles). Furthermore, substrate combined with DGT binding phase, can integrate the sampling, pretreatment and SERS detection of SMT, which can be recycled, improving the reliability and efficiency of environmental monitoring. In this article, recyclable SERS-DGT Sensing Device, a platform for recyclable in-situ sensing of antibiotics, holds great potential for environmental monitoring.
Collapse
Affiliation(s)
- Yunshu Lu
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China
| | - Changwei Li
- School of New Energy, Ningbo University of Technology, Ningbo, 315336 PR China; School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819 PR China.
| | - Yun Wang
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China
| | - Chang Liu
- Department of Chemistry, Jinzhou Medical University, Jinzhou, Liaoning, 121001 PR China
| | - Ziyue Wang
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China
| | - Jiaxin Liu
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China
| | - Hongtao Fan
- College of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001 PR China.
| | - Zhongmin Feng
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China
| | - Ting Sun
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819 PR China.
| |
Collapse
|
3
|
Tian Y, Wang H, Xu G, Tu Y, Zhang Y, Zhang W, Liang Y, Li A, Xie X, Peng Z, Wang Y, Xie X. Novel covalently bound organic silicon-ferrum hybrid coagulant with excellent coagulation performance and bacteriostatic ability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Bonnaud B, Mazzella N, Boutet P, Daval A, Miège C. Calibration comparison between two passive samplers -o-DGT and POCIS- for 109 hydrophilic emerging and priority organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161720. [PMID: 36690093 DOI: 10.1016/j.scitotenv.2023.161720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants. The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate kinetic constant of accumulation for a wide range of molecules. In this study, o-DGT and POCIS were compared for the sampling of three families of micropollutants of potential risk to aquatic environments: 53 pesticides, 36 pharmaceuticals and 20 hormones. A calibration experiment was conducted to compare the kinetic models and constants from a scientific and practical perspective. The results are discussed in a single table that summarizes the performance of both passive samplers for the 109 compounds of interest. The advantage of o-DGT is that it allows linear accumulation for 72 compounds versus only 33 with POCIS. The mean times to equilibrium obtained with o-DGT are higher than those obtained with POCIS. These results confirm that the presence of a diffusion gel delays the achievement of equilibrium during compound accumulation. Therefore, o-DGT can be considered for situations where POCIS cannot be used due to non-linear accumulation over a typical 14-day deployment period. However, overall sampling rates and mass transfer coefficients also appear reduced with o-DGT, which is explained by the smaller exchange surface area, as well as the consideration of an additional diffusive layer in this device. This paper also showed that the most appropriate membrane to sample polar compounds with o-DGT was a polyethersulfone polymer with a pore size of 5 μm.
Collapse
Affiliation(s)
| | | | - Pierre Boutet
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| | - Amandine Daval
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| | - Cécile Miège
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| |
Collapse
|
5
|
Lin H, Wu H, Li H, Song A, Yin W. The essential role of GSTP1 I105V polymorphism in the prediction of CDNB metabolism and toxicity: In silico and in vitro insights. Toxicol In Vitro 2023; 90:105601. [PMID: 37031912 DOI: 10.1016/j.tiv.2023.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Humans are continuously exposed to toxic chemicals such as nitro-chlorobenzene (CDNB) through occupation, water, and even the air we breathe. Due to the severe toxicity caused by the high electrophilicity of CDNB, occupational and environmental exposure to CDNB can produce toxic effects that ultimately lead to cell damage. CDNB can be eliminated from organisms by binding to GSH, the catalytic product of glutathione S-transferase P1 (GSTP1). Therefore, GSTP1 plays an important role in the detoxification of CDNB. However, subtle variations in GSTP1 can result in single nucleotide polymorphisms (SNPs). Indeed, the correlation between the clinical outcome of the disease and certain genotypes of GSTP1 has been extensively studied, however, their impact on the metabolic detoxification of toxicants such as CDNB remains to be elucidated. Among the various SNPs of GSTP1, I105V has a significant effect on the catalytic activity of GSTP1. In this paper, a GSTP1 I105V polymorphism model was successfully established, and its effect on CDNB metabolism and toxicity was studied by computer analysis including molecular docking and molecular dynamics simulation. The result demonstrated that the binding capacity of CDNB decreases with the I105V mutation of GSTP1(p < 0.001), indicating the changes in its detoxification efficacy in CDNB-induced cell damage. Organisms expressing GSTP1 V105 are more susceptible to cell damage caused by CDNB than individuals expressing GSTP1 I105 (p < 0.001). In sum, the data in this study provide prospective insights into the mechanism and capacity of CDNB detoxification in the GSTP1 allele, extending the CDNB-mediated toxicological profile. In addition, the heterogeneity of the GSTP1 allele should be included in toxicological studies of individuals exposed to CDNB.
Collapse
Affiliation(s)
- Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Han Wu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Hengda Li
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Zhang C, Xin S, Wang X, Huo S, Lu J, Ma B, Ma X, Liu W, Gao M, Xie H. Photoelectrocatalytic degradation of m-chloronitrobenzene through rGO/g-C3N4/TiO2 nanotube arrays photoelectrode under visible light: Performance, DFT calculation and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Yan L, Rong Q, Zhang H, Jones KC, Li Y, Luo J. Evaluation and Application of a Novel Diffusive Gradients in Thin-Films Technique for In Situ Monitoring of Glucocorticoids in Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15499-15507. [PMID: 36256587 DOI: 10.1021/acs.est.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The potential environmental risks of glucocorticoids (GCs) have attracted attention in the past few decades. In this study, a novel diffusive gradients in thin-films (DGT) device and analytical technique based on the second generation of polar enhanced phase (PEP-2), PEP-2-DGT, were developed for sampling and quantifying natural and synthetic GCs in aquatic systems. The capacity of PEP-2 gels for accumulating all target compounds was >600 μg per disc, sufficient for long-term passive sampling of selected GCs, even in wastewaters. Systematic tests were carried out to verify the application of DGT in natural waters and wastewaters. The performance of PEP-2-DGT devices was independent (CDGT/Csoln was in the acceptable range of 0.9-1.1) of a wide range of environmental conditions: ionic strength (0.001-0.5 mol L-1), dissolved organic matter (0-20 mg L-1), and pH (3.06-9.02). It was tested for various diffusive layer thicknesses (0.565-2.065 mm) and different deployment times (10-168 h). Diffusion coefficients (D) of selected GCs through an agarose-based diffusive gel were determined for the first time (3.80-4.85 × 10-6 cm-2 s -1 at 25 °C). Linear correlations between D and log Kow were established for three groups of target GCs (R2 = 0.96-0.99). This could enable prediction of D values for other GCs with similar structures in the future, which will help for rapid screening and emergency monitoring. Concentrations and distribution patterns of analytes obtained by PEP-2-DGT devices in five rivers after 7- and 14-day deployments were in accordance with those measured from grab samples, with total GC concentrations ranging from 7 to 27 ng L-1 at all sampling sites, confirming the reliability and robustness of the DGT devices for monitoring GCs in natural waters. The development of the new DGT technique will help improve understanding of the behavior and fate of these compounds in the aquatic environments.
Collapse
Affiliation(s)
- Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, LancasterLA1 4YQ, United Kingdom
| | - Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning116023, P. R. China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu210023, P. R. China
| |
Collapse
|
8
|
Zhu X, Jiang L, Wang Y, Ji X, Zhang D, Xu G, Wu D, Li A, Xie X. Validation and application of diffusive gradient in thin-film (DGT) equipped novel cyclodextrin polymer gels for monitoring endocrine disrupting chemicals (EDCs) and environmental risk assessment in the Taihu lake basin. ENVIRONMENTAL RESEARCH 2022; 212:113391. [PMID: 35597293 DOI: 10.1016/j.envres.2022.113391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Taihu Lake is the most important drinking water source of the major cities in the Yangtze River Delta. The pollution of endocrine disruptors (EDCs)in Taihu Lake has been increasing recently, the accurate determination is an important guide for predicting its health risks and developing appropriate controls. Monitoring organic pollutants in water using the diffusive gradient in thin film technique (DGT) has attracted much attention due to more accuracy and convenience than the grab sampling methods. In this study, a novel cyclodextrin polymer (CDP) synthesized by the simple and green method in water was taken as an adsorbent for the binding gel. Four endocrine-disrupting chemicals (EDCs), bisphenol A (BPA), 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and estriol (E3), were taken as models to determine the diffusion coefficients (4.68 × 10-6, 3.38 × 10-6, 3.34 × 10-6 and 4.31 × 10-6 cm2/s) and to test the performance of DGT, such as adsorption capacity and deployment time (1-5 day). The assembled CDP-DGT was adopted to determine four EDCs in a simulated water environment (3-9 of pH, 0.001-0.5 M of ionic strength (IS), and dissolved organic matter (DOM) of 0-20 mg/L). The ability of CDP-DGT sampling was verified in the Jiuxiang River and was carried out for a large-scale field application of in situ sampling EDCs in Taihu Lake basin. The results show that the total EDCs concentration range and the estradiol equivalent concentrations (EEQ) in Taihu Lake and its main rivers are 2.78 ng/L to 11.08 ng/L and 2.62 ng/L to 10.91 ng/L, respectively. The risk quotients (RQs) of all sampling sites in the region were greater than 1, indicating that EDCs pose a serious threat to aquatic organisms in the area. Therefore, the monitoring of EDCs in the Taihu Lake basin should be further strengthened.
Collapse
Affiliation(s)
- Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yinfeng Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Delin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, China.
| |
Collapse
|
9
|
Bonnaud B, Miège C, Daval A, Fauvelle V, Mazzella N. Determination of diffusion coefficients in agarose and polyacrylamide gels for 112 organic chemicals for passive sampling by organic Diffusive Gradients in Thin films (o-DGT). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25799-25809. [PMID: 34846659 DOI: 10.1007/s11356-021-17563-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The diffusive gradient in thin film technique was recently adapted to organic compounds. The diffusional coefficient (D) is a key parameter needed to calculate the time-weighted average concentration. In this study, two methods are used for D measurement in two gels (agarose and polyacrylamide): the diffusion cell method (Dcell) and the slice stacking method (Dstack). Thus, D were discussed and compared for 112 organic compounds, including pesticides, hormones, and pharmaceuticals. Dstack tends to be higher than Dcell. It could be explained by the presence of a non-negligible diffusive boundary layer thickness in diffusion cell. Consequently, the use of sampling rates (RS) should be more adequate to determine water concentration, for a given bulk flow velocity. Dstack also corresponds to the diffusion in gel only, allowing the determination of the maximal RS, and would be considered as a reference value that can be adjusted to in situ conditions, by applying the appropriate DBL thickness. The range and variability of D values found in the literature and obtained in this work were discussed. Relationships between D and compound physicochemical properties (molecular mass, log Dow, polar surface area, van der Waals volume) were investigated. We did not find clear and robust correlation between D and any single physicochemical property, for the set of compounds tested.
Collapse
Affiliation(s)
| | - Cécile Miège
- INRAE, UR RiverLy, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Amandine Daval
- INRAE, UR RiverLy, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Vincent Fauvelle
- Mediterranean Institute of Oceanography (MIO), Aix-Marseille Univ., Toulon Univ., CNRS, IRD, 13288, Marseille, France
| | | |
Collapse
|
10
|
Zhu X, Jiang L, Tu Y, Tian Y, Xu G, Wu D, Li A, Xie X. In situ monitoring of phthalate esters (PAEs) pollution and environmental risk assessment in Poyang Lake Basin by DGT Technology using cyclodextrin polymer as binding phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151892. [PMID: 34826470 DOI: 10.1016/j.scitotenv.2021.151892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere with their secretion systems. Thus, the accurate determination of PAEs in Poyang Lake is important for health risk prediction and the development of corresponding control means. Monitoring organic pollutants in water using the diffusive gradient in thin films technique (DGT) has attracted much attention due to more accuracy and convenience than the traditional methods. This study used an inexpensive amphiphilic cyclodextrin polymer (PBCD) as the sorbent for the binding gel. This new binding gel has an ultra-high specific surface area and excellent adsorption performance. Diffusion coefficients of the five PAEs were determined, and the performance of DGT such as adsorption capacity and deployment time (1-4 days) was tested using five PAEs as models. The assembled PBCD-DGT was used to examine the performance in a complex simulated water environment. The sampling capability of PBCD-DGT was verified in Yangshan Lake, and a large-scale field application was conducted in Poyang Lake basin. The results of 11 sampling points showed that the concentration ranges of dimethyl phthalate, diethyl phthalate, diallyl phthalate, dipropyl phthalate, and dibutyl phthalate were 434-2594 ng/L, 40-314 ng/L, 80-527 ng/L, 45-308 ng/L, and ND-182 ng/L, respectively. The health risk index (HI) and ecological risk quotient (RQ) values of PAEs in the Poyang Lake watershed were far below 1, indictating a lower health and ecological risk. Considering that PAEs are bioaccumulative and persistent, it is very necessary to continue to pay attention to its pollution status and health and ecological risk changes in Poyang Lake Basin in the future.
Collapse
Affiliation(s)
- Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yuansong Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City, Jiangxi Province 330300, China.
| |
Collapse
|
11
|
Zhu Y, Xu G, Wang X, Ji X, Jia X, Sun L, Gu X, Xie X. Passive sampling of chlorophenols in water and soils using diffusive gradients in thin films based on β-cyclodextrin polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150739. [PMID: 34619202 DOI: 10.1016/j.scitotenv.2021.150739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous β-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 μg cm-2, 98.82 μg cm-2, 95.69 μg cm-2 and 98.91 μg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.
Collapse
Affiliation(s)
- Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Xun Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
12
|
Liu SS, Cai QS, Li C, Cheng S, Wang Z, Yang Y, Ying GG, Sweetman AJ, Chen CE. In situ measurement of an emerging persistent, mobile and toxic (PMT) substance - Melamine and related triazines in waters by diffusive gradient in thin-films. WATER RESEARCH 2021; 206:117752. [PMID: 34695670 DOI: 10.1016/j.watres.2021.117752] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Melamine has received increasing public attention as a persistent, mobile and toxic (PMT) substance. To better assess environmental exposure and risks of melamine and related triazines (cyromazine, ammeline, and atrazine), a new passive sampling method based on the diffusive gradients in thin films (DGT) technique has been developed and validated in this study. The studied triazines were adsorbed quickly and strongly by the selected mixed cation exchange (MCX) binding gels. This MCX-DGT can linearly accumulate these chemicals over at least 5 days, with neither significant individual influence from pH (6-8), ionic strength (0.01-0.5 M) or dissolved organic matter (0-10 M), or interaction effects. Field applications in Southern China showed that DGT performed well in both sewage treatment plant (STP) and river samples. Melamine was found to be the dominant triazine with the concentrations at μg·L-1 in the STP and receiving river. Surprisingly, much higher concentration of melanine was found in the STP effluent than influent, and appeared to be some of the highest concentrations reported in STPs worldwide to date. Comparable melamine and atrazine concentraions in the STP effluent and receiving river suggested other sources to the river. The MCX-DGT sampler developed here was demonstrated to be reliable and robust for measuring the triazines in waters, and is promising as an in situ tool in understanding the occurrence, sources, and fate of the emerging PMT substances in aquatic environment.
Collapse
Affiliation(s)
- Si-Si Liu
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Qi-Si Cai
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Cailin Li
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Shengming Cheng
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
| | - Yuanyuan Yang
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Guang-Guo Ying
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Andy J Sweetman
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Li H, Qi S, Li X, Qian Z, Chen W, Qin S. Tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymer as a binding agent of diffusive gradients in thin-films for sampling endocrine disrupting chemicals in water. CHEMOSPHERE 2021; 280:130774. [PMID: 33971412 DOI: 10.1016/j.chemosphere.2021.130774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
β-Cyclodextrin (β-CD) is an inexpensive and reproducible material derived from corn starch. It is possible that tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymer (TFN-CD), a cheap but efficient adsorbent, could be a suitable binding agent for use in the passive sampling technique, diffusive gradients in thin-films (DGT). Herein, the TFN-CD binding gel was prepared and then evaluated as the binding phase of DGT to sample six endocrine disrupting chemicals (EDCs) in water. The TFN-CD dispersed uniformly in the binding gel due to its hydrophilicity. The quantitative recoveries (99.3%-106%) of EDCs from the TFN-CD binding gel could be conveniently achieved by ultrasonic extraction using 5 mL methanol for 10 min. Compared with the excellent HLB (hydrophilic-lipophilic-balanced resin) binding gel, the TFN-CD binding gel had comparable or even faster adsorption kinetics, although the equilibrium adsorption capacity was slightly lower. The effective adsorption capacities of TFN-CD-based DGT (TFN-CD-DGT) were roughly estimated to enable a 7-days deployment in EDC solution of 25.7-30.0 μg L-1. Studies of influencing factors showed that the ionic strength (0-0.5 M), pH (3.73-9.13), dissolved organic matter (0-20 mg L-1) and long-term storage (204 days) had negligible influence on the performance of TFN-CD-DGT. Finally, the TFN-CD-DGT was successfully used to record sudden increases in bulk concentrations during simulated discharge events in pond water. These results demonstrate that TFN-CD is a suitable binding agent for sampling of EDCs, and the low cost of TFN-CD could be conducive to the application of DGT in large-scale sampling.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoshui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Zhe Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Ren S, Tan F, Wang Y, Zhao H, Zhang Y, Zhai M, Chen J, Wang X. In situ measurement of synthetic musks in wastewaters using diffusive gradients in thin film technique. WATER RESEARCH 2020; 185:116239. [PMID: 32739702 DOI: 10.1016/j.watres.2020.116239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Synthetic musks (SMs) are used extensively in household and personal care products and have acted significant concerns due to their environmental impacts and potential health effects. Here, we present a passive sampling approach based on diffusive gradients in thin films (DGT) for in situ measurement of SMs in urban wastewaters. XAD-2 binding gel, which has a rapid binding rate and high elution efficiency, was used in DGT device for the accumulation of six polycyclic musks and three nitro musks. The diffusion coefficients (D and DNL) of the SMs through agarose gel without and with a nylon filter membrane were 3.37-4.49 and 1.48-4.41 ×10-6cm2 s-1. The filter membrane caused an ~3 h lag phase and slowed the diffusion rates of the SMs through the diffusive phase. Solution pH (4.30-8.92), ionic strength (0.0001-0.5 M) and dissolved organic matter (0-20 mg L-1) showed no obvious influence on uptake of the SMs in DGT. The measured average SM concentrations in the effluent of wastewater treatment plants ranged from 0.45-696 ng/L for DGT deployment, without obvious membrane biofouling, and they were comparable to the concentrations determined by grab sampling. These results confirmed that the present method is reliable and convenient for in situ measurement of semivolatile hydrophobic SMs in complicated waters and is an available tool to investigate the environmental behaviors of SMs in the environment.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiwen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingyan Zhai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- Anshan Normal University, Department of Chemistry & Life Science, Anshan 114005, China.
| |
Collapse
|
15
|
Wang R, Biles E, Li Y, Juergens MD, Bowes MJ, Jones KC, Zhang H. In Situ Catchment Scale Sampling of Emerging Contaminants Using Diffusive Gradients in Thin Films (DGT) and Traditional Grab Sampling: A Case Study of the River Thames, UK. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11155-11164. [PMID: 32797751 DOI: 10.1021/acs.est.0c01584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The in situ passive sampling technique, diffusive gradients in thin films (DGT), confronts many of the challenges associated with current sampling methods used for emerging contaminants (ECs) in aquatic systems. This study compared DGT and grab sampling for their suitability to screen and monitor ECs at the catchment scale in the River Thames system (U.K.) and explored their sources and environmental fate. The ubiquitous presence of endocrine disrupting chemicals, parabens, and their metabolites is of concern. This study is the first to report organophosphate esters (OPEs) in the study area. TEP (summer 13-160 and winter 18-46, ng/L) and TCPP (summer 242-4282 and winter 215-854, ng/L) were the main OPEs. For chemicals which were relatively stable in the rivers, DGT and grab sampling were in good agreement. For chemicals which showed high variation in water bodies, DGT provided a better integral of loadings and exposure than grab sampling. DGT was not as sensitive as grab sampling under the procedures employed here, but there are several options to improve it to give comparable/better performance. DGT samples require shorter preparation time for analysis in the laboratory than grab samples. Overall, DGT can be a powerful tool to characterize ECs throughout a large dynamic water system.
Collapse
Affiliation(s)
- Runmei Wang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Emma Biles
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | | | - Michael J Bowes
- Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, U.K
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
16
|
You N, Chen Y, Zhang QX, Zhang Y, Meng Z, Fan HT. In-situ monitoring of phenol in surface waters by diffusive gradients in thin films technique based on the nanocomposites of zero-valent iron@biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139553. [PMID: 32473426 DOI: 10.1016/j.scitotenv.2020.139553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The nano-sized zero valent iron assisted biochar from hazelnut shell (nZVI@biochar) was prepared and assessed for the feasibility as the binding agent in diffusive gradients in thin-films (DGT) technique. The 1.5% agarose solution containing the optimal nZVI@biochar dose of 15 g L-1 was used to prepare the nZVI@biochar binding gel which owned a high capacity (1010 ± 50 μg disc-1) and a rapid uptake within 30 min. The elution efficiency of phenol from the loaded binding gel was up to 99.3% using the mixture of 1% hydroxylamine hydrochloride and 0.05 mol L-1 HCl. The phenol uptake of nZVI@biochar-DGT increased linearly with the increase of deployment time (R2 = 0.9938) and was in accord with the theoretical values from DGT equation, while there was no notable interference of the sample matrixes on the phenol uptake of nZVI@biochar-DGT in the spiked freshwaters. The good performance of nZVI@biochar-DGT was found under a range of pH (4.1-10.2), ionic strength (as pNaNO3) (0.155-4), and dissolved organic matter up to 20 mg L-1. In field, the monitoring of nZVI@biochar-DGT was more representative than the results from the grab-sampling with better precision and lower sampling frequency, which can provide reliable information, reduce the cost of human resources, and improve efficiency. These illustrate that the nZVI@biochar is more suitable as the binding agent of DGT for uptake of phenol and nZVI@biochar-DGT is an effective tool to monitor in-situ phenol in waters.
Collapse
Affiliation(s)
- Nan You
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Yang Chen
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Qing-Xin Zhang
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Ying Zhang
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Zhuo Meng
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China.
| |
Collapse
|
17
|
Yao H, Zhao Y, Lin CJ, Yi F, Liang X, Feng X. Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. CHEMOSPHERE 2020; 251:126231. [PMID: 32169713 DOI: 10.1016/j.chemosphere.2020.126231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this work, a composite resin gel incorporating thiol-modified metal double hydroxide (TM-MDH) nanoparticles is developed for application in diffusive gradients in thin films (DGT) devices to sample and concentrate divalent Hg (Hg(II)) in water and sediment samples. The DGT device uses the TM-MDH resin as a sorption layer and an agarose gel as a diffusive layer. Complete digestion of the TM-MDH resin after sampling can be achieved in 5 mL of 12 N HCl solution for 30 min for direct aqueous Hg(II) analysis. The recovery of Hg(II) uptake onto the resin in aqueous solution reaches 95.4 ± 1.9%. The effect of ionic strength and pH on the performance of DGT device for Hg(II) is assessed. It is found that there is no significant difference on Hg(II) uptake over a pH range of 3.5-8.5 and an ionic strength range of 1-500 mM NaCl. The diffusion coefficient of Hg(II) at 25 °C was estimated to be 9.48 × 10-6 cm2/s at 50 μg/L solution. The sorption capacity of TM-MDH-DGT for Hg(II) reaches 41.0 μg/cm2. Field validations performed in reservoir water and in contaminated paddy soil demonstrate that the developed TM-MDH DGT device can accurately determine Hg(II) concentrations in these samples and outperform traditional sampling methods for both high and low Hg(II) concentrations.
Collapse
Affiliation(s)
- Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China
| | - Yujie Zhao
- Agro-Environmental Protection Institute Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX, USA; Department of Civil & Environmental Engineering, Lamar University, Beaumont, TX, USA.
| | - Fengjiao Yi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China.
| |
Collapse
|
18
|
Liu S, Jin L, Yu H, Lv L, Chen CE, Ying GG. Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135691. [PMID: 31784180 DOI: 10.1016/j.scitotenv.2019.135691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The diffusion coefficient (D) is a key physicochemical parameter for the diffusive gradients in thin films technique (DGT) for environmental sampling, which has been extended to organic chemicals (so called o-DGT). D can be measured in the laboratory, although for organic chemicals this parameter might be predicted based on chemical structure. Here we developed for the first time a Quantitative Structure-Property Relationship (QSPR) model to predict the D values. Twenty quantum chemical descriptors that quantify the electronic and energy properties of 120 organic compounds were selected together with molecular mass, solubility and hydrophobicity. The best QSPR model was established by using genetic algorithm and multiple linear regression (GA-MLR). The results indicated that the model derived from the average molecular polarizability (α), the chemical potential (ξ) and the global electrophilicity index (ω) could explain the diffusion of organics in o-DGT and had good statistical performance (R2 = 0.767, RMSE = 0.101). Different validation strategies confirmed that the developed model was robust and predictive. 93% of tested compounds were within the applicability domain (AD) and predicted accurately. We concluded that the proposed QSPR model can serve as an efficient predictive tool for new chemicals in the AD, would be useful to cross validate measured D values and provide a better the understanding of the diffusive behaviour of organics in o-DGT and measurements in the environment. It might also be useful in the non-target analysis with o-DGT for chemicals without measured D values.
Collapse
Affiliation(s)
- Sisi Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingmin Jin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liang Lv
- Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|