1
|
Blair MF, Vaidya R, Salazar-Benites G, Bott CB, Pruden A. Relating microbial community composition to treatment performance in an ozone-biologically active carbon filtration potable reuse treatment train. WATER RESEARCH 2024; 262:122091. [PMID: 39047455 DOI: 10.1016/j.watres.2024.122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Treatment trains that couple ozone (O3) with biologically active carbon (BAC) filtration are of interest as a lower cost, more sustainable, membrane-free approach to water reuse. However, little is known about the microbial communities that are the fundamental drivers of O3-BAC treatment. The objective of this study was to demonstrate microbial community profiling as a diagnostic tool for assessing the functionality, biological stability, and resilience of coupled physical, chemical, advanced oxidative and biological processes employed in water reuse treatment. We utilized 16S rRNA gene amplicon sequencing to profile the bacterial microbiota over time throughout a potable reuse train employing coagulation, flocculation, sedimentation, ozonation, BAC filtration, granular activated carbon (GAC) adsorption, and UV disinfection. A distinct baseline microbiota was associated with each stage of treatment (ANOSIM, p < 0.05, r-stat = 0.52), each undergoing succession with time and operational shifts. Ozonation resulted in the sharpest shifts (i.e., 83.3 % average change in Genus level relative abundances, when adjusted O3:TOC ratio > 1), and also variance, in microbial community composition. Adjustment in O3:TOC ratios, temperature, filter-aid polymer, monochloramine quenching agent, and empty-bed contact time also resulted in measurable changes in the baseline microbial community composition of individual processes, but to a lesser degree. Of these, supplementation of nitrogen and phosphorus resulted in the strongest bifurcation, especially in the microbial communities inhabiting the BAC (ANOSIM: p < 0.05, BAC5 r-stat = 0.32; BAC10 r-stat = 0.54) and GAC (ANOSIM: p < 0.05, GAC10 r-stat = 0.54; GAC20 r-stat = 0.63) units. Additionally, we found that the BAC microbial community was responsive to an inoculation of microbially active media, which resulted in improved TOC removal. The findings of this study improve understanding of bacterial dynamics occurring in advanced water treatment trains and can inform improved system design and operation.
Collapse
Affiliation(s)
- Matthew F Blair
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
de Carvalho Costa LR, Li L, Haak L, Teel L, Feris LA, Marchand E, Pagilla KR. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. CHEMOSPHERE 2024; 364:143128. [PMID: 39159769 DOI: 10.1016/j.chemosphere.2024.143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 μg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 μg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Collapse
Affiliation(s)
- Leticia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, 89502, USA
| | - Liliana Amaral Feris
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Eric Marchand
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
| |
Collapse
|
3
|
Li L, Haak L, Guarin TC, Teel L, Sundaram V, Pagilla KR. Per- and poly-fluoroalkyl substances removal in multi-barrier advanced water purification system for indirect potable reuse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10990. [PMID: 38291828 DOI: 10.1002/wer.10990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
The study evaluated the removal efficacy of per- and poly-fluoroalkyl substances (PFAS) across various advanced water treatment (AWT) processes in a field-scale AWT train using secondary effluent samples from a full-scale water reclamation facility (WRF). Samples collected from April to October 2020 revealed PFCAs as the dominant PFAS compounds in the WRF secondary effluent, with PFPeA having the highest average concentration and PFSAs in notably lower amounts. Temporal fluctuations in total PFAS concentrations peaked in September 2020, which may reflect the seasonality in PFAS discharges related to applications like AFFFs and pesticides. In assessing AWT processes, coagulation-flocculation-clarification-filtration system showed no notable PFAS reduction, while ozonation resulted in elevated PFBS and PFBA concentrations. Biological activated carbon (BAC) filtration effectively removed long-chain PFAS like PFOS and PFHxS but saw increased concentrations of short-chain PFAS post-treatment. Granular activated carbon (GAC) filtration was the most effective treatment, reducing all PFSAs below the detection limits and significantly decreasing most PFCAs, though short-chain PFCAs persisted. UV treatment did not remove short-chain PFCAs such as PFBA, PFPeA, and PFHxA. The findings highlight the efficacy of AWT processes like GAC in PFAS reduction for potable reuse, but also underscore the challenge presented by short-chain PFAS, emphasizing the need for tailored treatment strategies. PRACTITIONER POINTS: Secondary effluents showed higher concentrations of PFCAs compared to PFSAs. Advanced water treatment effectively removes long-chain PFAS but not short-chain. Ozonation may contribute to formation of short-chain PFAS. BAC is less effective on short-chain PFAS, requiring further GAC treatment.
Collapse
Affiliation(s)
- Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
- UNAB's Circular Bioeconomy Research Center, Autonomous University of Bucaramanga, Bucaramanga, Colombia
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, Nevada, USA
| | | | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
4
|
Hogard S, Pearce R, Gonzalez R, Yetka K, Bott C. Optimizing Ozone Disinfection in Water Reuse: Controlling Bromate Formation and Enhancing Trace Organic Contaminant Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18499-18508. [PMID: 37467303 PMCID: PMC10690711 DOI: 10.1021/acs.est.3c00802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
The use of ozone/biofiltration advanced treatment has become more prevalent in recent years, with many utilities seeking an alternative to membrane/RO based treatment for water reuse. Ensuring efficient pathogen reduction while controlling disinfection byproducts and maximizing oxidation of trace organic contaminants remains a major barrier to implementing ozone in reuse applications. Navigating these challenges is imperative in order to allow for the more widespread application of ozonation. Here, we demonstrate the effectiveness of ozone for virus, coliform bacteria, and spore forming bacteria inactivation in unfiltered secondary effluent, all the while controlling the disinfection byproduct bromate. A greater than 6-log reduction of both male specific and somatic coliphages was seen at specific ozone doses as low as 0.75 O3:TOC. This study compared monochloramine and hydrogen peroxide as chemical bromate control measures in high bromide water (Br- = 0.35 ± 0.07 mg/L). On average, monochloramine and hydrogen peroxide resulted in an 80% and 36% decrease of bromate formation, respectively. Neither bromate control method had any appreciable impact on virus or coliform bacteria disinfection by ozone; however, the use of hydrogen peroxide would require a non-Ct disinfection framework. Maintaining ozone residual was shown to be critical for achieving disinfection of more resilient microorganisms, such as spore forming bacteria. While extremely effective at controlling bromate, monochloramine was shown to inhibit TrOC oxidation, whereas hydrogen peroxide enhanced TrOC oxidation.
Collapse
Affiliation(s)
- Samantha Hogard
- Civil
and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Robert Pearce
- Civil
and Environmental Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Raul Gonzalez
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Kathleen Yetka
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| | - Charles Bott
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471, United States
| |
Collapse
|
5
|
Astuti MP, Taylor WS, Lewis GD, Padhye LP. Surface-modified activated carbon for N-nitrosodimethylamine removal in the continuous flow biological activated carbon columns. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131518. [PMID: 37172385 DOI: 10.1016/j.jhazmat.2023.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/14/2023]
Abstract
The carcinogenic nitrogenous disinfection by-product, N-nitrosodimethylamine (NDMA), is challenging to adsorb due to its high polarity and solubility. Our previous research demonstrated that the adsorptive removal of NDMA can be improved using surface-modified activated carbon (AC800). The current study evaluated the efficacy of AC800 in removing NDMA in a continuous-flow column over 75 days, using both granular activated carbon (GAC) and biologically activated carbon (BAC) columns. The AC800 GAC column demonstrated extended breakthrough and exhaustion times of 10 days and 22 days, respectively, compared to the conventional GAC column at 4 days and 10.5 days. The surface modification effect persisted for 25 days before the removal trends became indistinguishable. The AC800 BAC column outperformed the conventional BAC column with a longer breakthrough time of 11.3 days compared to 7.4 days. BAC columns consistently showed greater NDMA removal, emphasizing the role of biodegradation in NDMA removal on carbon. The higher NDMA removal in the inoculated columns was attributed to increased microbial diversity and the dominance of six specific genera, Methylobacterium, Phyllobacterium, Curvibacter, Acidovorax, Variovorax, and Rhodoferax. This study provides new insights into using modified activated carbon as GAC and BAC media in a real-world continuous-flow setup.
Collapse
Affiliation(s)
- Maryani P Astuti
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand; Environmental Engineering Study Program, Faculty of Engineering, President University, Bekasi, Indonesia
| | - William S Taylor
- Institute of Environmental Science and Research (ESR), Christchurch, New Zealand
| | - Gillian D Lewis
- School of Biological Science, University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Rodriguez EE, Bott CB, Wigginton KR, Love NG. In vitro bioassays to monitor complex chemical mixtures at a carbon-based indirect potable reuse plant. WATER RESEARCH 2023; 241:120094. [PMID: 37276655 DOI: 10.1016/j.watres.2023.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Potable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance. In vitro bioassays are a useful tool for screening if reuse treatment processes adequately reduce toxicity associated with a range of chemical classes that are contaminants of concern. In this study, we used an aryl hydrocarbon receptor (AhR) and an estrogen receptor luciferase bioassay to detect the presence of dioxin-like and estrogenic compounds across a 3800 m3/d carbon-based indirect potable reuse plant that uses carbon-based treatment (SWIFT-RC). Our results demonstrate significant removal of dioxin-like compounds across the SWIFT-RC treatment train. Estrogenicity declined across the treatment train for some months but was extremely variable and low with many samples falling below the method quantification level; consequently, we were not able to reliably determine estrogenicity trends for SWIFT-RC. Comparing the bioanalytical equivalent concentrations detected in the SWIFT-RC water with established monitoring trigger levels from the state of California suggests that SWIFT-RC produced water that met the bioassay guidelines. The log total organic carbon concentration and AhR assay equivalent concentrations are weakly correlated when data across all SWIFT-RC processes are included. Overall, this research demonstrates the performance of in vitro bioassays at a demonstration-scale carbon-based IPR system and highlights both the potential utility and challenges associated with these methods for assessing system performance.
Collapse
Affiliation(s)
- Enrique E Rodriguez
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Krista R Wigginton
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nancy G Love
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Liu M, Graham N, Xu L, Zhang K, Yu W. Bubbleless aerated-biological activated carbon as a superior process for drinking water treatment in rural areas. WATER RESEARCH 2023; 240:120089. [PMID: 37216786 DOI: 10.1016/j.watres.2023.120089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
8
|
Miller S, Greenwald H, Kennedy LC, Kantor RS, Jiang R, Pisarenko A, Chen E, Nelson KL. Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. ACS ES&T ENGINEERING 2022; 2:2206-2219. [PMID: 36530600 PMCID: PMC9745798 DOI: 10.1021/acsestengg.2c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla TEM ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log10 reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla TEM genes were reduced below the limit of detection (∼10-2 gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control.
Collapse
Affiliation(s)
- Scott Miller
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Hannah Greenwald
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Lauren C. Kennedy
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, College of Engineering, Stanford University, Stanford, California 94305, United States
| | - Rose S. Kantor
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Renjing Jiang
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Aleksey Pisarenko
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Elise Chen
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
9
|
Gollong G, Neuwald IJ, Kuckelkorn J, Junek R, Zahn D. Assessing the protection gap for mobile and persistent chemicals during advanced water treatment - A study in a drinking water production and wastewater treatment plant. WATER RESEARCH 2022; 221:118847. [PMID: 35841789 DOI: 10.1016/j.watres.2022.118847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Persistent and mobile (PM) chemicals spread quickly in the water cycle and can reach drinking water. If these chemicals are also toxic (PMT) they may pose a threat to the aquatic environment and drinking water alike, and thus measures to prevent their spread are necessary. In this study, nontarget screening and cell-based toxicity tests after a polarity-based fractionation into polar and non-polar chemicals are utilized to assess and compare the effectiveness of ozonation and filtration through activated carbon in a wastewater treatment and drinking water production plant. Especially during wastewater treatment, differences in removal efficiency were evident. While median areas of non-polar features were reduced by a factor of 270, median areas for polar chemicals were only reduced by a factor of 4. Polar features showed significantly higher areas than their non-polar counterparts in wastewater treatment plant effluent and finished drinking water, implying a protection gap for these chemicals. Toxicity tests revealed higher initial toxicities (especially oxidative stress and estrogenic activity) for the non-polar fraction, but also showed a more pronounced decrease during treatment. Generally, the toxicity of the effluent was low for both fractions. Combined, these results imply a less effective removal but also a lower toxicity of polar chemicals. The behaviour of features during advanced waste and drinking water treatment was used to classify them as either PM chemicals or mobile transformation products (M-TPs). A suspect screening of the 476 highest intensity PM chemicals and M-TPs in 57 environmental and tap water samples showed high frequencies of detection (median >80%), which indicates the wide distribution of these chemicals in the aquatic environment and thus supports the chosen classification approach and the more generally applicability of obtained insights.
Collapse
Affiliation(s)
- Grete Gollong
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Isabelle J Neuwald
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Jochen Kuckelkorn
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Ralf Junek
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany.
| |
Collapse
|
10
|
Ersan MS, Dickenson ERV. Pretreatment strategies for ion exchange to control brominated disinfection byproducts in potable reuse. CHEMOSPHERE 2022; 296:134068. [PMID: 35202669 DOI: 10.1016/j.chemosphere.2022.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The application of ion exchange (IX) resins to remove disinfection byproduct (DBP) precursors in wastewater effluents is challenging due to relatively high concentrations of competing anions. This study examined various pretreatment strategies to target competing ions to improve IX removal of DBP precursors, bromide and dissolved organic matter (DOM), measured as trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP). IX batch experiments were performed with four commercial anion exchange (AIX) resins selective for bromide (BrP), DOM (A860), sulfate (MTA) and PFOA/PFOS (PFA), and one cation exchange (CIX) resin selective for iodide (CT). For single AIX treatments the bromide removal ranking was the following: PFA (58%) > MTA (51%) > BrP (43%) > A860 (16%), which corresponded with decreasing brominated THMFP removals and increasing bromine incorporation factors. For dual AIX combinations (PFA and BrP, MTA and BrP), either simultaneous or sequential treatments had the highest bromide (PFA + BrP [69%], MTA + BrP [67%], (PFA→BrP [77%], MTA→BrP [74%]) and Br-THMFP (THMFP [∼80%]) and Br-HAAFP (HAAFP [∼77%]) removals, and therefore the lowest fractions of brominated DBPs (Br-DBPs). Despite ozone (O3), biological active carbon (BAC), and granular activated carbon (GAC) pretreatments reducing the overall DOM concentration (33%), these pretreatment steps did not improve the bromide removals of the resins, although it did increase the Br-THMFP and Br-HAAFP removals by 2-38% and 13-20%, respectively. Nanofiltration (NF) pretreatment significantly removed sulfate (97%) resulting in an increased bromide removal of 19% by the AIX resins, which led to increased removal of Br-THMFP and Br-HAAFP by 93% and 96%, respectively. Among all the IX resins the CT resin had the highest bromide removal (83%) and lowest fraction of Br-DBPs. The results reveal pretreatment with existing technologies including AIX, O3/BAC/GAC, or NF can potentially enhance the removal of brominated DBP precursors by IX resins during potable reuse applications.
Collapse
Affiliation(s)
- Mahmut S Ersan
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-5306, USA.
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
11
|
Teel L, Pagilla K, Sundaram V, Li L, Guarin T, Haak L. Pathogen reduction by ozone-biological activated carbon-based advanced water reclamation for reuse. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10726. [PMID: 35621226 DOI: 10.1002/wer.10726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Ozone-biological activated carbon (ozone-BAC)-based technologies are emerging as an appealing option for potable reuse systems; however, uncertainty remains regarding the reduction of waterborne pathogens. Common log reduction requirements have been modeled after California Department of Drinking Water's 12-10-10 log reduction value (LRV) for enteric virus, Cryptosporidium, and Giardia, respectively. The objective of this research was to investigate appropriate LRVs of pathogens that can be achieved in ozone-BAC-based treatment systems and to assess the applicability of employing drinking water pathogen guidelines for potable reuse applications. A pilot scale ozone-BAC-based treatment train was operated at two water reclamation facilities in Reno, Nevada, USA. Virus, Cryptosporidium, Giardia, and bacterial indicators were monitored across individual and combined treatment processes. Pathogen barriers investigated include conventional filtration, ozonation, and ultraviolet disinfection. Based on sampling and treatment validation strategies, the three pathogen barriers can provide minimum LRVs of 13-9-9.5 for virus, Giardia, and Cryptosporidium. Secondary biological treatment can provide additional pathogen LRVs with site-specific sampling. The present study addresses regulatory uncertainties associated with ozone-BAC pathogen reduction. PRACTITIONER POINTS: Ozone-biological activated carbon-based advanced treatment can meet pathogen LRV requirements with a minimum of three pathogen barriers. Successfully applied drinking water pathogen reduction guidelines for potable reuse applications verified by operational criteria. Low presence of pathogens requires surrogates and indicator analyses and variety of monitoring techniques to verify pathogen log reduction.
Collapse
Affiliation(s)
- Lydia Teel
- Department of Civil and Environmental, Engineering, University of Nevada, Reno, Reno, Nevada, USA
- Truckee Meadows Water Authority, Reno, Nevada, USA
| | - Krishna Pagilla
- Department of Civil and Environmental, Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | | | - Lin Li
- Department of Civil and Environmental, Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Tatiana Guarin
- Department of Civil and Environmental, Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Laura Haak
- Department of Civil and Environmental, Engineering, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
12
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
13
|
Guarin TC, Li L, Pagilla KR. Microbial community characterization in advanced water reclamation for potable reuse. Appl Microbiol Biotechnol 2022; 106:2763-2773. [PMID: 35294588 DOI: 10.1007/s00253-022-11873-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
This study investigated the microbial community structure and composition across two treatment steps used in advanced water reclamation for potable reuse applications, namely Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF) and Ozone-Biological Activated Carbon filtration (O3/BAC). The study examined the richness, variations, and similarities of the microorganisms involved at each treatment step to better understand the role of ecology and the dynamics on unit process performance and the microbial community developed within it. The bacterial microbiomes at each treatment step were independently characterized using 16S metagenomic sequencing. Combining both treatment steps, a total of 3801 species were detected. From the total species detected, 38% and 98% were identified at CFCGMF and O3/BAC, respectively. The most abundant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes in both treatment steps. The identified species were classified based on their preferences to free-living style (59%) vs attached-living style (22%) showing a relatively low richness in the BAC media, but higher diversities. At the taxonomic class level, Betaproteobacteria was the predominant in both system processes. Additionally, a list of eight genera were identified as potential bacterial pathogens present in both process effluents. They are Aeromonas, Clostridium, Enterobacter, Escherichia, Flavobacterium, Legionella, Mycobacterium, and Pseudomonas. CFCGMF effluent yielded less pathogenic bacteria than both the ozone and BAC filter effluent from the O3/BAC process unit; their relative abundance accounted for about 2% and 8% for CFCGMF and O3/BAC, respectively. Detailed studies to characterize the microbial communities are crucial in interpreting the mechanisms and synergies between processes performance and microorganisms by identifying the needs and best practices to ensure public health protection. Key points • Microbial communities of two treatment processes are characterized using 16S rRNA sequencing. • Organisms that can tolerate ozone and form biofilms define microbial community in subsequent biofilters. • In relatively low abundances, potential pathogenic bacteria are detected in the treated water.
Collapse
Affiliation(s)
- Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0258, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0258, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0258, USA.
| |
Collapse
|
14
|
Hogard S, Salazar-Benites G, Pearce R, Nading T, Schimmoller L, Wilson C, Heisig-Mitchell J, Bott C. Demonstration-scale evaluation of ozone-biofiltration-granular activated carbon advanced water treatment for managed aquifer recharge. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1157-1172. [PMID: 33522033 DOI: 10.1002/wer.1525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The Sustainable Water Initiative for Tomorrow (SWIFT) program is the effort of the Hampton Roads Sanitation District to implement indirect potable reuse to recharge the depleted Potomac Aquifer. This initiative is being demonstrated at the 1-MGD SWIFT Research Center with a treatment train including coagulation/flocculation/sedimentation (floc/sed), ozonation, biofiltration (BAF), granular activated carbon (GAC) adsorption, and UV disinfection, followed by managed aquifer recharge. Bulk total organic carbon (TOC) removal occurred via multiple treatment barriers including, floc/sed (26% removal), ozone/BAF (30% removal), and adsorption by GAC. BAF acclimation was observed during the first months of plant operation which coincided with the establishment of biological nitrification and dissolved metal removal. Bromate formation during ozonation was efficiently controlled below 10 µg/L using preformed monochloramine and preoxidation with free chlorine. N-nitrosodimethylamine (NDMA) was formed at an average concentration of 53 ng/L post-ozonation and was removed >70% by the BAFs after several months of operation. Contaminants of emerging concern were removed by multiple treatment barriers including oxidation, biological degradation, and adsorption. The breakthrough of these contaminants and bulk TOC will likely determine the replacement interval of GAC. The ozone/BAC/GAC treatment process was shown to meet all defined treatment goals for managed aquifer recharge. PRACTITIONER POINTS: Floc/sed, biofiltration, and GAC adsorption provide important barriers in carbon-based treatment trains for bulk TOC and trace organic contaminant removal. Biofilter acclimation was observed during the first three months of operation in each operating period as evidenced by the establishment of nitrification. Bromate was effectively controlled during ozonation of a high bromide water with monochloramine doses of 3-5 mg/L. NDMA was formed at an average concentration of 53 ng/L by ozonation and complete removal was achieved by BAFs after several months of biological acclimation. An average 25% removal of 1,4-dioxane was achieved via oxidation by hydroxyl radicals during ozonation.
Collapse
Affiliation(s)
- Samantha Hogard
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, USA
| | | | - Robert Pearce
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, USA
| | - Tyler Nading
- Jacobs Engineering Group, Inc., Englewood, CO, USA
| | | | | | | | - Charles Bott
- Hampton Roads Sanitation District (HRSD), Virginia Beach, VA, USA
| |
Collapse
|
15
|
Jahan BN, Li L, Pagilla KR. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. CHEMOSPHERE 2021; 266:128964. [PMID: 33250222 DOI: 10.1016/j.chemosphere.2020.128964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Disinfection in water treatment and reclamation systems eliminates the potential health risks associated with waterborne pathogens, however it may produce disinfection by-products (DBPs) harmful to human health. Potentially carcinogenic bromate is a DBP formed during the ozonation of bromide-containing waters. To mitigate the problem of bromate formation, different physical/chemical or biological reduction methods of bromate have been investigated. Until now, adsorption-based physical method has proven to be more effective than chemical methods in potable water treatment. Though several studies on biological reduction methods have been carried out in a variety of bioreactor systems, such as in biologically active carbon filters and denitrifying bioreactors, the microbiological mechanisms or biochemical pathways of bromate minimization have not been clearly determined to date. Genetic analysis could provide a broader picture of microorganisms involved in bromate reduction which might show cometabolic or respiratory pathways, and affirm the synergy functions between different contributing groups. The hypothesis established from the diffusion coefficients of different electron donor and acceptors, illustrates that some microorganisms preferring bromate over oxygen contain specific enzymes which lower the activation energy required for bromate reduction. In addition, considering microbial bromate reduction as an effective treatment strategy; field scale investigations are required to observe quantitative correlations of various influencing parameters such as pH, ozone dose, additives or constituents such as ammonia, hydrogen peroxide, and/or chloramine, dissolved organic carbon levels, dissolved oxygen gradient within biofilm, and empty bed contact time on bromate removal or reduction.
Collapse
Affiliation(s)
- Begum Nazia Jahan
- Graduate Research Assistant, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Lin Li
- Post-Doctoral Researcher, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Krishna R Pagilla
- Chair, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA.
| |
Collapse
|
16
|
Vaidya R, Wilson CA, Salazar-Benites G, Pruden A, Bott C. Factors affecting removal of NDMA in an ozone-biofiltration process for water reuse. CHEMOSPHERE 2021; 264:128333. [PMID: 33011478 DOI: 10.1016/j.chemosphere.2020.128333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosodimethylamine (NDMA) is a carcinogen and a disinfection byproduct that is formed by ozone and combined chlorine. Various factors affecting NDMA formation and removal were examined at pilot-scale for a treatment train consisting of ozone, biologically-active carbon (BAC) filtration, and granular activated carbon (GAC) adsorption applied to two distinct feed waters. High concentrations of ozone and monochloramine were added to the influent, demonstrating that ozone removed monochloramine precursors of NDMA. Further, longer empty bed contact times (EBCTs) of 10 min for BAC and 10 and 20 min for GAC removed NDMA to <10 ng/L for both feed waters. NDMA removal by the BAC process was most favorable >22 °C, presumably due to elevated microbial activity. A monochloramine residual of 3 mg/L-Cl2 in the BAC influent reduced NDMA removal in the 5 min EBCT BAC from 79% to 36% and in the 10 min EBCT BAC from 88.5% to 73.7%. The absence of ozone in the treatment process significantly reduced NDMA formed post ozone, but decreased NDMA removal in BAC, probably due to lower NDMA concentration in the BAC influent. Finally, adding 5 mg/L of allylthiourea, an inhibitor of ammonia-oxidizing bacteria, indicated that removal mechanisms for ammonia and NDMA are distinct. However, nitrification is still a good indicator for NDMA biodegradation potential, because nitrifying bacteria appear to flourish under similar EBCT, temperature. and monochloramine residual conditions during BAC filtration.
Collapse
Affiliation(s)
- Ramola Vaidya
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Christopher A Wilson
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| | | | - Amy Pruden
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Charles Bott
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| |
Collapse
|
17
|
Disinfection byproducts in potable reuse. ANALYSIS AND FORMATION OF DISINFECTION BYPRODUCTS IN DRINKING WATER 2021. [DOI: 10.1016/bs.coac.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|