1
|
Li X, Bond T, Tan X, Yang H, Chen Y, Jin B, Chen B. Dissolved inorganic nitrogen as an overlooked precursor of nitrogenous disinfection byproducts - A critical review. WATER RESEARCH 2025; 268:122654. [PMID: 39490092 DOI: 10.1016/j.watres.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Aquatic nitrogenous compounds can be classified as dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN), including ammonia, nitrite, nitrate, and inorganic chloramines. The occurrence of nitrogenous disinfection byproducts (N-DBPs) in water, such as haloacetonitriles (HANs), halonitromethanes (HNMs), haloacaetamides (HAcAms), and nitrosamines (NAs), has attracted considerable attention due to their higher toxicity than regulated carbonaceous analogues. While numerous studies have investigated the contributions of DON to N-DBP formation, relatively fewer studies have explored DIN as N-DBP precursors, although DINs are sometimes evaluated as influencing factors. Through a literature review and data mining, this study delves into the existing body of evidence that analyze the contributions of different forms of DIN to N-DBP generation. The results showed that ammonia and nitrite can enhance trichloronitromethane (TCNM) and nitrodimethylamine (NDMA) formation in conventional chlorination and chloramination processes, nitrate can promote HNM formation in ultraviolet-based processes, and monochloramine can increase HAN, HAcAm, HNM, and NDMA formation in most disinfection scenarios. Notably, some experiments demonstrated that the yields of dichloroacetonitrile (DCAN) and TCNM can be higher from reactions involving nitrogen-free organic precursors and DIN than those involving DON and nitrogen-free disinfectant, suggesting that the relative importance of DON and DIN in forming N-DBP in real water remains unresolved. These insights thus underscore DIN as a non-negligible precursor in N-DBP formation and call for more attention to water management strategies for DIN.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xiaoyu Tan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bingbing Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zhang X, Zhang X, Li H, Ao X, Sun W, Li Z. Reactive Oxygen Species Generated in Situ During Carbamazepine Photodegradation at 222 nm Far-UVC: Unexpected Role of H 2O Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19070-19079. [PMID: 39382092 DOI: 10.1021/acs.est.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
When 222 nm far-UVC is used to drive AOPs, photolysis emerges as a critical pathway for the degradation of numerous organic micropollutants (OMPs). However, the photodegradation mechanisms of the asymmetrically polarized OMPs at 222 nm remain unclear, potentially posing a knowledge barrier to the applications of far-UVC. This study selected carbamazepine (CBZ), a prevalent aquatic antiepileptic drug that degrades negligibly at 254 nm, to investigate its photodegradation mechanisms at 222 nm. Accelerated CBZ treatment by 222 nm far-UVC was mainly attributed to in situ ROS generation via self-sensitized photodegradation of CBZ. By quenching experiments and EPR tests, •OH radicals were identified as the major contributor to the CBZ photodegradation, whereas O2•- played a minor role. By deoxygenation and solvent exchange experiments, the H2O molecules were demonstrated to play a crucial role in deactivating the excited singlet state of CBZ (1CBZ*) at 222 nm: generating •OH radicals via electron transfer interactions with 1CBZ*. In addition, 1CBZ* could also undergo a photoionization process. The transformation products and pathways of CBZ at 222 nm were proposed, and the toxicities of CBZ's products were predicted. These findings provide valuable insights into OMPs' photolysis with 222 nm far-UVC, revealing more mechanistic details for far-UVC-driven systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xintong Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Haoxin Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
3
|
Li X, Zhai H, Luo J, Hou R. A new concern raised from algal bloom: Organic chloramines in chlorination. WATER RESEARCH 2024; 260:121894. [PMID: 38880013 DOI: 10.1016/j.watres.2024.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Algal blooms have become a significant challenge in water treatment all over the world. In chlorination of drinking water, algal organic matter (AOM) leads to the formation of organic chloramines. The objectives of this review are to comprehensively summarize and discuss the up-to-date researches on AOM-derived organic chloramines and their chemical activities and toxicity, thereby drawing attention to the potentially chemical and hygienic risks of organic chloramines. The predominant algal species in water sources varied with location and season. AOM from cyanobacteria, green algae, and diatoms are composed of diverse composition. AOM-derived amino acids take a low portion of the precursors of organic chloramines. Both experimental kinetic data and quantum chemical calculation demonstrate the preferential formation of organic chloramines in the chlorination of model compounds (amino acids and peptides). Organic chloramines are persistent in water and can transform into dichloro- and trichloro-organic chloramines, unknown low-molecular-weight organic chloramines, and nitrogenous disinfection byproducts with the excess of free chlorine. The active chlorine (Cl+) in organic chloramines can lead to the formation of chlorinated phenolic compounds. Organic chloramines influence the generation and species of radicals and subsequent products in UV disinfection. Theoretical predictions and toxicological tests suggest that organic chloramines may cause oxidative or toxic pressure to bacteria or cells. Overall, organic chloramines, as one group of high-molecular-weight disinfection byproducts, have relatively long lifetimes, moderate chemical activities, and high hygienic risks to the public. Future perspectives of organic chloramines are suggested in terms of quantitative detection methods, the precursors from various predominant algal species, chemical activities of organic chloramines, and toxicity/impact.
Collapse
Affiliation(s)
- Xinyu Li
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Jiacheng Luo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Ruixin Hou
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
4
|
Yang X, Ye L, Zhou Y, Peng J, Kong Q. Effects of pH on the triplet state dissolved organic matter induced free available chlorine decay and radical formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133268. [PMID: 38113730 DOI: 10.1016/j.jhazmat.2023.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based advanced oxidation processes. However, the effects of pH still need investigation. This work quantitatively analyzed the pH-dependent free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•) induced by 3DOM* or triplet state photosensitizer (3PS*). Upon UV irradiation at 254 nm, the decay rate of FAC by 3DOM* or 3PS* was the highest at neutral pH, while those by dark reaction of DOM and the direct photolysis of FAC were the highest at acidic conditions. This is attributed to the variation of FAC species, 3DOM* or 3PS* formation, and the reaction rate constants of FAC with 3DOM* or 3PS* at pH 5.0-10.0. 3DOM* and 3PS* formed increasingly with pH varying from 5.0 to 10.0, while their reactivity with FAC decreased due to the speciation from HOCl to OCl-. Radical formation (i.e., HO• and Cl•) from FAC reaction with 3DOM* or 3PS* occurred at all the testing pH range (5.0-10.0). This work highlighted the pH-dependent role of 3DOM* in oxidant decay and radical formation in treating DOM containing waters through oxidant photolysis. ENVIRONMENTAL IMPLICATIONS: Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based AOPs. This study revealed the effects of pH in 3DOM* induced free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•). With DOM at 3 mgC L-1, FAC decayed fastest under neutral conditions and radical formation (i.e., HO• and Cl•) was enhanced at 5.0-10.0 due to 3DOM* reaction with FAC. These results highlighted the pH-dependent role of 3DOM* in oxidant transformation and radical formation in treating DOM containing waters by AOPs based on oxidant photolysis.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Ao J, Bu L, Wu Y, Zhu S, Zhou S. Insights into the fate and properties of organic halamines during ultraviolet irradiation: Implications for drinking water safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165994. [PMID: 37536590 DOI: 10.1016/j.scitotenv.2023.165994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Organic halamines compounds present a significant threat to the safety of drinking water due to their potential toxicity and stability. While Ultraviolet (UV) disinfection is commonly used for water treatment, its specific effects on organic halamines and the underlying mechanisms remain poorly understood. In this study, we investigated eight amino acid-derived organic chlor- and bromamines as representative compounds. Our findings revealed that organic halamines have a slow hydrolysis rate (<10-3 M-1 s-1) and can persist in water for extended periods (30-2000 min). However, their disinfection efficacy against Staphylococcus aureus and their ability to degrade micropollutants like carbamazepine were found to be limited. Interestingly, under UV irradiation, the N-X bonds in organic halamines were observed to break, leading to accelerated decomposition and the generation of abundant free radicals. These free radicals synergistically facilitated the removal of micropollutants and the inactivation of pathogenic microorganisms. It is worth noting that this transformation of organic halamines during UV disinfection resulted in a slight increase in the concentrations of nitrogenous disinfection byproducts. These findings shed light on the behavior and characteristics of organic halamines during UV disinfection processes, providing crucial insights for effectively managing drinking water quality impacted by these compounds. By understanding the implications of organic halamines, we can refine water treatment strategies and ensure the safety of drinking water supplies.
Collapse
Affiliation(s)
- Jian Ao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yangtao Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Hua Z, Liang J, Wang D, Zhou Z, Fang J. Formation Mechanisms of Nitro Products from Transformation of Aliphatic Amines by UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18754-18764. [PMID: 37294018 DOI: 10.1021/acs.est.3c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Formation of nitrogenous disinfection byproducts from aliphatic amines is a widespread concern owing to the serious health risks associated with them. However, the mechanisms of transforming aliphatic amines and forming nitro products in the UV/chlorine process have rarely been discussed, which are investigated in this work. Initially, secondary amines (R1R2NH) are transformed into secondary organic chloramines (R1R2NCl) via chlorination. Subsequently, radicals, such as HO• and Cl•, are found to contribute predominantly to such transformations. The rate constants at which HO•, Cl•, and Cl2•- react with R1R2NCl are (2.4-5.1) × 109, (1.5-3.8) × 109, and (1.2-6.1) × 107 M-1 s-1, respectively. Consequently, R1R2NCl are transformed into primary amines (R1NH2/R2NH2) and chlorinated primary amines (R1NHCl/R2NHCl and R1NCl2/R2NCl2) by excess chlorine. Furthermore, primarily driven by UV photolysis, chlorinated primary amines can be transformed into nitroalkanes with conversion rates of ∼10%. Dissolved oxygen and free chlorine play crucial roles in forming nitroalkanes, and post-chlorination can further form chloronitroalkanes, such as trichloronitromethane (TCNM). Radicals are involved in forming TCNM in the UV/chlorine process. This study provides new insights into the mechanisms of transforming aliphatic amines and forming nitro products using the UV/chlorine process.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jieying Liang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ding Wang
- General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
7
|
Sheng D, Bu L, Zhu S, Wu R, Shi Z, Zhou S. Pre-oxidation coupled with charged covalent organic framework membranes for highly efficient removal of organic chloramines precursors in algae-containing water treatment. CHEMOSPHERE 2023; 333:138982. [PMID: 37207898 DOI: 10.1016/j.chemosphere.2023.138982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Organic chloramines in water would pose both chemical and microbiological risks. It is essential to remove the precursors of organic chloramine (amino acids and decomposed peptides/proteins) to limit its formation in disinfection. In our work, nanofiltration was chosen to remove organic chloramines precursors. To solve the "trade-off" effect and low rejection of small molecules in algae organic matter, we synthesized a thin film composite (TFC) nanofiltration (NF) membrane with a crumpled polyamide (PA) layer via interfacial polymerization on polyacrylonitrile (PAN) composite support loaded with covalent organic framework (COF) nanoparticles (TpPa-SO3H). The obtained NF membrane (PA-TpPa-SO3H/PAN) increased the permeance from 10.2 to 28.2 L m-2 h-1 bar-1 and the amino acid rejection from 24% to 69% compared to the control NF membrane. The addition of TpPa-SO3H nanoparticles decreased the thickness of PA layers, increased the hydrophilicity of the membrane, and increased the transition energy barrier for amino acids transferring through the membrane, which was identified by scanning electron microscope, contact angle test, and density functional theory computations, respectively. Finally, pre-oxidation coupled with PA-TpPa-SO3H/PAN membrane nanofiltration on the limitation of organic chloramines formation was evaluated. We found that the combined application of KMnO4 pre-oxidation and PA-TpPa-SO3H/PAN membranes nanofiltration in algae-containing water treatment could minimize the formation of organic chloramines in subsequent chlorination and maintain a high flux during filtration. Our work provides an effective way for algae-containing water treatment and organic chloramines control.
Collapse
Affiliation(s)
- Da Sheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Ruoxi Wu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Sheng D, Bu L, Zhu S, Deng L, Shi Z, Zhou S. Transfer organic chloramines to monochloramine using two-step chlorination: A method to inhibit N-DBPs formation in algae-containing water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130343. [PMID: 36444058 DOI: 10.1016/j.jhazmat.2022.130343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Organic chloramines formed in chlorination of algae-containing water are typical precursors of nitrogenous disinfection byproducts (N-DPBs). The objective to simultaneously enhance the removal efficiency of organic chloramines and control DBP formation remains a challenge. In this study, we report a two-step chlorination strategy for transferring organic chloramines to monochloramine based on the decomposition mechanisms of mono- and di-organic chloramines, which could limit organic chloramines formation and inhibit N-DBPs formation. We demonstrated that two-step chlorination could decrease the organic chloramines formation by nearly 50% than conventional one-step chlorination. Furthermore, two-step chlorination not only blocked the pathway that organic chloramines decomposed to nitriles, but also led to the conversion of organic chloramines to monochloramine. During two-step chlorination of algal organic matter, the organic chloramine transfer proportion decreased by 6.5% and the monochloramine transfer proportion increased by 17.0%. The N-DBP formation, especially haloacetonitriles (HANs), decreased significantly as organic nitrogen became inorganic nitrogen (monochloramine) in two-step chlorination. This work further clarified the process from algal organic matter to N-DBPs, which could expand our understanding of algae-derived organic chloramines removal and DBPs control.
Collapse
Affiliation(s)
- Da Sheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Wu Y, Qu D, Bu L, Zhu S, Zhou S. Enhanced trichloronitromethane formation during chlorine-UV treatment of nitrite-containing water by organic amines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158304. [PMID: 36030871 DOI: 10.1016/j.scitotenv.2022.158304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study explored the risk of trichloronitromethane (TCNM) formation during chlorination of the nitrite-containing water after pre-chlorination and subsequent UV irradiation (i.e., the chlorine-UV process). The competitive reaction between amino acid (AA) and NO2- for chlorine produced organic chloramine and reduced the oxidation from NO2- to NO3-, resulting in a significant enhancement of TCNM in the presence of AA (>5.52 μg L-1) as compared to the absence of AA (0.42 μg L-1). The generation of HO• during UV photolysis of organic chloramines was confirmed. Among the process parameters, pre-chlorination time (from 5 min to 30 min) had no significant effect on TCNM formation; the highest TCNM formation occurred at pH 7 (from pH 6 to pH 8); prolonged UV irradiation time (from 5 min to 30 min) and increased chlorine to AA ratio (Cl2:AA) (from 1 to 3) decreased the TCNM formation. The hydroxylated, chlorinated and nitrosated products were detected. The quantum chemical calculation results indicated the attack of NO2• was more likely to occur at the meta and para positions of benzoic acid (BZA), because of the steric hindrance of the carboxylic group in BZA to the ortho position. Based on the results of the toxicity assessment, pre-chlorination with a higher chlorine dosage could be an effective method of controlling both TCNM formation and acute toxicity. Overall, the results of this study contributed to the understanding of the TCNM formation mechanism as well as optimizing the parameters of the chlorine-UV process to reduce the risk of TCNM formation.
Collapse
Affiliation(s)
- Yangtao Wu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Dongxu Qu
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
10
|
Yao S, Ye J, Xia J, Hu Y, Zhao X, Xie J, Lin K, Cui C. Inactivation and photoreactivation of bla NDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129549. [PMID: 35868090 DOI: 10.1016/j.jhazmat.2022.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The excessive dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to a majority of clinical β-lactam antibiotics, has created a major public health problem worldwide. Herein, a blaNDM-1-carrying (plasmid encoded) super-resistant bacterium, Acinetobacter sp. CS-2, was selected to reveal its mechanisms of inactivation and photoreactivation during UV, chlorination and UV/chlorination disinfection. The inactivated CS-2 underwent a certain photoreactivation after UV and chlorination. The logistic model precisely fitted the data obtained in the photoreactivation experiments by UV treatment, with the estimated kinetic parameters Sm (0.530%-12.071%) and k2 (0.0009-0.0471). The photoreactivation of Acinetobacter sp. CS-2 was observed when treated by chlorination at a dosage of 0.5 mg/L with a survival ratio of 34.04%. UV/chlorination not only resulted in the high-efficiency reduction of CS-2 but also effectively controlled its photoreactivation with a survival ratio of 0%- 0.87%. UV/chlorination showed great advantages in causing the irreversible destruction of bacterial surface structures by making the cell membranes wrinkled and incomplete compared with UV disinfection. The singlet oxygen (1O2) generated during UV/chlorination treatment played a vital role in blaNDM-1 removal. This study proposed new insights into the mechanism of inactivation and the characteristics of photoreactivation for the super-resistant bacteria by UV, chlorination and UV/chlorination.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Ye
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuetao Zhao
- Center for Disease Control & Prevention of Xuhui, Shanghai 200237, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Hua Z, Li J, Zhou Z, Zheng S, Zhang Y, Fang J. Exploring Pathways and Mechanisms for Dichloroacetonitrile Formation from Typical Amino Compounds during UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9712-9721. [PMID: 35703371 DOI: 10.1021/acs.est.2c01495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The formation of disinfection byproducts (DBPs) during UV/chlorine treatment, especially nitrogenous DBPs, is not well understood. This study investigated the formation mechanisms for dichloroacetonitrile (DCAN) from typical amino compounds during UV/chlorine treatment. Compared to chlorination, the yields of DCAN increase by 88-240% during UV/chlorine treatment from real waters, while the yields of DCAN from amino compounds increase by 3.3-5724 times. Amino compounds with electron-withdrawing side chains show much higher DCAN formation than those with electron-donating side chains. Phenylethylamine, l- phenylalanine, and l-phenylalanyl-l-phenylalanine were selected to represent amines, amino acids, and peptides, respectively, to investigate the formation pathways for DCAN during UV/chlorine treatment. First, chlorination of amines, amino acids, and peptides rapidly forms N-chloramines via chlorine substitution. Then, UV photolysis but not radicals promotes the transformation from N-chloramines to N-chloroaldimines and then to phenylacetonitrile, with yields of 5.4, 51.0, and 19.8% from chlorinated phenylethylamine, l-phenylalanine, and l-phenylalanyl-l-phenylalanine to phenylacetonitrile, respectively. Finally, phenylacetonitrile is transformed to DCAN with conversion ratios of 14.2-25.6%, which is attributed to radical oxidation, as indicated by scavenging experiments and density functional theory calculations. This study elucidates the pathways and mechanisms for DCAN formation from typical amino compounds during UV/chlorine treatment.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junfang Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Shanshan Zheng
- Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Zhang X, Zhai J, Lei Y, Huang H, Ren P, Lambropoulou D, Yang X. Enhanced formation of trichloronitromethane precursors during UV/monochloramine treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126813. [PMID: 34399222 DOI: 10.1016/j.jhazmat.2021.126813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 05/28/2023]
Abstract
This study systematically investigates the formation of trichloronitromethane (TCNM) from 2 natural waters, 6 humic substances and 16 phenolic compounds during UV/monochloramine (UV/NH2Cl) followed by post-chloramination. Using 15N-NH2Cl as an isotope tracer, we found that 15N-TCNM accounted for 70.7-76.5% of total TCNM during UV/NH2Cl treated 2 natural waters, which was significantly higher than the proportion of 15N-TCNM in chloramination (NH2Cl alone). This is a direct evidence that NH2Cl, rather than the nitrogenous matters in waters, was the predominant nitrogen source of TCNM during UV/NH2Cl treatment. Phenol derivatives with meta-substituents and with electron-withdrawing groups facilitated the formation of TCNM precursors during UV/NH2Cl treatment. Significant correlations were found between Hammett constants (σ) of substituents and TCNM formation potentials. The formation mechanisms of TCNM were revealed using resorcinol as a representative phenolic compound. During UV/NH2Cl treatment, HO•, reactive chlorine species and reactive nitrogen species contributed to 28.1%, 29.0% and 19.4% of resorcinol degradation. Five nitro(so)-intermediates were identified as the main TCNM precursors. The formation pathways of TCNM were proposed. Alkaline pH was recommended to reduce the formation of TCNM precursors during UV/NH2Cl treatment.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Jiaxin Zhai
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huang Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Pengfei Ren
- Guangzhou Municipal Engineering Design & Research Institute CO. Ltd., Guangzhou 510275, China
| | - Dimitra Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Wang Y, Dong H, Qin W, Li J, Qiang Z. Activation of organic chloramine by UV photolysis: A non-negligible oxidant for micro-pollutant abatement and disinfection by-product formation. WATER RESEARCH 2021; 207:117795. [PMID: 34736003 DOI: 10.1016/j.watres.2021.117795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Due to the wide-presence of organic amines in natural waters, organic chloramines are commonly formed during (pre-)chlorination. With the increasing application of UV disinfection in water treatment, both the activation mechanism of organic chloramine by UV photolysis and its subsequent impact on water quality are not clear. Using sarcosine (Sar) as an amine group-containing compound, it was found that organic chloramines (i.e., Cl-Sar) would be firstly formed during chlorination even in the presence of natural organic matter. Compared with self-decay of Cl-Sar, UV photolysis accelerated Cl-Sar decomposition and induced NCl bond cleavage. Using metoprolol (MTP) as a model micro-pollutant, UV-activated Cl-Sar (UV/Cl-Sar) can accelerate micro-pollutant degradation, attributed to reactive radicals formation. HO• and Cl• were important contributors, with a total contribution of 45%‒64%. Moreover, the degradation rate of MTP by UV/Cl-Sar was pH-dependent, which monotonically increased from 0.044 to 0.065 min‒1 under pHs 5.5‒8.5. Although the activation of organic chloramine by UV could accelerate micro-pollutant degradation, UV/Cl-Sar treatment could also enhance disinfection by-products formation. Trichloromethane (TCM) formation was observed during MTP degradation by UV/Cl-Sar. After post-chlorination, TCM, 1,1-dichloropropanone, 1,1,1-trichloropropanone, and dichloroacetonitrile were detected. Their individual and total concentrations were all positively proportional to UV/Cl-Sar treatment time. The total concentration with 30 min treatment (66.93 μg L‒1) was about 2.3 times that with 1 min treatment (28.76 μg L‒1). Finally, the accelerated effect was verified with Cl-glycine and Cl-alanine. It is expected to unravel the non-negligible role of organic chloramine on water quality during UV disinfection.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlei Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|