1
|
Gu M, Li M, Gao Y, Ding H, Liang S, Huang X. Pivotal influence of solution chemistry on electrosorption-enhanced membrane filtration performance: Implication for study of electrified membrane processes. WATER RESEARCH 2025; 279:123434. [PMID: 40054279 DOI: 10.1016/j.watres.2025.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
Electrified membrane separation exhibits a multitude of intriguing qualities coveted for next-generation water purification technologies. For practical wastewater treatment scenarios, integrated electrified ultrafiltration (EUF) enables simultaneous enhancement in membrane fouling inhibition, pollutant rejection, and desalination efficiency. Elucidating the complex mechanism of the influence of solution chemistry on the efficiency of EUF treatment is one of the most crucial challenges dominating its further application. However, relevant studies remain rarely reported. Here we systematically investigated the influence of solution chemistry on EUF performance based on an integrated system consisting of an electric module and a cross-flow UF unit. Various feed solutions with different recipes were prepared to reveal the impact of solution chemistry on fouling inhibition, pollutant rejection, and desalination performance. The interplay between organic pollutants and inorganic salts was examined through analyses of surface charge and particle size of organics, revealing their influence on membrane fouling and separation efficiency. The results revealed that the presence of inorganic salts (KCl and CaCl2) would significantly alter particle size, surface charge and other physicochemical properties of organic pollutants. Consequently, the fouling inhibiting effectiveness by applied electric field exhibited strong dependence on the type of organic pollutants. The sodium alginate fouling was highly voltage-responsive in salt-free conditions but less so in salt-containing solutions. Humic acid demonstrated high susceptibility to Ca2+ causing severe fouling, while bovine serum albumin exhibited relatively stable performance across ionic environments. Solution chemistry significantly affected organic pollutant retention, with KCl generally showing more pronounced negative effects than CaCl2, though increased applied voltage effectively counteracted these impacts. These findings provide valuable insights into optimizing electrified membrane processes for complex wastewater treatment applications.
Collapse
Affiliation(s)
- Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yifan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yin H, Huang L, Dai Y, Zheng Z, Li Y, Tang B, Wang X, Shi L. In-situ redox processes of electrosorption-based systems during As, Cr detoxification and recovery: mechanisms, applications and challenges. CHEMICAL ENGINEERING JOURNAL 2025; 503:157946. [DOI: 10.1016/j.cej.2024.157946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Usman M, Vahedi S, Glass S, Filiz V, Ernst M. Elucidating the Mechanism of Electro-Adsorption on Electrically Conductive Ultrafiltration Membranes via Modified Poisson-Boltzmann Equation. MEMBRANES 2024; 14:175. [PMID: 39195427 DOI: 10.3390/membranes14080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Electrically conductive membranes (ECMs) were prepared by coating porous ethylenediamine-modified polyacrylonitrile (PAN-EDA) UF membranes with an ultrathin layer of platinum (Pt) nanoparticles through magnetron sputtering. These ECMs were used in electrofiltration to study the removal of brilliant blue dye from an aqueous solution under positive electrical potentials (0-2.5 V). Negative electrical potentials (-1.0--2.5 V) were also investigated to regenerate the membrane by desorbing the dye from the ECM surface. At +0 V, the EC PAN-EDA membrane adsorbed the dye due to its intrinsic positive charge. Application of -2.0 V resulted in a maximum of 39% desorption of the dye. A modified Poisson-Boltzmann (MPB) model showed that -2.0 V created a repulsive force within the first 24 nm of the membrane matrix, which had a minimal effect on dye ions adsorbed deeper within the membrane, thus limiting the electro-desorption efficiency to 39%. Moreover, increasing positive potentials from +0.5 V to +2.5 V led to increased dye electro-adsorption by 9.5 times, from 132 mg/m2 to 1112 mg/m2 at pH 8 (equivalent to the membrane's isoelectric point). The MBP simulations demonstrated that increasing electro-adsorption loadings are related to increasing attractive force, indicating electro-adsorption induced by attractive force is the dominant mechanism and the role of other mechanisms (e.g., electrochemical oxidation) is excluded. At pH 5, electro-adsorption further increased to 1390 mg/m2, likely due to the additional positive charge of the membrane (zeta potential = 9.2 mV) compared to pH 8. At pH 8, complete desorption of the dye from the ECM surface was achieved with a significant repulsive force at -2.0 V. However, as pH decreased from 8 to 5, the desorption efficiency decreased by 3.9% due to the membrane's positive charge. These findings help elucidate the mechanisms of electro-adsorption and desorption on ECMs using dye as a model for organic compounds like humic acids.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Shahrokh Vahedi
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| | - Sarah Glass
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volkan Filiz
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Mathias Ernst
- Institute of Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
| |
Collapse
|
4
|
Zhang W, Chew NGP, Coronell O. Facile Synthesis of Electrically Conductive Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:1135-1141. [PMID: 38144434 PMCID: PMC10735243 DOI: 10.1021/acs.estlett.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
A facile and effective strategy that can be used to fabricate electrically conductive membranes (ECMs) of diverse filtration performance (i.e., water productivity and solute rejection) is not available yet. Herein, we report a facile method that enables the fabrication of ECMs of a broad performance range. The method is based on the use of polyethylenimine (PEI), glutaraldehyde, and any of a diverse set of conductive materials to cast an electrically conductive layer atop any of a diverse set of substrates (i.e., from microfiltration to reverse osmosis membranes). We developed the reported ECM fabrication method using graphite as the conductive material and PVDF membranes as substrates. We demonstrate that graphite-PVDF ECMs were stable and electrically conductive and could be successfully used for solute filtration and electrochemical degradation. We also confirmed that the PEI/glutaraldehyde-based ECM fabrication method is suitable for conductive materials other than graphite, including carbon nanotubes, reduced graphene oxide, activated charcoal, and silver nanoparticles. Compared with the substrates used for their fabrication, ECMs showed low electrical sheet resistances that varied with conductive material, increased solute rejection, and reduced water permeance. Taken together, this work presents a promising general strategy for the fabrication of ECMs for environmental applications from diverse substrates and conductive materials.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Yin H, Liu L, Ma J, Zhang C, Qiu G. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. WATER RESEARCH 2023; 246:120734. [PMID: 37862875 DOI: 10.1016/j.watres.2023.120734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 μg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
6
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Song B, Zhi Z, Zhou Q, Wu D, Yu L, Gong F, Yin Y, Meng F, Li C, Chen Z, Song M. Enhanced arsenic removal by reusable hexagonal CeO 2/Fe 2O 3 nanosheets with exposed (0001) facet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157490. [PMID: 35870585 DOI: 10.1016/j.scitotenv.2022.157490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Arsenite in wastewater has caused increasing concern because of high toxicity and mobility. Iron oxides are widely available and regarded as effective adsorbents for arsenic. However, conventional iron oxides usually are only effective for arsenate (As(V)) adsorption by complexation, but not for As(III) adsorption because of their poor catalytic oxidation activities, which greatly limits arsenic removal efficiency. In this study, a uniform hexagonal FeCe bimetal oxide nanosheets (Fe0.21Ce0.29O) enclosed by high active (0001) planes was synthesized by a solvothermal method to improve the catalytic activity of Fe2O3. The experimental results showed that adsorption capacity of Fe0.21Ce0.29O reached 61.1 mg/g for arsenic and 70 % of that at equilibrium was achieved in <10 min. Based on characterization analyses and density functional theory simulation, the new insight in oxidation and complexation mechanism of arsenic was proposed. Firstly, As(III) was adsorbed to adsorbent surface by forming stable structure of Ce-O-As or Fe-O-As, and then converted into As(V) by dissolved oxygen under the catalysis of (0001) planes densely distributed on Fe2O3 and CeO2 surfaces. The formed As(V) species were bound on Fe0.21Ce0.29O surface by forming bidentate and monodentate surface complexes. Finally, the safety of As-containing solution treated with Fe0.21Ce0.29O was well proved by the zebrafish embryo developmental toxicity tests.
Collapse
Affiliation(s)
- Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zejian Zhi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qiang Zhou
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Di Wu
- College of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Ying Yin
- College of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chengming Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
8
|
Liu L, Zhang M, Suib SL, Qiu G. Rapid photooxidation and removal of As(III) from drinking water using Fe-Mn composite oxide. WATER RESEARCH 2022; 226:119297. [PMID: 36323219 DOI: 10.1016/j.watres.2022.119297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Fe-Mn composite oxide (FMO) is widely applied to the oxidation and removal of As(III) from water. However, As(III) can directly reduce manganese oxides, decreasing the oxidation capacity or reusability and thereby greatly limiting the applicability of FMO. Here, the oxidation capacity and reusability of FMO for As(III) were efficiently improved by light radiation, and the effect of typical coexisting ions (SO42- and Ca2+) on the removal of As(III) was also studied. O2•- produced from excited manganese oxide and ligand-to-metal charge transfer in iron oxide-As(III) complex enhanced As(III) oxidation and removal under light radiation. At an initial As(III) concentration of 1000 μg L-1, the total As concentration was respectively decreased to 11.5, 1.5 and 4.4 μg L-1 under darkness, UV light and sunlight at 180 min, and could be reduced to below the guideline limitation of drinking water (10 μg L-1) within 40 and 60 min under UV light and sunlight, respectively. SO42- exhibited negligible effect on As removal efficiency because FMO had obviously lower adsorption capacity and selectivity for SO42- than for As(V). The adsorption of coexisting Ca2+ on manganese oxide decreased the negative charge on the FMO surface, thereby improving As(III) adsorption and oxidation. FMO exhibited excellent reusability, and a total As removal efficiency of 99.1% was still maintained after five cycles of an adsorption-desorption process under UV light. This work elucidates the photochemical oxidation and removal mechanism of FMO for As(III), and proposes a low-cost and efficient method for the detoxification of As(III)-contaminated drinking water.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mingzhe Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Liu J, Shen L, Lin H, Huang Z, Hong H, Chen C. Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J Colloid Interface Sci 2022; 618:483-495. [PMID: 35366476 DOI: 10.1016/j.jcis.2022.03.106] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been considered as promising nanofillers to fabricate mixed matrix membranes for water treatment. However, manipulating distribution of MOFs nanoparticles in the membrane matrix remains a great challenge. In this study, UiO-66 was firstly coated by magnetic Ni via an in-situ reduction reaction, and then incorporated into polyethersulfone (PES) membrane matrix to prepare PES-Ni@UiO-66 membrane. The magnetic Ni allowed to manipulate the distribution of magnetic Ni@UiO-66 in the phase-inversion process by an external magnetic field. The hydrophilic Ni@UiO-66 can be pulled onto membrane surface by the magnetic force, endowing the prepared membrane with rather higher hydrophilicity. The prepared membrane exhibited superior water permeability with a pure water flux of 611.5 ± 19.8 L·m-2·h-1 and improved antifouling performance. Moreover, benifiting from photocatalytic activity of the exposed Ni@UiO-66 on membrane surface, the obtained PES-Ni@UiO-66 membrane demonstrated excellent photocatalytic self-cleaning ability with a flux recovery rate (FRR) higher than 95% under UV irradiation. Analyzing by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory indicated that the improved antifouling performance could be attributed to less attractive or even repulsive interaction between the prepared membrane and pollutants. This work provided valuable guidance for structural regulation and development of high-performance MOFs-based membranes for water treatment.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
10
|
Enhanced water permeability and rejection of As(III) in groundwater by nanochannels and active center formed in nanofibrillated celluloses UF membranes with ZIF-8. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|