1
|
Cao L, Sun H, Xu Z, Xu X, Shi G, Zhang J, Liang C, Li T, Liu C, Wang M, Tian S, Li E. Metagenomic and physicochemical profiling reveal microbial functions in pit mud for Jiang-Nong Jianxiang Baijiu fermentation. BMC Microbiol 2025; 25:190. [PMID: 40175903 PMCID: PMC11963406 DOI: 10.1186/s12866-025-03884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The unique flavour and quality of Baijiu, a treasure of traditional Chinese culture, has attracted increasing attention. The pit mud is a key component for forming the unique flavour styles of different Baijiu brands. Hence, conducting in-depth research on the microbial colonies present in pit mud is paramount for enhancing the intricate bouquets of Baijiu flavours. RESULTS This study conducts a comprehensive metagenomic examination of the microbial ecosystem within Chinese Jiang-Nong Jianxiang Baijiu fermentation pit mud. Within the pit mud walls, six prominent species, each accounting for more than 1% of the average relative abundance, emerged as key contributors: Lentilactobacillus buchneri, Secundilactobacillus silagincola, Clostridium tyrobutyricum, Lentilactobacillus parafarraginis, Ligilactobacillus acidipiscis, and Lactobacillus acetotolerans. Conversely, at the pit mud bases, four species surpassed this threshold: Petrimonas sp. IBARAKI, Methanosarcina barkeri, Methanofollis ethanolicus, and Proteiniphilum propionicum. Notably, the abundance of Clostridium in the pit mud walls impart superior saccharifying capabilities compared with those at the bases. The consistently high relative abundance of enzymes belonging to the glycoside hydrolases (GHs), glycosyltransferases (GTs), and carbohydrate-binding modules (CBMs) across both the pit mud walls and the bases highlight their importance in fermentation. CONCLUSIONS The microbial composition analysis results underscore the important role of pit mud microorganisms in facilitating starch saccharification, ethyl caproate and ethyl butyrate production, among other aromatic compounds. Microbes residing in the pit mud walls may be exhibited a heightened propensity for lactic acid generation, whereas those inhabiting the bases may be displayed a stronger inclination towards caproic acid production. This research serves as a valuable reference for future endeavours aimed at harnessing microbial resources to refine and optimize Baijiu fermentation methodologies.
Collapse
Affiliation(s)
- Lianbin Cao
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Hongmei Sun
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Ziyi Xu
- Zhumadian Vocational and Technical College, Zhumadian, 463000, China
| | - Xiaoxiao Xu
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Guangchuan Shi
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Jianqiang Zhang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Changli Liang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Tongbiao Li
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Chaoying Liu
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Mingcheng Wang
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Shilin Tian
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, No. 76 Kaiyuan Road, Zhumadian, 463000, China.
| |
Collapse
|
2
|
Wu Q, Deng L, Lan T, Wang H, Wang K, Zhu H, Zhou Y, Guo W. Outstanding enhancement of caproate production with microwave pyrolyzed highly reductive biochar addition. BIORESOURCE TECHNOLOGY 2024; 413:131457. [PMID: 39284373 DOI: 10.1016/j.biortech.2024.131457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
The integration of biochar into microbial Chain Elongation (CE) proves to be an effective tool of producing high-value bio-based products. This study innovatively applied biochar fabricated under microwave irradiation with carbon fiber cloth assistance into CE system. Results highlighted that microwave biochar achieved maximal CE efficiency yielding 8 g COD/L, with 3-fold increase to the blank group devoid of any biochar. Microwave biochar also obtained the highest substrate utilization rate of 94 %, while conventional biochar group recorded 90 % and the blank group was of 74 %. Mechanistic insights revealed that the reductive surface properties facilitated CE performance, which is relevant to fostering dominant genera of Parabacteroides, Bacteroides, and Macellibacteroides. By metagenomics, microwave biochar up-regulated functional genes and enzymes involved in CE process including ethanol oxidation, the reverse β-oxidation pathway, and the fatty acid biosynthesis pathway. This study effectively facilitated caproate production by utilizing a new microwave biochar preparation strategy.
Collapse
Affiliation(s)
- Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kaiming Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huacheng Zhu
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanping Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Wu B, Lin R, Gu J, Yuan H, Murphy JD. Biochar confers significant microbial resistance to ammonia toxicity in n-caproic acid production. WATER RESEARCH 2024; 266:122367. [PMID: 39243461 DOI: 10.1016/j.watres.2024.122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microbial chain elongation integrating innovative bioconversion technologies with organic waste utilization can transition current energy-intensive n-caproic acid production to sustainable circular bioeconomy systems. However, ammonia-rich waste streams, despite their suitability, pose inhibitory challenges to these bioconversion processes. Herein, biochar was employed as an additive to enhance the activity of chain elongating microbes under ammonia inhibition conditions, with an objective to detail underlying mechanisms of improvements. Biochar addition significantly improved chain elongation performance even under severe ammonia stress (exceeding 8 g N/L), increasing n-caproic acid yields by 40 % to 158 % and reducing lag times by 51 % to 90 %, compared with the best-performing group without biochar addition. The material contribution to n-caproic production reached up to 94.3 % (at 4 g N/L). These enhancements were mainly attributed to the new electron syntrophy induced by biochar, which improved electron transfer system activity and electrical conductivity of the fermentation system. This is further substantiated by increased relative abundances of the genus Sporanaerobacter, electroactive bacteria, and up-regulated direct electron transfer-related genes including conductive pili and c-type cytochrome. This study demonstrates that biochar can confer robust resilience to ammonia toxicity in functional microbes, paving a way for efficient and sustainable n-caproic acid production.
Collapse
Affiliation(s)
- Benteng Wu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China.
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
4
|
Lv Y, Ren WT, Huang Y, Wang HZ, Wu QL, Guo WQ. Upgrading soybean dreg to caproate via intermediate of lactate and mediator of biochar. BIORESOURCE TECHNOLOGY 2024; 406:130958. [PMID: 38876284 DOI: 10.1016/j.biortech.2024.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
To address the environmental hazards posed by high-yield soybean dreg (SD), a high-value strategy is firstly proposed by synthesizing caproate through chain elongation (CE). Optimized conditions for lactate-rich broth as intermediate, utilizing 50 % inoculum ratio, 40 g/L substrate concentration, and pH 5, resulting in 2.05 g/L caproate from direct fermentation. Leveraging lactate-rich broth supplemented with ethanol, caproate was optimized to 2.76 g/L under a refined electron donor to acceptor of 2:1. Furthermore, incorporating 20 g/L biochar elevated caproate production to 3.05 g/L and significantly shortened the lag phase. Mechanistic insights revealed that biochar's surface-existed quinone and hydroquinone groups exhibit potent redox characteristics, thereby facilitating electron transfer. Moreover, biochar up-regulated the abundance of key genes involved in CE process (especially fatty acids biosynthesis pathway), also enriching Lysinibacillus and Pseudomonas as an unrecognized cooperation to CE. This study paves a way for sustainable development of SD by upgrading to caproate.
Collapse
Affiliation(s)
- Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Tong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Wang Y, Guo H, Li X, Chen X, Peng L, Zhu T, Sun P, Liu Y. Peracetic acid (PAA)-based pretreatment effectively improves medium-chain fatty acids (MCFAs) production from sewage sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100355. [PMID: 38192428 PMCID: PMC10772567 DOI: 10.1016/j.ese.2023.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian, 350116, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Gu X, Sun J, Wang T, Li J, Wang H, Wang J, Wang Y. Comprehensive review of microbial production of medium-chain fatty acids from waste activated sludge and enhancement strategy. BIORESOURCE TECHNOLOGY 2024; 402:130782. [PMID: 38701982 DOI: 10.1016/j.biortech.2024.130782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microbial production of versatile applicability medium-chain fatty acids (MCFAs) (C6-C10) from waste activated sludge (WAS) provides a pioneering approach for wastewater treatment plants (WWTPs) to achieve carbon recovery. Mounting studies emerged endeavored to promote the MCFAs production from WAS while struggling with limited MCFAs production and selectivity. Herein, this review covers comprehensive introduction of the transformation process from WAS to MCFAs and elaborates the mechanisms for unsatisfactory MCFAs production. The enhancement strategies for biotransformation of WAS to MCFAs was presented. Especially, the robust performance of iron-based materials is highlighted. Furthermore, knowledge gaps are identified to outline future research directions. Recycling MCFAs from WAS presents a promising option for future WAS treatment, with iron-based materials emerging as a key regulatory strategy in advancing the application of WAS-to-MCFAs biotechnology. This review will advance the understanding of MCFAs recovery from WAS and promote sustainable resource management in WWTPs.
Collapse
Affiliation(s)
- Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Liu Y, Chen L, Duan Y, Li R, Yang Z, Liu S, Li G. Recent progress and prospects for chain elongation of transforming biomass waste into medium-chain fatty acids. CHEMOSPHERE 2024; 355:141823. [PMID: 38552798 DOI: 10.1016/j.chemosphere.2024.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Chain elongation technology utilises microorganisms in anaerobic digestion to transform waste biomass into medium-chain fatty acids that have greater economic value. This innovative technology expands upon traditional anaerobic digestion methods, requiring abundant substrates that serve as electron donors and acceptors, and inoculating microorganisms with chain elongation functions. While this process may result in the production of by-products and elicit competitive responses, toxicity suppression of microorganisms by substrates and products remains a significant obstacle to the industrialisation of chain elongation technology. This study provides a comprehensive overview of existing research on widely employed electron donors and their synthetic reactions, competitive reactions, inoculum selection, toxicity inhibition of substrates and products, and increased chain elongation approaches. Additionally, it presents actionable recommendations for future research and development endeavours in this domain, intending to inspire and guide researchers in advancing the frontiers of chain elongation technology.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China.
| | - Long Chen
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Yacong Duan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| | - Guoting Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan Province, China
| |
Collapse
|
8
|
Liu T, Li J, Hao X, Meng J. Efficient caproic acid production from lignocellulosic biomass by bio-augmented mixed microorganisms. BIORESOURCE TECHNOLOGY 2024; 399:130565. [PMID: 38461870 DOI: 10.1016/j.biortech.2024.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Producing caproic acid via carboxylate platform is an environmentally-friendly approach for treating lignocellulosic agricultural waste. However, its implementation is still challenged by low product yields and selectivity. A microbiome named cellulolytic acid-producing microbiome (DCB), proficient in producing cellulolytic acid, was successfully acquired and shows promise for producing high-level caproic acid. In this study, a bioaugmentation method utilizing Clostridium kluyveri is proposed to enhance caproic acid yield of DCB using rice straw. With exogenous ethanol, bioaugmentation with Clostridium kluyveri significantly improved the caproic acid concentration and selectivity by 7 times and 4.5 times, achieving 12.9 g/L and 55.1 %, respectively. The addition of Clostridium kluyveri introduced reverse β-oxidation pathway, a more efficient caproic acid production pathway. Meanwhile, bioaugmentation enriched the bacteria proficient in degrading straw and producing short-chain fatty acids, providing more substrates for caproic acid production. This study provides potential bioaugmentation strategies for optimizing caproic acid yield from lignocellulosic biomass.
Collapse
Affiliation(s)
- Tianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Hao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Deng M, Hu X, Zhang Y, Zhang X, Ni H, Fu D, Chi L. Illuminating the Characteristics and Assembly of Prokaryotic Communities across a pH Gradient in Pit Muds for the Production of Chinese Strong-Flavor Baijiu. Foods 2024; 13:1196. [PMID: 38672869 PMCID: PMC11048939 DOI: 10.3390/foods13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Pit mud (PM), as an important source of microorganisms, is necessary for Chinese strong-flavor baijiu (CSFB) production. Although it has been revealed that the PM prokaryotic community diversities are influenced by its quality, product area, ages, etc., the characteristics and assembly process of the prokaryotic community in PMs across a pH gradient are still unclear. In this study, the regular changes of α- and β-diversities of the prokaryotic community across a pH gradient in PMs were revealed, which could be divided into "stable", "relatively stable", and "drastically changed" periods. A total of 27 phyla, 53 classes, and 381 genera were observed in all given samples, dominated by Firmicutes, Bacteroidetes, Proteobacteria, Lactobacillus, Caproiciproducens, Proteiniphilum, etc. Meanwhile, the complexity of the network structure of the prokaryotic microbial communities is significantly influenced by pH. The community assembly was jointly shaped by deterministic and stochastic processes, with stochastic process contributing more. This study was a specialized report on elucidating the characteristics and assembly of PM prokaryotic communities across a pH gradient, and revealed that the diversity and structure of PM prokaryotic communities could be predictable, to some degree, which could contribute to expanding our understanding of prokaryotic communities in PM.
Collapse
Affiliation(s)
- Mingdong Deng
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaolong Hu
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yong Zhang
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xinyu Zhang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710048, China
| | - Haifeng Ni
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Danyang Fu
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lei Chi
- Food Laboratory of Zhongyuan, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
10
|
Chen Z, Shi Z, Zhang Y, Shi Y, Sun M, Cui Y, Zhang S, Luo G. Metagenomic analysis towards understanding the effects of ammonia on chain elongation process for medium chain fatty acids production. BIORESOURCE TECHNOLOGY 2024; 395:130413. [PMID: 38310979 DOI: 10.1016/j.biortech.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The production of medium chain fatty acids (MCFAs) through chain elongation (CE) from organic wastes/wastewater has attracted much attention, while the effects of a common inhibitor-ammonia has not been elucidated. The mechanism of ammonia affecting CE was studied by metagenomic. The lag phase duration of caproate production was increased, and the maximum caproate production rate was decreased by 43.4 % at 4 g-N/L, as compared to 0 g-N/L. And hydrochar (HC) alleviated the inhibition of ammonia at 4 g-N/L. Metagenomic analysis indicated that ammonia induced UBA4085 sp.FDU78 as the dominant microorganism, and metabolic reconstruction revealed its potential CE ability. Furthermore, ammonia inhibited the reverse β oxidation pathway and Acetyl-CoA production pathway. The tolerance of UBA4085 sp.FDU78 to ammonia was associated with the uptake of inorganic ions, energy conservation, and synthesis of osmoprotectants. The present study provided a deep-insight on the ammonia tolerance mechanism on the CE process.
Collapse
Affiliation(s)
- Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Cui
- Shanghai Wujiaochang Environmental Technology Co., Ltd, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
11
|
Zhao S, Zhu S, Liu S, Song G, Zhao J, Liu R, Liu H, Qu J. Quorum Sensing Enhances Direct Interspecies Electron Transfer in Anaerobic Methane Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2891-2901. [PMID: 38308618 DOI: 10.1021/acs.est.3c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Direct interspecies electron transfer (DIET) provides an innovative way to achieve efficient methanogenesis, and this study proposes a new approach to upregulate the DIET pathway by enhancing quorum sensing (QS). Based on long-term reactor performance, QS enhancement achieved more vigorous methanogenesis with 98.7% COD removal efficiency. In the control system, methanogenesis failure occurred at the accumulated acetate of 7420 mg of COD/L and lowered pH of 6.04, and a much lower COD removal of 41.9% was observed. The more significant DIET in QS-enhancing system was supported by higher expression of conductive pili and the c-Cyts cytochrome secretion-related genes, resulting in 12.7- and 10.3-fold improvements. Moreover, QS enhancement also improved the energy production capability, with the increase of F-type and V/A-type ATPase expression by 6.3- and 4.2-fold, and this effect probably provided more energy for nanowires and c-Cyts cytochrome secretion. From the perspective of community structure, QS enhancement increased the abundance of Methanosaeta and Geobacter from 54.3 and 17.6% in the control to 63.0 and 33.8%, respectively. Furthermore, the expression of genes involved in carbon dioxide reduction and alcohol dehydrogenation increased by 0.6- and 7.1-fold, respectively. Taken together, this study indicates the positive effects of QS chemicals to stimulate DIET and advances the understanding of the DIET methanogenesis involved in environments such as anaerobic digesters and sediments.
Collapse
Affiliation(s)
- Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoqing Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ge Song
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Wang Y, Chen F, Guo H, Sun P, Zhu T, Horn H, Liu Y. Permanganate (PM) pretreatment improves medium-chain fatty acids production from sewage sludge: The role of PM oxidation and in-situ formed manganese dioxide. WATER RESEARCH 2024; 249:120869. [PMID: 38007897 DOI: 10.1016/j.watres.2023.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
Medium-chain fatty acids (MCFAs) production from sewage sludge is mainly restricted by the complex substrate structure, competitive metabolism and low electron transfer rate. This study proposes a novel permanganate (PM)-based strategy to promote sludge degradation and MCFAs production. Results show that PM pretreatment significantly increases MCFAs production, i.e., attaining 12,036 mg COD/L, and decreases the carbon fluxes of electron acceptor (EA)/electron donor (ED) to byproducts. Further analysis reveals that PM oxidation enhances the release and biochemical conversion of organic components via disrupting extracellular polymers (EPS) structure and reducing viable cells ratio, providing directly available EA for chain elongation (CE). The microbial activity positively correlated with MCFAs generation are apparently heightened, while the competitive metabolism of CE (i.e., methanogensis) can be completely inhibited. Accordingly, the functional bacteria related to critical bio-steps and dissimilatory manganese reduction are largely enriched. Further mechanism exploration indicates that the main contributors for sludge solubilization are 1O2 (61.6 %) and reactive manganese species (RMnS), i.e., Mn(V)/Mn(VI) (22.3 %) and Mn(III) (∼16.1 %). As the main reducing product of PM reaction, manganese dioxide (MnO2) can enable the formation of microbial aggregates, and serve as electron shuttles to facilitate the carbon fluxes to MCFAs during CE process. Overall, this strategy can achieve simultaneous hydrogen recovery, weaken competitive metabolisms and provide electron transfer accelerator for CE reactions.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Shi X, Wei W, Wu L, Huang Y, Ni BJ. Biosynthesis mechanisms of medium-chain carboxylic acids and alcohols in anaerobic microalgae fermentation regulated by pH conditions. Appl Environ Microbiol 2024; 90:e0125023. [PMID: 38112479 PMCID: PMC10807445 DOI: 10.1128/aem.01250-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.
Collapse
Affiliation(s)
- Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yuhan Huang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Cai F, Lin M, Wang L, Song C, Jin Y, Liu G, Chen C. Enhancing acidification efficiency of vegetable wastes through heat shock pretreatment and initial pH regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1079-1093. [PMID: 38030843 DOI: 10.1007/s11356-023-31025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Anaerobic digestion (AD) technology is a practical approach to alleviate severe environmental issues caused by vegetable wastes (VWs). However, its primary product is methane-rich biogas converted from the precursors (mainly volatile fatty acids, VFAs) after long fermentation periods, making traditional AD projects of low economic profits. Intervening in the methanogenesis stage artificially to produce high value-added VFAs can shorten the reaction time of the AD process and significantly improve profits, posing a promising alternative for treating VWs. Given this, this study applied heat shock (HS) pretreatment to inoculum to prevent methane production during AD and systemically investigated the effects of HS pretreatment and initial pH regulation on VFA production from VWs. The results showed that appropriate HS pretreatment effectively inhibited methane generation but promoted VFA accumulation, and VFA production was further enhanced by adjusting the initial pH to 8.0 and 9.0. The highest total VFA concentration of 14,883 mg/L with a VFA yield of 496.1 mg/gVS, 26.98% higher than that of the untreated group, was achieved at an initial pH 8.0 with HS pretreatment of 80 °C for 1 h. Moreover, pH regulation influenced the metabolic pathway of VFA production from VWs during AD, as butyrate was the dominant product at an initial pH of 6.0, while the increased initial pH improved the acetate proportion.
Collapse
Affiliation(s)
- Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ming Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Yan Jin
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
15
|
Wang Y, Zhang Z, Wang X, Guo H, Zhu T, Ni BJ, Liu Y. Percarbonate-strengthened ferrate pretreatment for enhancing short-chain fatty acids production from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166771. [PMID: 37660812 DOI: 10.1016/j.scitotenv.2023.166771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Huo W, Ye R, Hu T, Lu W. CO 2 uptake in ethanol-driven chain elongation system: Microbial metabolic mechanisms. WATER RESEARCH 2023; 247:120810. [PMID: 37918202 DOI: 10.1016/j.watres.2023.120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
CO2 as a byproduct of organic waste/wastewater fermentation has an important impact on the carboxylate chain elongation. In this study, a semi-continuous flow reactor was used to investigate the effects of CO2 loading rates (Low = 0.5 LCO2·L-1·d-1, Medium = 1.0 LCO2·L-1·d-1, High = 2.0 LCO2·L-1·d-1) on chain elongation system Ethanol and acetate were utilized as the electron donor and electron acceptor, respectively. The results demonstrate that low loading rate of CO2 has a positive effect on chain elongation. The maximum production of caproate and CH4 were observed at a low CO2 loading rate. Caproate production reached 1.88 g COD·L-1·d-1 with a selectivity of 62.55 %, while CH4 production reached 129.7 ml/d, representing 47.4 % of the total. Metagenomic analysis showed that low loading rate of CO2 favored the enrichment of Clostridium kluyveri, with its abundance being 3.8 times higher than at of high CO2 loading rate. Metatranscriptomic analysis revealed that high CO2 loading rate induced oxidative stress in microorganisms, as evidenced by increased expression of heat shock proteins and superoxide dismutase genes. Further investigation suggested that genes associated with the reverse β-oxidation pathway, CO2 uptake pathway and hydrogenotrophic methanogenesis pathway were reduced at high CO2 loading rate. These findings provide insight into the underlying mechanisms of how CO2 affects chain elongation, and it could be a crucial reason for the poor performance of chain elongation systems with high endogenous CO2 production.
Collapse
Affiliation(s)
- Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tong Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Huo W, Ye R, Shao Y, Bao M, Stegmann R, Lu W. Enhanced ethanol-driven carboxylate chain elongation by Pt@C in simulated sequencing batch reactors: Process and mechanism. BIORESOURCE TECHNOLOGY 2023:129310. [PMID: 37315622 DOI: 10.1016/j.biortech.2023.129310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Carboxylate chain elongation can create value-added bioproducts from the organic waste. The effects of Pt@C on chain elongation and associated mechanisms were investigated in simulated sequencing batch reactors. 5.0 g/L of Pt@C greatly increased the synthesis of caproate, with an average yield of 21.5 g COD/L, which was 207.4% higher than the trial without Pt@C. Integrated metagenomic and metaproteomic analyses were used to reveal the mechanism of Pt@C-enhanced chain elongation. Pt@C enriched chain elongators by increasing the relative abundance of dominant species by 115.5%. The expression of functional genes related to chain elongation was promoted in the Pt@C trial. This study also demonstrates that Pt@C may promote overall chain elongation metabolism by enhancing CO2 uptake of Clostridium kluyveri. The study provides insights into the fundamental mechanisms of how chain elongation can perform CO2 metabolism and how it can be enhanced by Pt@C to upgrade bioproducts from organic waste streams.
Collapse
Affiliation(s)
- Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Menggang Bao
- School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Usman M, Shi Z, Cai Y, Zhang S, Luo G. Microbial insights towards understanding the role of hydrochar in enhancing phenol degradation in anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121779. [PMID: 37150345 DOI: 10.1016/j.envpol.2023.121779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Anaerobic digestion (AD) of wastewater is the most promising bioprocess for organic conversion, however, phenol is toxic and resistant to anaerobic degradation. The current study compared the effect of hydrochar and granular activated carbon (GAC) on AD of phenol at four concentrations (100 mg/L, 250 mg/L, 500 mg/L and 1000 mg/L). Results demonstrated that hydrochar significantly improved the methane production rate and reduced the lag phase at all concentrations of phenol. The methane production rate was improved by about 50% at both 100 mg/L and 250 mg/L phenol, while it was raised by >160% at 500 mg/L and 1000 mg/L phenol by hydrochar. The GAC only increased the methane production rate at 500 mg/L and 1000 mg/L due to high adsorption capacity. Further, the adsorption of phenol by hydrochar had no apparent impact on the methane production rate, even though certain amounts of phenol were adsorbed. At 500 mg/L, the amount of methane produced significantly increased, so 16S rRNA transcripts sequencing and metabolomic analysis were conducted. 16S rRNA transcripts sequencing analysis indicated that hydrochar resulted in the enrichment of syntrophic bacteria (e.g., Syntrophorhabdus &Syntrophobacter) and Methanosaeta, which might be related with direct interspecies electron transfer. Further, it was noticed that the growth of Methanobacterium was repressed at 500 mg/L phenol, while hydrochar promoted its growth. Phenol was degraded into L-tyrosine and then followed the benzoate degradation pathway for methane production as revealed by metabolomic analysis. In addition, metabolomic analysis also revealed that hydrochar promoted the degradation of all metabolites and enhanced the phenol degradation into methane.
Collapse
Affiliation(s)
- Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States.
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Ke xue Dadao 100, Zhengzhou, 450001, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
19
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
20
|
Li J, Liu H, Wu P, Zhang C, Zhang J. Quorum sensing signals stimulate biofilm formation and its electroactivity for chain elongation: System performance and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160192. [PMID: 36395854 DOI: 10.1016/j.scitotenv.2022.160192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing signals have been widely explored in microbial communities. However, the impact of chain elongation microorganisms by quorum sensing signals of acyl homoserine lactones (AHLs) is still unclear. Here, chain elongation consortia under conditions of AHLs addition were examined in microbial electrosynthesis (MES) through 16S rRNA microbial community and metatranscriptomic analyses. The research found that N-octanoyl-L-homoserine lactone (C8-HSL) increased the caproate concentration by 61.48 % as relative to the control and showed the best performance among all the tested AHLs in MES. AHLs enhanced the redox activity of cathodic electroactive biofilms (EABs), which could be due to increased attachment of electrode microorganisms and ratios of live/dead cells. Microbial community analysis showed that AHLs increased the relative abundance of Negativicutes obviously. Meanwhile, metatranscriptomic analysis revealed that C8-HSL significantly improved CoA - transferase activity and regulated valine, leucine, isoleucine biosynthesis, and carbon metabolism. Besides, C8-HSL was beneficial to the chain elongation metabolic pathways, especially the fatty acid biosynthesis (FAB) pathway. These results not only provide metabolic insights into AHLs regulating chain elongation consortia, but also propose potential strategies for speeding up the formation of MES cathodic biofilm.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu Province, PR China.
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Jie Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| |
Collapse
|
21
|
Huo W, Fu X, Bao M, Ye R, Shao Y, Liu Y, Bi J, Shi X, Lu W. Strategy of electron acceptors for ethanol-driven chain elongation from kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157492. [PMID: 35870578 DOI: 10.1016/j.scitotenv.2022.157492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
A two-phase kitchen waste (KW) fermentation was proposed in the current study to enhance medium-chain fatty acids (MCFAs) production from kitchen waste. In particular, effect of acetate to butyrate ratio (ABR) on MCFAs production was investigated which can be regulated by different pH and organic loading during the acidification phase. Medium ABR (1.00) was obtained when pH is 5.5 and organic loading is 20 g VS/L in FW acidification fermentation. Subsequent chain elongation fermentation demonstrated that the highest yield of caproate 9.67 g/L with selectivity of 79 %, and highest ethanol conversion efficiency of 1.11 was achieved in medium ABR system. Microbial community study showed that medium ABR significantly enrich the functional bacteria especially Clostridium kluyveri. The study provides a new method for chain elongation enhancement without addition of other additives in kitchen waste fermentation system and gives a guide for the regulation of the short-chain fatty acids distribution in its acidification phase.
Collapse
Affiliation(s)
- Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xindi Fu
- School of Environment, Tsinghua University, Beijing 100084, China; Everbright Environtech (China) Ltd., Nanjing 211102, China
| | - Menggang Bao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rong Ye
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanqing Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiangtao Bi
- School of Ecology and Environment, Ningxia University, Ningxia 750021, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
He J, Luo T, Shi Z, Angelidaki I, Zhang S, Luo G. Microbial shifts in anaerobic digestion towards phenol inhibition with and without hydrochar as revealed by metagenomic binning. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129718. [PMID: 35952432 DOI: 10.1016/j.jhazmat.2022.129718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The inhibition of anaerobic digestion (AD) by phenolic compounds is an obstacle to the efficient treatment of organic wastes. Besides, hydrochar produced from hydrothermal liquefaction of biomass has been previously reported to enhance AD. The present study aimed to provide deep insights into the microbial shifts at the species level to phenol (0-1.5 g/L) inhibition in AD of glucose with and without hydrochar by metagenomic analysis. Phenol higher than 1 g/L had severe inhibition on both the amount and rate of methane production in control experiments, while hydrochar significantly enhanced methane production, especially at phenol 1 g/L and 1.5 g/L. From metagenomic analysis, 78 High-quality metagenome-assembled genomes (MAGs) were obtained. Principal components analysis showed that the microbial communities were shifted when phenol concentration was increased to 0.25 g/L in control experiments and 1 g/L in hydrochar experiments. In control experiments, no MAGs involved in acetogenesis were found at phenol 1.5 g/L and Methanothrix sp.FDU243 was also inhibited. However, hydrochar resulted in the maintenance of several MAGs involved in acetogenesis and Methanothrix sp.FDU243 even at phenol 1.5 g/L, ensuring a persistent methane production. Furthermore, 6 phenol-degrading MAGs were identified, shifting dependent on the concentrations of phenol and the presence of hydrochar.
Collapse
Affiliation(s)
- Jun He
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Tao Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
23
|
Zhao W, Zhang X, Cai Y, Zhao S, Wang S. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility. BIORESOURCE TECHNOLOGY 2022; 362:127795. [PMID: 35988858 DOI: 10.1016/j.biortech.2022.127795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Metronidazole (MNZ), an antibiotic that is specifically used for the treatment of anaerobic infections, may inhibit anaerobic fermentation. This work was designed to understand the fate and effects of MNZ in mesophilic fermentation (MF) and thermophilic fermentation (TF), respectively. The results showed that the removal of MNZ mainly occurred via biodegradation, rather than adsorption, and that MNZ could be completely degraded by opening the imidazole ring. MFs were more strongly inhibited by MNZ than TFs. MNZ concentration increased from 0 to 25 mg/L, hydrogen yield (HY) decreased from 167.5 to 16.8 mL/g glucose (90.0% decrease), and butyrate yield almost completely disappeared in MFs, whereas in TFs, HY decreased only from 101.1 to 89.3 mL/g glucose (11.7% decrease), and ethanol yield increased by 39.8%. Illumina MiSeq sequencing analysis showed that MNZ reduced the abundance of hydrogen-producing bacteria. Furthermore, the inhibition of MNZ on anaerobic fermentation was reversible.
Collapse
Affiliation(s)
- Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
24
|
Wang Y, Hou J, Guo H, Zhu T, Zhang Y, Liu Y. New insight into mechanisms of ferroferric oxide enhancing medium-chain fatty acids production from waste activated sludge through anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127629. [PMID: 35850392 DOI: 10.1016/j.biortech.2022.127629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Medium chain fatty acids (MCFAs) production from waste activated sludge (WAS) is restricted by poor biodegradability of WAS and low electron transfer efficiency. Herein, a novel ferroferric oxide (Fe3O4) technique was proposed. Results indicated that the MCFAs yield and selectivity were respectively enhanced by 155.4% and 66.7% in the Fe3O4-mediated WAS. Mechanistic studies disclosed that Fe3O4 promoted substrates degradation through conducting dissimilatory iron reduction (DIR) and stimulating hydrolase activity, providing precursors for chain elongation (CE). Generally, Fe3O4 improved the key processes for MCFA production at different degrees, i.e., hydrolysis, acidification and CE. Interestingly, MCFAs yield enhancement was primarily ascribed to facilitated electron transfer rather than DIR or produced ferrous iron, which could be supported by the analyses of electrochemical properties, electron transfer system activity and morphology. Further, Fe3O4 shifted the key microorganisms in favor of MCFAs production. Overall, this strategy could improve MCFAs production, sludge dewatering and phosphorus removal, concurrently.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
25
|
Tang J, Dai K, Wang QT, Zheng SJ, Hong SD, Jianxiong Zeng R, Zhang F. Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation. BIORESOURCE TECHNOLOGY 2022; 351:126978. [PMID: 35276377 DOI: 10.1016/j.biortech.2022.126978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Caproate production from organic wastes is deemed as a novel strategy in mixed culture fermtation (MCF). However, producing caproate from natural sugar of xylose by MCF is seldom reported and the metabolic pathway is still unclear. Thus, the caproate production from xylose was investigated in this study by mesophilic MCF. The results showed that the caproate concentration from xylose (10 g/L) was 1.2 ± 0.17 g/L (equal to 2.7 gCOD/L) under pH 5.0. Dosing extra ethanol of 5 g/L could slightly increase the caproate production by ∼ 30% (i.e., 1.6 g/L). While dosing extra acetate of 5 g/L negatively affected the caproate production, which was just 0.2 g/L. The microbial analysis illustrated that genus Caproiciproducens was a main identified caproate producer, occupying over 80% of enriched mixed culture. The fatty acid biosynthesis pathway was identified via metagenomic analysis. These unexpected differences extended the understanding of caproate production from organic wastes.
Collapse
Affiliation(s)
- Jie Tang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing-Ting Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
26
|
Yin Y, Wang J. Medium-chain carboxylates production by co-fermentation of sewage sludge and macroalgae. BIORESOURCE TECHNOLOGY 2022; 347:126718. [PMID: 35032558 DOI: 10.1016/j.biortech.2022.126718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The co-fermentation of sewage sludge and macroalgae at different mixing ratios was performed for medium-chain carboxylates (MCCs) production. The results showed that MCCs production was enhanced in co-fermentation groups due to the abundant readily available organics supplied by macroalgae and the alkaline buffer capacity provided by sewage sludge. Highest MCCs concentration of 112.7 mmol C/L (25.5 mmol C/g VSadded) was obtained in the co-fermentation group with sludge/macroalgae ratio of 4:6, which was higher than MCCs produced from the mono-fermentation of sewage sludge (41.7 mmol C/L, 9.4 mmol C/g VSadded) or macroalgae (79.9 mmol C/L, 18.1 mmol C/g VSadded). Microbial analysis showed that species from genus Romboutsia, Terrisporobacter, Clostridium_sensu_stricto_12, Paraclostridium, unclassified_f_Peptostreptococcaceae and Caproiciproducens were significantly positively correlated with MCCs production. Metabolic pathways analysis demonstrated that the co-fermentation promoted the chain elongation process by stimulating the rate-limiting steps involved in the conversion of ethanol to Acetyl-CoA and circular fatty acid biosynthesis pathway.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|