1
|
Liu S, Di F, Lian Z, Wang G, Yu Q, Han D. New insights into the Fe(III)-activated peroxyacetic acid: Oxidation properties and mechanism. ENVIRONMENTAL RESEARCH 2025; 270:120912. [PMID: 39848513 DOI: 10.1016/j.envres.2025.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented. Although the reaction rate of Fe(III) with PAA was slightly slower than that of Fe(II), Fe(III) was still able to activate PAA effectively, and the degradation efficiency of RhB was comparable to that of the Fe(II)/PAA system after 30 min of reaction. Notably, the Fe(III)/PAA system demonstrated superior oxidation capacity compared to conventional oxidant systems, including Fe(III)/H2O2, Fe(III)/PDS, Fe(III)/PMS. The degradation efficiency varied significantly across different water substrates. While Cl- exhibited a certain inhibitory effect on the degradation of RhB, H2PO4- exerted a pronounced inhibitory influence, whereas NO3-, SO42- and HCO3- had negligible effects. The increase of humic acid (HA) showed a facilitating effect in the initial stage, followed by an inhibitory effect. Furthermore, mechanistic studies indicated that H2O2 in PAA solution was not effectively activated. The degradation of RhB primarily occurred through a non-radical pathway generated by PAA activation, with the contribution of reactive species (RS) in the order of FeIVO2+ > •OH > R-O• (CH3COO• and CH3COOO•). RhB degradation was achieved not only by attacking the chromophore of RhB molecules, but also the effective destruction of the stable structures such as benzene rings. This study enhances the understanding of Fe(III)-activated PAA and broadens its potential for developing and applying PAA-based AOPs.
Collapse
Affiliation(s)
- Songyun Liu
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Fei Di
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhan Lian
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Guang Wang
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qi Yu
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Donghui Han
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
2
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous catalysts for electro-Fenton degradation of cytostatic drug cytarabine. CHEMOSPHERE 2025; 370:143892. [PMID: 39638122 DOI: 10.1016/j.chemosphere.2024.143892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In the present work, a reduced graphene oxide (rGO) modified-Fe3O4 doped bifunctional carbon felt cathode (rGO-Fe3O4/CF) that is capable of generating and converting H2O2 into hydroxyl radicals (•OH) on-site was fabricated, thus removing the need for an external catalyst. In addition, an rGO-modified cathode (rGO/CF) with high H2O2 production efficiency and a heterogeneous Fenton catalyst (CNT-Fe3O4) with magnetic properties were fabricated. The study examined the degradation and mineralization of the cytostatic drug cytarabine (CYT) using two HEF configurations: (i) a bifunctional cathode rGO-Fe3O4/CF and (ii) a combination of the rGO/CF cathode with CNT-Fe3O4 catalyst. The effects of parameters such as catalyst concentration, initial pH, and applied current were studied. HPLC and ion chromatography analyses were used to identify carboxylic acids and inorganic end-products, respectively. The results show that 0.1 mM CYT was completely degraded within 18 min at an applied current of 300 mA in the HEF system with the rGO-Fe3O4/CF bifunctional cathode. Total organic carbon (TOC) analysis revealed that the bifunctional cathode system achieved 98.2% mineralization of CYT after 4 h of treatment at 300 mA. Using the rGO/CF cathode and CNT-Fe3O4 catalyst cell, total degradation of 0.1 mM CYT occurred within 7 min, and nearly total mineralization (97.3% TOC removal) was achieved at 300 mA after 4 h.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France.
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
3
|
Guo R, Zhang J, Liu J, Alfassam HE, Rudayni HA, Allam AA, Qu R, Huo Z, Zhu F. Transformation behavior and toxicity assessment of beaytlmethodeyammonNium chbride (BAC-12) disinfectant during hospital wastewater treatment. CHEMOSPHERE 2025; 370:143981. [PMID: 39694282 DOI: 10.1016/j.chemosphere.2024.143981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O3) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure-activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC50) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O3 disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jingjing Zhang
- School of Environment and Safety Engineering, North University of China, Shanxi, Taiyuan, 030051, PR China
| | - Jiaoqin Liu
- School of Environment and Safety Engineering, North University of China, Shanxi, Taiyuan, 030051, PR China
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210003, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, NO.172 Jiangsu Road, Jiangsu Nanjing 210003, PR China.
| |
Collapse
|
4
|
Yuan W, Ji G, Shi X, Sun Z, Liu C, Yu Y, Li W, Wang X, Hu H. The male reproductive toxicity after 5-Fluorouracil exposure: DNA damage, oxidative stress, and mitochondrial dysfunction in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116465. [PMID: 38749198 DOI: 10.1016/j.ecoenv.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
5-Fluorouracil (5-FU), a chemotherapeutic drug used to treat a variety of cancers, can enter the environment through different routes, causing serious public health and environmental concerns. It has been reported that 5-FU exposure adversely affects male reproductive function, and its effects on this system cannot be avoided. In this study, using western blotting and quantitative polymerase chain reaction studies, we found that 5-FU promoted testicular injury by inducing oxidative stress, which was accompanied by the inhibition of nuclear factor erythroid 2-related factor 2/antioxidant response element signaling. Accumulation of reactive oxygen species (ROS) aggravated 5-FU-mediated mitochondrial dysfunction and apoptosis in murine cell lines and testes, indicating oxidative stress and mitochondrial-dependent apoptotic signaling play crucial roles in the damage of spermatogenic cells caused. N-Acetyl-L-cysteine, an antioxidant that scavenges intracellular ROS, protected spermatogenic cells from 5-FU-induced oxidative damage and mitochondrial dysfunction, revealing the important role of ROS in testicular dysfunction caused by 5-FU. We found that 5-FU exposure induces testicular cell apoptosis through ROS-mediated mitochondria pathway in mice. In summary, our findings revealed the reproductive toxicological effect of 5-FU on mice and its mechanism, provided basic data reference for adverse ecological and human health outcomes associated with 5-FU contamination or poisoning.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaowei Shi
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chenyan Liu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yangyang Yu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenmi Li
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaoyi Wang
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|
5
|
da Cunha de Medeiros P, Nunes EA, Barcelos GRM, Perobelli JE. Genotoxicity and cytotoxicity of antineoplastic drugs at environmentally relevant concentrations after long-term exposure. Toxicol Res (Camb) 2024; 13:tfae049. [PMID: 38533178 PMCID: PMC10962016 DOI: 10.1093/toxres/tfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction 5-fluorouracil (5-FU) and methotrexate (MTX) are the antineoplastic drugs most commonly used worldwide. Considered cytotoxic, these pharmaceuticals exhibit low specificity, causing damage not only to cancer cells but also to healthy cells in organisms. After being consumed and metabolized, these drugs are excreted through urine and feces, followed by wastewater treatment. However, conventional treatments do not have the capacity to completely remove these substances, risking their introduction into freshwater systems. This could pose a risk to human health even at low concentrations. Aims Thus, the present study aimed to investigate the genotoxicity, cytotoxicity, and mutagenicity of 5-FU and MTX at environmentally relevant concentrations after a long-term exposure, using adult male rats as an experimental model. Methods Male Wistar rats (70 days old) were distributed into 4 groups (n = 10/group): control, received only vehicle; MTX, received methotrexate at 10ngL-1; 5-FU received 5-fluorouracil at 10ngL-1; and MTX + 5-FU, received a combination of MTX and 5-FU at 10ngL-1 each. The period of exposure was from postnatal day (PND) 70 to PND 160, through drinking water. After that, the animals were euthanized and the samples (liver, testis, femoral bone marrow, and peripheral blood) were obtained. Results Increased DNA fragmentation was observed in the peripheral blood, liver, and testis, altering the parameters of the tail moment and tail intensity in the Comet assay. Besides, the change in the ratio between PCE and NCE indicates bone marrow suppression. Conclusion These findings warn the adverse effects for the general population worldwide chronically exposed to these drugs at trace concentration unintentionally.
Collapse
Affiliation(s)
- P da Cunha de Medeiros
- Laboratory of Experimental Toxicology – LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos 11070-100, SP, Brazil
| | - E A Nunes
- Department of Biosciences, Laboratory of Gene-Environmental Interactions in Toxicology – GENINTOX, Universidade Federal de São Paulo, XV de novembro 195, sala 614, Santos 11.010-151, SP, Brazil
| | - G R M Barcelos
- Department of Biosciences, Laboratory of Gene-Environmental Interactions in Toxicology – GENINTOX, Universidade Federal de São Paulo, XV de novembro 195, sala 614, Santos 11.010-151, SP, Brazil
| | - J E Perobelli
- Laboratory of Experimental Toxicology – LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos 11070-100, SP, Brazil
| |
Collapse
|
6
|
Lin J, Chi L, Yuan Q, Li B, Feng M. Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168338. [PMID: 37931817 DOI: 10.1016/j.scitotenv.2023.168338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The ubiquitous existence of various pharmaceuticals in the marine environment has received global attention for their risk assessment. However, rather little is known thus far regarding the natural attenuation (e.g., photolysis)-induced product/mixture toxicity of these pharmaceuticals on marine organisms. In this study, the photodegradation behavior, product formation, and risks of two representative pharmaceuticals (i.e., ciprofloxacin, CIP; diclofenac, DCF) were explored in the simulated estuary water. It was noted that both pharmaceuticals can be completely photolyzed within 1 h, and five products of CIP and three products of DCF were identified by a high-resolution liquid chromatography-mass spectrometer. Accordingly, their photodecomposition pathways were tentatively proposed. The in silico prediction suggested that the formed transformation products maintained the persistence, bioaccumulation potential, and multi-endpoint toxic effects such as genotoxicity, developmental toxicity, and acute/chronic toxicity on different aquatic species. Particularly, the non-targeted metabolomics first elucidated that DCF and its photolytic mixtures can significantly affect the antioxidant status of marine algae (Heterosigma akashiwo), triggering oxidative stress and damage to cellular components. It is very alarming that the complete photolyzed DCF sample induced more serious oxidative stress than DCF itself, which called for more concern about the photolysis-driven ecological risks. Overall, this investigation first uncovered the overlooked but serious toxicity of the transformation products of prevalent pharmaceuticals during natural attenuation on marine species.
Collapse
Affiliation(s)
- Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Lianbao Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Yuan
- China United Engineering Corporation Limited, Hangzhou 310052, China
| | - Busu Li
- Laoshan Laboratory, Qingdao 266237, China.
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
7
|
Zhang S, Xie Y, Manoli K, Ji Y, Yu X, Feng M. Degradation of methotrexate by unactivated and solar-activated peroxymonosulfate in water: Moiety-specific reaction kinetics and transformation product-associated risks. WATER RESEARCH 2023; 246:120741. [PMID: 37864882 DOI: 10.1016/j.watres.2023.120741] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Anticancer drugs have raised worldwide concern owing to their ubiquitous occurrence and ecological risks, necessitating the development of efficient removal strategies in water and wastewater treatment. Although peroxymonosulfate (PMS) is known to be a promising chemical in water decontamination, limited information is available regarding the removal efficiency of anticancer drugs by PMS and solar/PMS systems. This study first reports the moiety-specific reaction kinetics and mechanisms of methotrexate (MTX), an anticancer drug with widespread attention, by PMS (unactivated) and solar-activated PMS in water. It was found that MTX abatement by the direct PMS oxidation followed second-order kinetics, and the pH-dependent rate constants increased from 0.4 M-1 s-1 (pH 5.0) to 1.3 M-1 s-1 (pH 8.0), with a slight decrease to 1.1 M-1 s-1 at pH 9.0. The presence of chloride and bromide exerted no obvious influence on the removal of MTX by PMS. Furthermore, the chemical reactivity of MTX and its seven substructures with different reactive species was evaluated, and the degradation contributions of the reactive species involved were quantitatively analyzed in the solar/PMS system. The product analysis suggested similar reaction pathways of MTX by PMS and solar/PMS systems. The persistence, bioaccumulation, and toxicity of the transformation products were investigated, indicating treatment-driven risks. Notably, MTX can be removed efficiently from both municipal and hospital wastewater effluents by the solar/PMS system, suggesting its great potential in wastewater treatment applications. Overall, this study systematically evaluated the elimination of MTX by the unactivated PMS and solar/PMS treatment processes in water. The obtained findings may have implications for the mechanistic understanding and development of PMS-based processes for the degradation of such micropollutants in wastewater.
Collapse
Affiliation(s)
- Shengqi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Palm EH, Chirsir P, Krier J, Thiessen PA, Zhang J, Bolton EE, Schymanski EL. ShinyTPs: Curating Transformation Products from Text Mining Results. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:865-871. [PMID: 37840815 PMCID: PMC10569035 DOI: 10.1021/acs.estlett.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Transformation product (TP) information is essential to accurately evaluate the hazards compounds pose to human health and the environment. However, information about TPs is often limited, and existing data is often not fully Findable, Accessible, Interoperable, and Reusable (FAIR). FAIRifying existing TP knowledge is a relatively easy path toward improving access to data for identification workflows and for machine-learning-based algorithms. ShinyTPs was developed to curate existing transformation information derived from text-mined data within the PubChem database. The application (available as an R package) visualizes the text-mined chemical names to facilitate the user validation of the automatically extracted reactions. ShinyTPs was applied to a case study using 436 tentatively identified compounds to prioritize TP retrieval. This resulted in the extraction of 645 reactions (associated with 496 compounds), of which 319 were not previously available in PubChem. The curated reactions were added to the PubChem Transformations library, which was used as a TP suspect list for identification of TPs using the open-source workflow patRoon. In total, 72 compounds from the library were tentatively identified, 18% of which were curated using ShinyTPs, showing that the app can help support TP identification in non-target analysis workflows.
Collapse
Affiliation(s)
- Emma H. Palm
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue
du Swing, 4367 Belvaux, Luxembourg
| | - Parviel Chirsir
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue
du Swing, 4367 Belvaux, Luxembourg
| | - Jessy Krier
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue
du Swing, 4367 Belvaux, Luxembourg
| | - Paul A. Thiessen
- National
Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health
(NIH), Bethesda, Maryland 20894, United States
| | - Jian Zhang
- National
Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health
(NIH), Bethesda, Maryland 20894, United States
| | - Evan E. Bolton
- National
Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health
(NIH), Bethesda, Maryland 20894, United States
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 Avenue
du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
9
|
Li X, Ma S, Hu Y, Zhang C, Xiao C, Shi Y, Liu J, Cheng J, Chen Y. Degradation of norfloxacin in a heterogeneous electro-Fenton like system coupled with sodium chloride as the electrolyte. CHEMICAL ENGINEERING JOURNAL 2023; 473:145202. [DOI: 10.1016/j.cej.2023.145202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
10
|
Zhang S, Chen W, Wang Y, Liu L, Jiang L, Feng M. Elucidating sulfate radical-induced oxidizing mechanisms of solid-phase pharmaceuticals: Comparison with liquid-phase reactions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:270-277. [PMID: 37729844 DOI: 10.1016/j.wasman.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
As a class of organic micropollutants of global concern, pharmaceuticals have prevalent distributions in the aqueous environment (e.g., groundwater and surface water) and solid matrices (e.g., soil, sediments, and dried sludge). Their contamination levels have been further aggravated by the annually increased production of expired drugs as emerging harmful wastes worldwide. Sulfate radicals (SO4•-)-based oxidation has attracted increasing attention for abating pharmaceuticals in the environment, whereas the transformation mechanisms of solid-phase pharmaceuticals remain unknown thus far. This investigation presented for the first time that SO4•-, individually produced by mechanical force-activated and heat-activated persulfate treatments, could effectively oxidize three model pharmaceuticals (i.e., methotrexate, sitagliptin, and salbutamol) in both solid and liquid phases. The high-resolution mass spectrometric analysis suggested their distinct transformation products formed by different phases of SO4•- oxidation. Accordingly, the SO4•--mediated mechanistic differences between the solid-phase and liquid-phase pharmaceuticals were proposed. It is noteworthy that the products from both systems were predicted with the remaining persistence, bioaccumulation, and multi-endpoint toxicity. Therefore, some post-treatment strategies need to be considered during practical applications of SO4•--based technologies in remediating different phases of micropollutants. This work has environmental implications for understanding the comparative transformation mechanisms of pharmaceuticals by SO4•- oxidation in remediating the contaminated solid and aqueous matrices.
Collapse
Affiliation(s)
- Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yatong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lixue Liu
- Yantai Eco-Environment Monitoring Center of Shandong Province, Yantai 264003, China
| | - Linke Jiang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
da Cunha de Medeiros P, Nascimento CC, Perobelli JE. Antineoplastic drugs in environmentally relevant concentrations cause endocrine disruption and testicular dysfunction in experimental conditions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104122. [PMID: 37031830 DOI: 10.1016/j.etap.2023.104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/15/2023]
Abstract
5-fluorouracil (5-FU) and methotrexate (MTX) are among the most widely consumed antineoplastic drugs worldwide. These drugs are known as emerging pollutants, once after consumption are excreted by feces and/or urine in a mixture of compounds and metabolites, entering the aquatic environment due to low efficiency in drug removal by effluent treatment plants. Considering that these substances may interact with the DNA, causing metabolic and morphological changes, leading to cell death, the present study aimed to investigate the potential impact of a long-term exposure to these antineoplastic drugs in environmentally relevant concentrations, on testicular morphophysiology of rats. Male Wistar rats (70 days old) were distributed into 4 groups (n = 10 / group): control, received only vehicle; MTX, received methotrexate at 10ngL-1 in drinking water; 5-FU received 5-fluorouracil at 10ngL-1 in drinking water; and MTX+ 5FU, received the combination of MTX and 5-FU at 10ngL-1 each. The treatment period was from postnatal day (PND)70 to PND160, when the animals were euthanized for evaluation of testicular toxicity and changes in endocrine signaling. In these experimental conditions, both drugs acted as endocrine disruptors causing cytotoxic effects in the testes of exposed rats, altering the structural pattern of seminiferous tubules and leading to oxidative stress even at environmental concentrations.
Collapse
Affiliation(s)
- Paloma da Cunha de Medeiros
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Cinthia C Nascimento
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil.
| |
Collapse
|
12
|
Jin R, Venier M, Chen Q, Yang J, Liu M, Wu Y. Amino antioxidants: A review of their environmental behavior, human exposure, and aquatic toxicity. CHEMOSPHERE 2023; 317:137913. [PMID: 36682640 DOI: 10.1016/j.chemosphere.2023.137913] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Amino antioxidants (AAOs), a suite of emerging organic contaminants, have been widely used in numerous industrial and commercial products to inhibit oxidation and corrosion. Recently, their environmental ubiquity, health risks, bioaccumulative and toxic potential have led to mounting public concern. This review summarizes the current state of knowledge on the production and usage, environmental occurrence, bioavailability, human exposure, and aquatic toxicity of representative AAOs, and provides suggestions for future research directions. Previous studies have revealed widespread distribution of many AAOs in various environmental matrixes, including air, water, sediment, dust, and biota. In addition to parent compounds, their degradation products, such as 2-anilino-5-(1,3-dimethylbutylamino)-1,4-benzoquinone (6PPD-Q) and 4-nitrodiphenylamine (4-NO2-DPA), have also been detected at high levels in multiple compartments. Dust ingestion and air inhalation are the two most well-investigated routes for human exposure to AAOs and their transformation products, while studies on other pathways (e.g., skin contact and dietary intake) still remain extremely limited. Moreover, AAO burdens in human tissue have been poorly documented. Toxicological data have shown that a few AAOs may cause teratogenic, developmental, reproductive, endocrinic, neuronic, and genetic toxicity to aquatic organisms, and the toxic capacities of degradation products differ from their precursors. Future studies should focus on elucidating AAO exposure for humans and associated health risks. Additionally, more attention should be given to AAO transformation products (particularly those quinoid derivatives possessing substantial affinity with DNA) and to the effects of complex mixtures of these chemicals.
Collapse
Affiliation(s)
- Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|
13
|
Zhang K, Ye C, Lou Y, Yu X, Feng M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co 3O 4 catalysts. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130058. [PMID: 36179619 DOI: 10.1016/j.jhazmat.2022.130058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The superior catalytic efficiency of ruthenium (Ru)-based nanocomposites in advanced oxidation processes for water decontamination has attracted accumulating attention worldwide. However, rather limited knowledge is currently available regarding their roles in activating periodate (PI), an emerging oxidant with versatile environmental applications. This study firstly delineated that Ru-supported Co3O4 (Ru/Co3O4), a typical Ru-based nanomaterial, can efficiently accomplish PI activation to eliminate multiple organic micropollutants and inactivate different pathogenic bacteria. Almost all eight micropollutants can be completely removed within 2 min of Ru/Co3O4-PI oxidation except sulfamethoxazole (SMX), which was degraded ∼70 % at 2 min with 100 % mineralization after 10 min. The excellent catalytic performance was independent of PI dosages, initial pH, and coexisting water constituents, demonstrating its prominent capability as a selective oxidation strategy. Diverse lines of evidence indicated the dominant role of single oxygen in the Ru/Co3O4-PI system, which triggered the generation of five transformation products of SMX with reduced environmental risks. Concurrently, PI was stoichiometrically converted to the eco-friendly IO3-. Additionally, Ru/Co3O4-PI system achieved 6-log inactivation of different pathogenic bacteria within 1 min, implying the feasibility of rapid water disinfection. Overall, this work demonstrated the excellent promise of Ru-based composites in PI activation for highly efficient and selective water decontamination.
Collapse
Affiliation(s)
- Kaiting Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Chengsong Ye
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Yaoyin Lou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China.
| |
Collapse
|
14
|
Lin J, Zhang K, Jiang L, Hou J, Yu X, Feng M, Ye C. Removal of chloramphenicol antibiotics in natural and engineered water systems: Review of reaction mechanisms and product toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158059. [PMID: 35985581 DOI: 10.1016/j.scitotenv.2022.158059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Chloramphenicol antibiotics are widely applied in human and veterinary medicine. They experience natural attenuation and/or chemical degradation during oxidative water treatment. However, the environmental risks posed by the transformation products of such organic contaminants remain largely unknown from the literature. As such, this review aims to summarize and analyze the elimination efficiency, reaction mechanisms, and resulting product risks of three typical chloramphenicol antibiotics (chloramphenicol, thiamphenicol, and florfenicol) from these transformation processes. The obtained results suggest that limited attenuation of these micropollutants is observed during hydrolysis, biodegradation, and photolysis. Comparatively, prominent abatement of these compounds is accomplished using advanced oxidation processes; however, efficient mineralization is still difficult given the formation of recalcitrant products. The in silico prediction on the multi-endpoint toxicity and biodegradability of different products is systematically performed. Most of the transformation products are estimated with acute and chronic aquatic toxicity, genotoxicity, and developmental toxicity. Furthermore, the overall reaction mechanisms of these contaminants induced by multiple oxidizing species are revealed. Overall, this review unveils the non-overlooked and serious secondary risks and biodegradability recalcitrance of the degradation products of chloramphenicol antibiotics using a combined experimental and theoretical method. Strategic improvements of current treatment technologies are strongly recommended for complete water decontamination.
Collapse
Affiliation(s)
- Jiang Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Linke Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Chengsong Ye
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Zhang S, Yin Q, Zhang S, Manoli K, Zhang L, Yu X, Feng M. Chlorination of methotrexate in water revisited: Deciphering the kinetics, novel reaction mechanisms, and unexpected microbial risks. WATER RESEARCH 2022; 225:119181. [PMID: 36198210 DOI: 10.1016/j.watres.2022.119181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Chlorination of a typical anticancer drug with annually ascending use and global prevalence (methotrexate, MTX) in water has been studied. In addition to the analysis of kinetics in different water/wastewater matrices, high-resolution product identification and in-depth secondary risk evaluation, which were eagerly urged in the literature, were performed. It was found that the oxidation of MTX by free available chlorine (FAC) followed first-order kinetics with respect to FAC and first-order kinetics with respect to MTX. The pH-dependent rate constants (kapp) ranged from 170.00 M-1 s-1 (pH 5.0) to 2.68 M-1 s-1 (pH 9.0). The moiety-specific kinetic analysis suggested that 6 model substructures of MTX exhibited similar reactivity to the parent compound at pH 7.0. The presence of Br- greatly promoted MTX chlorination at pH 5.0-9.0, which may be ascribed to the formation of bromine with higher reactivity than FAC. Comparatively, coexisting I- or humic acid inhibited the degradation of MTX by FAC. Notably, chlorination effectively abated MTX in different real water matrices. The liquid chromatography-high resolution mass spectrometry analysis of multiple matrix-mediated chlorinated samples indicated the generation of nine transformation products (TPs) of MTX, among which seven were identified during FAC oxidation for the first time. In addition to the reported electrophilic chlorination of MTX (the major and dominant reaction pathway), the initial attacks on the amide and tertiary amine moieties with C-N bond cleavage constitute novel reaction mechanisms. No genotoxicity was observed for MTX or chlorinated solutions thereof, whereas some TPs were estimated to show multi-endpoint aquatic toxicity and higher biodegradation recalcitrance than MTX. The chlorinated mixtures of MTX with or without Br- showed a significant ability to increase the conjugative transfer frequency of plasmid-carried antibiotic resistance genes within bacteria. Overall, this work thoroughly examines the reaction kinetics together with the matrix effects, transformation mechanisms, and secondary environmental risks of MTX chlorination.
Collapse
Affiliation(s)
- Shengqi Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Yin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kyriakos Manoli
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
16
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Removal of Per- and Polyfluoroalkyl Substances by Electron Beam and Plasma Irradiation: A Mini-Review. WATER 2022. [DOI: 10.3390/w14111684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global prevalence and environmental risks of per- and polyfluoroalkyl substances (PFASs) have caused increasing concern regarding their strategic elimination from aqueous environments. It has recently been recognized that advanced oxidation–reduction technologies (AO/RTs) exhibit superior removal performance for these ubiquitous pollutants. However, the detailed mechanisms and product risks have not been well summarized and systematically deciphered. In this mini-review article, the basic operating principles of two typical AO/RTs (electron beam and plasma irradiation) and their reported applications in the abatement of PFASs are described in detail. It is noteworthy that these reductive treatments induced remarkable defluorination efficiency of PFOA and PFOS with the generation of short-chain congeners in water. The reaction mechanisms mainly included desulfonization, decarboxylation, H/F exchange, radical cyclization, and stepwise losses of CF2 groups. Unexpectedly, partial degradation products manifested high potential in triggering acute and chronic aquatic toxicity, genotoxicity, and developmental toxicity. Additionally, high or even increased resistance to biodegradability was observed for multiple products relative to the parent chemicals. Taken together, both electron beam and plasma irradiation hold great promise in remediating PFAS-contaminated water and wastewater, while the secondary ecological risks should be taken into account during practical applications.
Collapse
|