1
|
Garazade N, Can-Güven E, Güven F, Yazici Guvenc S, Varank G. Application of machine learning algorithms for the prediction of metformin removal with hydroxyl radical-based photochemical oxidation and optimization of process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137552. [PMID: 39954435 DOI: 10.1016/j.jhazmat.2025.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
This study investigated the effectiveness of hydroxyl radical-based photochemical oxidation processes on metformin (METF) removal, and the experimental data were modeled by machine learning (ML) algorithms. Hydrogen peroxide (HP), sodium percarbonate (PC), and peracetic acid (PAA) were used as hydroxyl radicals sources. Modeling was conducted using ML algorithms with the integration of additional experiments. Under optimum conditions (UV/PC: pH 5, PC 6 mM, UV/HP: pH 3, HP 6 mM, UV/PAA: pH 9, PAA 6 mM), the METF removal efficiency was 74.1 %, 40.7 %, and 47.9 % with UV/PC, UV/HP, and UV/PAA, respectively. The scavenging experiments revealed that hydroxyl and singlet oxygen radicals were dominant in UV/PC and hydroxyl radicals were predominant in UV/HP and UV/PAA. Nitrate negatively affected UV/HP, UV/PC, and UV/PAA, whereas chlorine had a positive impact. The EE/O were 0.682, 1.75, and 1.41 kWh/L for UV/PC, UV/HP, and UV/PAA, respectively. The experimental results were successfully modeled by ML models with high R2 values and low MAE and RMSE values. XGBoost models effectively represent data with generalization by avoiding overfitting. Using ML algorithms to model hydroxyl radical-based photochemical oxidation processes is considered an effective and practical method for future research.
Collapse
Affiliation(s)
- Narmin Garazade
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| | - Emine Can-Güven
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye.
| | - Fatih Güven
- Hacettepe University, Başkent OSB Vocational School of Technical Sciences, Department of Machinery and Metal Technologies, Ankara, Türkiye
| | - Senem Yazici Guvenc
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| | - Gamze Varank
- Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul, 34220, Türkiye
| |
Collapse
|
2
|
Ren Z, Ding A, He X, Oleskowicz-Popiel P, Li G, Liang H, Ngo HH, Qiu W. New insight of surface water disinfection by Fe 2+-SPC: Important role of carbonate radical and the influence of carbonate/bicarbonate ions on free radicals balance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125345. [PMID: 40228464 DOI: 10.1016/j.jenvman.2025.125345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Waterborne viruses significantly endanger public health during water treatment. To explore green, efficient solutions, we compared Fe2+-H2O2 and Fe2+-SPC (sodium percarbonate, solid synthesis of H2O2 and Na2CO3) treatment for virus-laden water (MS2 bacteriophage as the viral model). The Fe2+-SPC system proved more effective in virus elimination at 45 μmol/L and offered sustained disinfection within 24 h. Free radicals: HO•, CO3-•, O2•- contributed 27.62 %, 23.89 %, 11.78 %, respectively to virus removal in the system. Non-radical contributions (1O2) and adsorption & coagulation were 17.87 % and 18.85 %. CO3-• with higher stability and longevity leading to superior virus elimination and prolonged disinfection. HCO3- and CO32- are crucial for producing CO3-• and can convert HO• into CO3-•. 1 μmol/L HCO3- can boost virus removal from 5.35 LRV to 5.41 LRV with 30 μmol/L Fe2+-SPC and shorten virus elimination time to 18 h. CO32- excessively converts HO• into CO3-•, disrupting the system's free radical balance due to high hydrolysis constant and reaction rate, resulting in a poor virus removal enhancement. This study provides a potentially economical method for virus-laden water treatment and explores the contribution and transformation mechanism of free radicals in the Fe2+-SPC system. It also provides insights into optimizing virus removal in the presence of HCO3- and CO32-.
Collapse
Affiliation(s)
- Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 61-131, Poznan, Poland
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
3
|
Duan C, Liu F, You J, Zhao G, Kong M, Hu X, Wang Z, Xu H. Unraveling the dual roles of dissolved organic matter on the photodegradation of aquatic contaminants: Molecular weight- and type-dependent heterogeneities. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136879. [PMID: 39694013 DOI: 10.1016/j.jhazmat.2024.136879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Dissolved organic matter (DOM) in natural waters can regulate the behaviors and fates of aquatic contaminants, while the specific effects on contaminant attenuation are highly dependent on its inherent properties [e.g., molecular weights (MW) and types]. In this study, the algae-derived organic matter (AOM) and humic acid (HA) were selected as the representative autochthonous and allochthonous DOMs, which were further fractionated into low MW (LMW, <1 kDa) and high MW (HMW, <1 kDa∼0.45 μm) fractions to evaluate the MW- and type-dependent heterogeneities in the photodegradation of sulfadiazine (SDZ). Results showed that presence of bulk AOM promoted SDZ photodegradation by 2.45 folds while those of the bulk HA inhibited SDZ photodegradation by 1.70 folds due to the higher light screening effects and phenolic antioxidant concentrations. Further analysis revealed obvious MW-dependent heterogeneities that, regardless of DOM types, the HMW-fraction always inhibited SDZ photodegradation while the LMW-fraction promoted photodegradation efficiencies owing to higher carbonyl contents and electron transfer capabilities. In addition, the MW-dependent heterogeneities within DOM samples resulted in different photodegradation pathways and Ecological Structure-Activity Relationship (ECOSAR) calculation showed that most of photodegradation products in the LMW-fraction were more ecotoxicity than the parent SDZ while those in the HMW-fraction exhibited alleviated ecotoxicity. This study indicated that the dual roles of aquatic DOMs on contaminant photodegradation were MW- and type-dependent, and detailed structural composition analysis on DOM matrix was needed for a better assessment of the behaviors and fates of contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Chongsen Duan
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jikang You
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, China
| | - Zhiyuan Wang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Huacheng Xu
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
4
|
Carena L, Bertolotti S, Minutoli V, Sarakha M, Fernandes A, Lopes A, Sordello F, Minella M, Vione D. Direct and indirect photolysis of oxolinic acid in surface waters and its inhibition by antioxidant effects. WATER RESEARCH 2025; 271:122880. [PMID: 39637690 DOI: 10.1016/j.watres.2024.122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Oxolinic acid is a quinolone antibiotic used in aquaculture to prevent and treat animal diseases. Because of its application and the large expansion of aquaculture in the latest decades, oxolinic acid enters environmental waters through the effluents of aquaculture facilities, posing concerns due to its potential adverse effects on aquatic ecosystems. It is thus important to study the fate of this antibiotic in water bodies. This work investigated the reactivity of the anionic form of oxolinic acid (OxA) by direct and indirect photolysis. The quantum yield of direct photolysis and the bimolecular rate constants of OxA reactions with reactive species photochemically produced in fresh- and seawater (i.e., HO•, CO3•-, triplet states of dissolved organic matter, 1O2, and Br2•-) were determined through steady-state irradiation experiments and laser flash photolysis measurements. Results showed that OxA photoreactivity is significant, in particular towards HO• and CO3•- radicals. However, the direct photolysis and reactions with CO3•- and the triplet states of dissolved organic matter were found to be significantly inhibited in the presence of phenol, here used as a representative compound for antioxidant dissolved organic matter, most likely because of a back-reduction process. Photochemical modeling predicted an antibiotic half-life time of some days in fresh- and seawater, showing that OxA degradation is mainly due to direct photolysis in both environments plus reactions with CO3•- (freshwater) and Br2•- (seawater).
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università di Torino, Torino, Italy.
| | - Silvia Bertolotti
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Torino, Italy; Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Viola Minutoli
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Mohamed Sarakha
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, Covilhã, Portugal
| | | | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Torino, Italy
| |
Collapse
|
5
|
Zhang T, Yang P, Ji Y, Lu J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3325-3335. [PMID: 39916582 DOI: 10.1021/acs.est.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Dissolved natural organic matter (NOM) significantly influences the performance of water treatment processes. It is generally recognized that NOM acts as a radical scavenger, thus inhibiting the degradation of organic pollutants in advanced oxidation processes (AOPs). This study examined the impacts of 8 different NOM isolates on the degradation of 4-chlorophenol (CP), a representative phenolic pollutant, in sulfate radical (SO4•-)-based AOPs. We developed an improved probe method to measure the steady-state concentration of SO4•- ([SO4•-]ss) in both the absence and presence of NOM. Results show that adding 1.00 mgC L-1 NOM resulted in only a 1.3-3.4% decrease in [SO4•-]ss. However, the apparent rate constants of CP degradation decreased by 76-88%. This discrepancy indicates that radical scavenging cannot be the primary mechanism for observed inhibition. We proposed NOM primarily acts as a reducing agent, reacting with the phenoxy radical intermediates generated from the single-electron oxidation of CP by SO4•-. Based on this hypothesis, we developed and validated a kinetic model using experimental data. The reductive capacity of NOM, as determined by the kinetic model, correlates positively with its electron-donating capacity. These findings enhance the understanding of NOM's role in SO4•--based AOPs and provide a foundation for developing strategies to mitigate its adverse effects.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Wang Y, Deng Q, Wang Y, Li P, Jin B, Liu J, Cheng P, Brigante M, D'Antuono D, Carena L, Chen H, Vione D, Gligorovski S. Reaction kinetics and molecular characterization of the compounds formed by photosensitized degradation of the plastic additive bisphenol A in the atmospheric aqueous phase. Sci Rep 2024; 14:31802. [PMID: 39738410 DOI: 10.1038/s41598-024-82865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mgC L-1. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br2•- (second-order reaction rate constant of (2.54 ± 0.09) × 108 M-1 s-1). Ultra-high resolution mass spectrometry revealed that the presence of inorganic salts (NaCl and NaBr) markedly increased the complexity of the observed CHO product compounds formed upon photosensitized degradation of BPA. The obtained results suggest that bisphenols can be efficiently removed by photosensitized reactions and generate higher number of oligomers and polyaromatic compounds in the sea surface and liquid water of marine aerosols compared to freshwaters and/or dilute cloud-water. Considering that polyaromatic compounds absorb solar actinic radiation, these results suggest that inorganic salts could significantly affect the photosensitized degradation of bisphenols and consequently influence the light-absorbing properties of marine aerosols and, ultimately, the Earth's radiative balance.
Collapse
Affiliation(s)
- Yiting Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qingxin Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peng Cheng
- Institut de Chimie de Clermont-Ferrand, CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Marcello Brigante
- Institut de Chimie de Clermont-Ferrand, CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Dario D'Antuono
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Luca Carena
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Hui Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China.
- University St. Kliment Ohridski Bitola, Boulevard 1st of May B.B, Bitola, 7000, North Macedonia.
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Gu Q, Li M, Huo Y, Zhou Y, Jiang J, Ma Y, Wen N, Wei F, He M. Theoretical evidence for a pH-dependent effect of carbonate on the degradation of sulfonamide antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124710. [PMID: 39173865 DOI: 10.1016/j.envpol.2024.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Carbonate (CO32-/HCO3-) have a significant impact on advanced oxidation processes (AOPs) by consuming reactive free radicals such as HO• to generate CO3•-. However, research on the mechanisms and kinetics of CO3•- remains limited. This study investigates the degradation mechanism and kinetics of sulfonamide antibiotics (SAs) by CO3•- through theoretical calculations. The calculation results revealed that the effect of CO3•- on SAs degradation is pH-dependent due to the dissociable sulfonamide group (-SO2NH-) of SAs in the common water treatment pH range (3-8). The main reaction type of CO3•- with both neutral and anionic molecules of SAs is single electron transfer reaction. Frontier molecular orbital theory (FMO) illustrated that deprotonation of the sulfonamide group of SAs decreases the charge density on the heterocyclic ring, facilitating the electrophilic addition of CO3•-. The second-order rate constants of the neutral and anionic molecules of SAs with CO3•- were calculated as 7.57 × 101∼1.84 × 108 and 1.81 × 107∼7.94 × 109 M-1 s-1, respectively, resulting in an increase in the apparent reaction rate constants with pH. Stepwise multiple linear regression was employed to predict reactivity with anionic sulfonamide antibiotics (SAs-). Two models with outstanding prediction and stability were developed with coefficients of determination R2 of 0.660 and 0.681, respectively. The degradation kinetics simulation indicated that in the UV/H2O2 process in the presence of carbonate, the degradation rate of SAs increased with pH. Furthermore, the contribution of CO3•- to SMX degradation increased while that of HO• decreased. This study highlights the contribution of carbonates to the micropollutant degradation in the UV/H2O2 process as the model, providing theoretical insights into the development of carbonate-based AOPs.
Collapse
Affiliation(s)
- Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Weihai Water Conservancy Affairs Service Center, Weihai, 264200, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao, 266237, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Ye Z, Shen Z, Zhang Y, Rosado-García FM, Ye J, Ji Y, Yu X, Feng M. Solar-driven environmental fate of chlorinated parabens in natural and engineered water systems. WATER RESEARCH 2024; 265:122269. [PMID: 39178595 DOI: 10.1016/j.watres.2024.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Parabens are classified as emerging contaminants in global waters, and the ubiquitous emergence of their high-risk chlorinated products generated from chlorine-based wastewater disinfection has attracted increasing attention. However, rather limited information is available on their photofate after discharging into surface waters, and their degradation behavior after solar-based engineering water treatment is unclear. Herein, the reactivity of four chlorinated parabens with different photochemically produced reactive intermediates was measured. Quantitative contribution analysis in abating such compounds showed the dominance of direct photolysis in sunlit natural freshwaters. Introducing a technical solar/peroxymonosulfate (PMS) system could greatly improve the removal of chlorinated parabens. The economic analysis suggested that chlorinated parabens exhibited a minimum value of economic input as 93.41-158.04 kWh m-3 order-1 at 0.543-0.950 mM PMS. The high-resolution mass spectrometry analysis of the degradation products suggested that dechlorination, hydroxylation, and ester chain cleavage were the dominant transformation pathways during photolysis and solar/PMS treatment. Furthermore, the in silico prediction indicated severe aquatic toxicity of certain products but enhanced biodegradability. Overall, this investigation filled a knowledge gap on the reactivity of chlorinated parabens with diverse reactive transients and their quantitative contributions to the photolysis and solar/PMS treatment of emerging micropollutants in water.
Collapse
Affiliation(s)
- Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhen Shen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yilin Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Jiawei Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Cheng S, Cui R, Zhou Y, Lei Y, Wang N, Pan Y, Yang X. The reverse-reduction effect of dissolved organic matter on the degradation of micropollutants induced by halogen radicals (Cl 2•- and Br 2•-). WATER RESEARCH 2024; 268:122720. [PMID: 39515245 DOI: 10.1016/j.watres.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Reactive halogen radicals (e.g., Cl2•- and Br2•-) greatly impact the degradation of micropollutants in natural waters and engineered water treatment systems. The ubiquitous dissolved organic matter (DOM) in real waters is known to greatly inhibit the degradation of micropollutants by reducing micropollutant's intermediate (i.e., TC•+/TC(-H)•), however, such DOM's effects on the halogen-radical-induced system have not been understood yet. The present study focuses on investigating and quantifying such inhibitory effects of DOM during Cl2•-- and Br2•--mediated process. Guanosine (Gs) was selected as a model compound. The transient spectra show that Cl2•- and Br2•- react with Gs generating intermediates (i.e., Gs•+/Gs(-H)•) via single-electron transfer. In the presence of 1.0 mgCL-1 DOM, over 70% of this oxidized Gs was reduced back to Gs. Comparing the extent of reverse-reduction inhibitory among different reaction systems, this inhibitory in Br2•- system was slightly lower than that in Cl2•- and SO4•- system, corresponding the slightly difference of inhibition factor (IF) values as SO4•- < Cl2•- < Br2•-. The reverse-reduction effect of DOM was further quantified for 19 common micropollutants. It varied significantly with IF values of 0.21-1.26 and 0.28-1.40 in Cl2•-- and Br2•--mediated process, respectively. Purines and amines generally exhibited more pronounced inhibition than phenols in both systems. A good correlation of IF values with micropollutant's reduction potential was observed, which can be applied to predict the degradation of more unstudied micropollutants. This study highlights the important role of the reverse-reduction effect of DOM on micropollutant degradation. It can significantly improve the accuracy in predicting degradation rate in advanced oxidation processes for treating water containing halides.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Rui Cui
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ni Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
10
|
Hong W, Zou J, Zhao M, Yan S, Song W. Development of a Five-Chemical-Probe Method to Determine Multiple Radicals Simultaneously in Hydroxyl and Sulfate Radical-Mediated Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5616-5626. [PMID: 38471100 DOI: 10.1021/acs.est.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO•)- and sulfate radical (SO4•-)-mediated oxidation, are attractive technologies used in water and wastewater treatments. To evaluate the treatment efficiencies of AOPs, monitoring the primary radicals (HO• and SO4•-) as well as the secondary radicals generated from the reaction of HO•/SO4•- with water matrices is necessary. Therefore, we developed a novel chemical probe method to examine five key radicals simultaneously, including HO•, SO4•-, Cl•, Cl2•-, and CO3•-. Five probes, including nitrobenzene, para-chlorobenzoic acid, benzoic acid, 2,4,6-trimethylbenzoic acid, and 2,4,6-trimethylphenol, were selected in this study. Their bimolecular reaction rate constants with diverse radicals were first calibrated under the same conditions to minimize systematic errors. Three typical AOPs (UV/H2O2, UV/S2O82-, and UV/HSO5-) were tested to obtain the radical steady-state concentrations. The effects of dissolved organic matter, Br-, and the probe concentration were inspected. Our results suggest that the five-probe method can accurately measure radicals in the HO•- and SO4•--mediated AOPs when the concentration of Br- and DOM are less than 4.0 μM and 15 mgC L-1, respectively. Overall, the five-probe method is a practical and easily accessible method to determine multiple radicals simultaneously.
Collapse
Affiliation(s)
- Wenjie Hong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Mengzhe Zhao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Um M, Fan L, Jones OAH, Roddick F. A comparative study of programs to predict direct photolysis rates in wastewater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168921. [PMID: 38040346 DOI: 10.1016/j.scitotenv.2023.168921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
A wide range of contaminants of emerging concern (CECs) are known to photodegrade in the surface layers of natural waters and wastewater systems. Computer programs such as GCSolar, ABIWAS, APEX, EXAMS and WASP model the direct photolysis rates and half-lives of CECs, usually as a function of the solar irradiance, water molar light extinction, chemical molar light absorption and reaction quantum yield. These programs have been used extensively for studies in natural water systems in the northern hemisphere. However, their applicability to wastewater treatment systems such as waste stabilisation ponds and/or southern hemisphere conditions is not well studied. Here we present a comparative review of the major software used and their potential applicability to predicting direct photolysis rates and half-lives in wastewater. The newer equivalent monochromatic wavelength, approach, which enables the approximation of polychromatic photodegradation via a monochromatic wavelength is also discussed. Current software appears to be less suitable for modelling photodegradation in wastewater systems in the southern hemisphere than the northern hemisphere as their internal databases are based on data from natural waters in the northern hemisphere. This may be because there have been few attempts to model CEC photolysis in wastewater systems, particularly in the southern hemisphere. This indicates that either new software needs to be developed, or these programs need to be updated with data on wastewater matrices and/or the southern hemisphere. We anticipate this review will promote the adaptation of these programs as tools to further the understanding CEC photodegradation in wastewater treatment plants.
Collapse
Affiliation(s)
- Michelle Um
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Oliver A H Jones
- School of Science, RMIT University, Bundoora West Campus, 71, Bundoora, Victoria 3083, Australia.
| | - Felicity Roddick
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
Liu J, Xue S, Jiang C, Zhang Z, Lin Y. Effect of dissolved organic matter on sulfachloropyridazine photolysis in liquid water and ice. WATER RESEARCH 2023; 246:120714. [PMID: 37837902 DOI: 10.1016/j.watres.2023.120714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Dissolved organic matter (DOM) is an ubiquitous component of environmental snow and ice, which can absorb light and produce reactive species (RS) and thus is of importance in ice photochemistry. The photodegradation of sulfachloropyridazine (SCP) without and with DOM present in liquid water and ice were investigated in this study. The photodegradation rate constants for SCP without DOM present was enhanced by 52.5 % in ice relative to liquid water, likely due to the enhanced role of SCP self-sensitized RS in ice. DOM significantly promoted SCP photolysis in both liquid water and ice, which was mainly attributed to roles of singlet oxygen (1O2) and triplet excited-state DOM (3DOM*) generated from DOM. 1O2 production from DOM was significantly enhanced in ice relative to liquid water. Hydroxyl radical (•OH) production from DOM in ice was similar to those in liquid water. Enhancement in 3DOM* production in ice was observed at low DOM concentrations. Suwannee River Fulvic Acid (SRFA) and Elliott Soil Humic Acid (ESHA) exhibited differences in RS production in liquid water and ice, as well as in enhancement of 1O2 and 3DOM* produced in ice relative to liquid water. DOM induced reaction pathways of SCP different from those without DOM present, and therefore affected toxicity of SCP photoproducts. There were differences in photodegradation pathways of SCP as well as in toxicity of SCP photoproducts between liquid water and ice.
Collapse
Affiliation(s)
- Jiyang Liu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Shuang Xue
- School of Environmental Science, Liaoning University, Shenyang 110036, China.
| | - Caihong Jiang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Zhaohong Zhang
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
13
|
Vione D, Saglia F, Pelazza C. Possible Effects of Changes in Carbonate Concentration and River Flow Rate on Photochemical Reactions in Temperate Aquatic Environments. Molecules 2023; 28:7072. [PMID: 37894551 PMCID: PMC10608894 DOI: 10.3390/molecules28207072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
In temperate environments, climate change could affect water pH by inducing enhanced dissolution of CaSO4 followed by biological sulphate reduction, with the potential to basify water due to H+ consumption. At the same time, increased atmospheric CO2 could enhance weathering of carbonate rocks (e.g., dolomite) and increase the total concentration of dissolved carbonate species. Both processes enhance phototransformation by the carbonate radical (CO3•-), as shown for the non-steroidal anti-inflammatory drug paracetamol, provided that the dissolved organic carbon of water does not undergo important fluctuations. Climate change could also affect hydrology, and prolonged drought periods might considerably decrease flow rates in rivers. This is a substantial problem because wastewater pollutants become less diluted and, as a result, can exert more harmful effects due to increased concentrations. At the same time, in low-flow conditions, water is also shallower and its flow velocity is decreased. Photochemical reactions become faster because shallow water is efficiently illuminated by sunlight, and they also have more time to occur because water takes longer to cover the same river stretch. As a result, photodegradation of contaminants is enhanced, which offsets lower dilution but only at a sufficient distance from the wastewater outlet; this is because photoreactions need time (which translates into space for a flowing river) to attenuate pollution.
Collapse
Affiliation(s)
- Davide Vione
- Department of Chemistry, University of Torino, Via Pietro Giuria 5, 10125 Torino, Italy; (F.S.); (C.P.)
| | | | | |
Collapse
|
14
|
Yu P, Guo Z, Wang T, Wang J, Guo Y, Zhang L. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation. WATER RESEARCH 2023; 244:120539. [PMID: 37659181 DOI: 10.1016/j.watres.2023.120539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Indomethacin (INDO) is an antipyretic and analgesic pharmaceutical that has been widely detected in the aquatic environment. Photodegradation is an essential pathway for removal of INDO in sunlit surface water, however the effect of dissolved organic matter (DOM) on its photodegradation and the ecotoxicity of photodegradation products are largely unknown. In this study, the effect of DOM on the photodegradation of INDO under both natural and simulated light irradiation was studied. The results showed that indirect photolysis is the main photodegradation pathway of INDO in presence of DOM where 3DOM* plays the most important promoting role. Compared to commercial DOM (SRNOM and SRFA), DOM extracted from local-lake water (SLDOM) promoted the photodegradation to the highest extent. Although the steady-state concentrations of 3DOM* of SRNOM and SRFA were higher than SLDOM, their inhibition effect surpassed SLDOM namely higher light screening effect and phenolic antioxidant concentrations. The photodegradation pathway in pure water is different from that in DOM system where the decarboxylation of acetic acid chain and the oxidative fracture of indole ring are the main degradation pathways. Density Functional Theory (DFT) calculation further supports the proposed degradation pathways of INDO. ECOSAR calculation showed that the toxicity of INDO photodegradation products to aquatic organisms may maintain or even exceed its parent compound. Therefore, comprehensive understanding of the impact of DOM on the photodegradation of INDO is of crucial significance for evaluating its ecological risk in the natural environment.
Collapse
Affiliation(s)
- Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuchen Guo
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Yan Y, Wei Z, Duan X, Long M, Spinney R, Dionysiou DD, Xiao R, Alvarez PJJ. Merits and Limitations of Radical vs. Nonradical Pathways in Persulfate-Based Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12153-12179. [PMID: 37535865 DOI: 10.1021/acs.est.3c05153] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Urbanization and industrialization have exerted significant adverse effects on water quality, resulting in a growing need for reliable and eco-friendly treatment technologies. Persulfate (PS)-based advanced oxidation processes (AOPs) are emerging as viable technologies to treat challenging industrial wastewaters or remediate groundwater impacted by hazardous wastes. While the generated reactive species can degrade a variety of priority organic contaminants through radical and nonradical pathways, there is a lack of systematic and in-depth comparison of these pathways for practical implementation in different treatment scenarios. Our comparative analysis of reaction rate constants for radical vs. nonradical species indicates that radical-based AOPs may achieve high removal efficiency of organic contaminants with relatively short contact time. Nonradical AOPs feature advantages with minimal water matrix interference for complex wastewater treatments. Nonradical species (e.g., singlet oxygen, high-valent metals, and surface activated PS) preferentially react with contaminants bearing electron-donating groups, allowing enhancement of degradation efficiency of known target contaminants. For byproduct formation, analytical limitations and computational chemistry applications are also considered. Finally, we propose a holistically estimated electrical energy per order of reaction (EE/O) parameter and show significantly higher energy requirements for the nonradical pathways. Overall, these critical comparisons help prioritize basic research on PS-based AOPs and inform the merits and limitations of system-specific applications.
Collapse
Affiliation(s)
- Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, United States
| |
Collapse
|
16
|
Wang H, Zhang T, Ji Y, Lu J. Photodegradation of phenylurea herbicides sensitized by norfloxacin and the influence of natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130135. [PMID: 36303339 DOI: 10.1016/j.jhazmat.2022.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The photochemical activity of fluoroquinolone antibiotics (FQs) has gained attention due to the discovery of their phototoxicity and photocarcinogenicity in clinics. This study reveals that norfloxacin (NOR) can sensitize the photodegradation of phenylurea (PU) herbicides. This is attributed to the formation of an excited triplet of norfloxacin (3NOR*) by UV-A irradiation of its quinolone chromophore, which can further react with O2 to form singlet oxygen (1O2). The second-order rate of 3NOR* with PU ranges from 1.54 × 1010 to 2.76 × 1010 M-1s-1. The steady-state concentrations of 3NOR* were calculated as (4.29-31.2)× 10-16 M at 10 μM NOR under UV365nm irradiation. Natural organic matter (NOM) inhibited the degradation of PU induced by 3NOR*. In the presence of 10 mg L-1 NOM, the pseudo-first-order rate constants (kobs,NOM) of the degradation of diuron (DIU), isoproturon (IPU), monuron (MOU), and chlorotoluron (CLU) decreased by 65%, 19%, 36%, and 62%, respectively. NOM mainly acts as a reductant which reacted with the radical intermediates of the PU generated by 3NOR*oxidation, thus reversing the oxidation. The inhibitory effect increases with increasing NOM concentration. Results of this study underscore the role of NOR as a photosensitizer in accelerating the abatement of PU pesticides in sunlit surface waters. This study significantly advances the understandings of the behavior of NOR in aquatic environments.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Teng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Li M, Yao W, Yu M, Sun C, Deng X, Chen F, Zhou L, Zheng Y. Hydrogel 3D network derived and in-situ magnetized Fe@C for activation of peroxymonosulfate to degrade ciprofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Carena L, Scozzaro A, Romagnoli M, Pazzi M, Martone L, Minero C, Minella M, Vione D. Phototransformation of the fungicide tebuconazole, and its predicted fate in sunlit surface freshwaters. CHEMOSPHERE 2022; 303:134895. [PMID: 35568219 DOI: 10.1016/j.chemosphere.2022.134895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The fungicide tebuconazole (TBCZ) is expected to undergo negligible direct photolysis in surface freshwaters, but it can be degraded by indirect photochemistry. TBCZ mainly reacts with hydroxyl radicals and, to a lesser extent, with the triplet states of chromophoric dissolved organic matter (3CDOM*). Indirect photochemistry is strongly affected by environmental conditions, and TBCZ lifetimes of about one week are expected in sunlit surface waters under favourable circumstances (shallow waters with low concentrations of dissolved organic carbon, DOC, during summer). In these cases, the time trend would follow pseudo-first order kinetics (mono-exponential decay). Under less favourable conditions, photoinduced degradation would span over a few or several months, and TBCZ phototransformation would depart from an exponential trend because of seasonally changing sunlight irradiance. The TBCZ phototransformation products should be less toxic than their parent compound,thus photodegradation has potential to decrease the environmental impact of TBCZ. Hydroxylation is a major TBCZ transformation route, due to either OH attack, or one-electron oxidation sensitised by 3CDOM*, followed by reaction of the oxidised transient with oxygen and water.
Collapse
Affiliation(s)
- Luca Carena
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Andrea Scozzaro
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Monica Romagnoli
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Pazzi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Luca Martone
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Claudio Minero
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, 10125, Torino, Italy.
| |
Collapse
|