1
|
Dai Z, Zhang Y, Dong M, Chai Y, Ren J, Wang L, Han C. Response of life-history traits, population dynamics, offspring size of Brachionus plicatilis exposure to BTBPE. ENVIRONMENTAL RESEARCH 2025; 279:121848. [PMID: 40368042 DOI: 10.1016/j.envres.2025.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
The novel brominated flame retardant 1, 2-bis (2,4,6 tribromophenoxy) ethane (BTBPE) has been widely used since the mid-1970s and detected in the aquatic environment and organisms; however, little information is available regarding its biotoxicity. In this study, the life-history parameters, transcriptomic regulation, multi-generational offspring size, and population dynamics of rotifers were determined in response to BTBPE (0, 0.01, 1, and 100 μg/L). The results showed that BTBPE (>1 μg/L) significantly increased the pre-reproductive time, shortened both reproduction periods and the lifespan, and decreased the total number of rotifer offspring. Transcriptomic analysis revealed that the expression of key genes involved in the pathways of citrate cycle, 2-oxocarboxylic acid metabolism, carbon metabolism, and propanoate metabolism was affected. Moreover, BTBPE has transgenerational effects on rotifers, the size of the F1 to F5 generations decreased significantly in response to BTBPE. Finally, the population density in the 100 μg/L BTBPE treatment group was significantly reduced by 30 % compared to the control group, suggesting that the population growth of rotifers was inhibited by BTBPE exposure. The findings of this study indicate that BTBPE has effects on the individual reproduction, population growth, offspring quality, and energy metabolism of rotifers. These findings highlighted the potential impacts of BTBPE on dominant zooplankton species, providing useful baseline information for evaluating the potential ecological risk of novel brominated flame retardant.
Collapse
Affiliation(s)
- Zhongqi Dai
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China
| | - Yu Zhang
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China
| | - Meng Dong
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China
| | - Yanchao Chai
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China
| | - Jilong Ren
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China
| | - Lei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Cui Han
- Jiangsu Province Key Laboratory for Fisheries Live Food, School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing, 210023, China.
| |
Collapse
|
2
|
Luo J, Wei S, Xie Y, Qiu J, Niu X, Luo N, Gao Y, Ji Y, An T. Unveiling novel chloramination byproducts of parabens: Electrophilic coupling mechanisms and their elevated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125885. [PMID: 39978532 DOI: 10.1016/j.envpol.2025.125885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The widespread use of chloramination as a disinfection strategy has raised concerns about the formation of harmful disinfection byproducts (DBPs), highlighting the urgent need to elucidate the underlying transformation mechanisms. In this study, we integrated non-targeted screening, organic synthesis, and quantum chemical calculations to investigate the chloramination mechanism of preservative methylparaben and assess the toxicological impacts of the resulting DBPs. In addition to chlorinated products, two novel transformation products, the coupled (C-MeP) and hydroxylated (OH-MeP) products were identified, and the structure of C-MeP was confirmed through synthesized standards. Quantum chemical calculations reveal that the formation of C-MeP is driven by electron transfer, generating radicals that promote C-C bond coupling, while OH-MeP is likely formed by an addition-hydrolysis pathway. The formation of chlorinated products occurs through electrophilic substitution, facilitated by water molecules, and may undergo coupling to form chlorinated products with a biphenyl structure. Toxicity assessments indicate that coupled products exhibit greater negative effects on the gastrointestinal and cardiovascular system compared to parent pollutant. These findings highlight the need to expand the focus of chloramination disinfection beyond traditional chlorinated DBPs, emphasizing the ecological and health implications of novel products including coupled byproducts.
Collapse
Affiliation(s)
- Jialing Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suling Wei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yufeng Xie
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junlang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Thuy TL, Hoang TD, Hoang VH, Nguyen MK. A Review on Flame Retardants in Soils: Occurrence, Environmental Impact, Health Risks, Remediation Strategies, and Future Perspectives. TOXICS 2025; 13:228. [PMID: 40137555 PMCID: PMC11946183 DOI: 10.3390/toxics13030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
As novel pollutants, flame retardants (FRs) are prone to accumulating in soil and might increase human health risks. It is advisable to emphasize the biomagnification of FRs within the terrestrial food chain, particularly concerning mammals occupying higher trophic levels. Exposure to soil particles laden with FRs may result in numerous health complications. These findings offer significant insights into FR pollutant profiles, tracing origins and recognizing health risks associated with soil samples. Reports have revealed that exposure to FRs can pose serious health risks, including neurodevelopmental impairments, endocrine system disruption, and an increased likelihood of cancer. Nanomaterials, with their high surface area and flexible properties, possess the ability to utilize light for catalytic reactions. This unique capability allows them to effectively degrade harmful contaminants, such as FRs, in soil. Additionally, biological degradation, driven by microorganisms, offers a sustainable method for breaking down these pollutants, providing an eco-friendly approach to soil remediation. These approaches, combined with optimum remediation strategies, hold great potential for effectively addressing soil contamination in the future. Further research should prioritize several key areas, including ecological behavior, contaminant monitoring, biological metabolomics, toxicity evaluation, and ecological impact assessment.
Collapse
Affiliation(s)
- Trang Le Thuy
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam;
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam;
- Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Vietnam
| | - Van-Hiep Hoang
- Hanoi—School of Interdisciplinary Sciences and Arts, Vietnam National University, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Vietnam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 22, Linh Trung Ward, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
4
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
5
|
Qiao Y, Feng C, Jin X, Yan Z, Feng W, Wang Y, Bai Y. Concentration levels and ecological risk assessment of typical organophosphate esters in representative surface waters of a megacity. ENVIRONMENTAL RESEARCH 2024; 251:118614. [PMID: 38462084 DOI: 10.1016/j.envres.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.
Collapse
Affiliation(s)
- Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Richardson SD, Manasfi T. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 2024; 96:8184-8219. [PMID: 38700487 DOI: 10.1021/acs.analchem.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for GSR, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Tarek Manasfi
- Eawag, Environmental Chemistry, Uberlandstrasse 133, Dubendorf 8600, Switzerland
| |
Collapse
|
7
|
Wang G, Li C, Liu S, Xing Z, Guo P, Hao Z, Li M, Wang H, Rong G, Liu Y. Disclosing phototransformation mechanisms of decabromodiphenyl ether (BDE-209) in different media by simulated sunlight: Implication by compound-specific stable isotope analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14980-14989. [PMID: 38286932 DOI: 10.1007/s11356-024-32203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
As one of the typical brominated flame retardants, decabromodiphenyl ether (BDE-209) has been widely detected in environment. However, scarce information was available on BDE-209 phototransformation mechanisms in various media. In this study, compound-specific stable isotope analysis was first applied to investigate BDE-209 phototransformation in n-hexane, MeOH:H2O (v:v, 8:2), and simulated seawater by simulated sunlight. BDE-209 transformation followed pseudo-first-order kinetic, with degradation rate in the following of n-hexane (2.66 × 10-3 min-1) > simulated seawater (1.83 × 10-3 min-1) > MeOH:H2O (1.41 × 10-3 min-1). Pronounced carbon isotope fractionation was first observed for BDE-209 phototransformation, with carbon isotope enrichment factors (εC) of -1.01 ± 0.14‰, -1.77 ± 0.26‰, -2.94 ± 0.38‰ in n-hexane, MeOH:H2O and simulated seawater, respectively. Combination analysis of products and stable carbon isotope, debromination with cleavage of C-Br bonds as rate-limiting step was the main mechanism for BDE-209 phototransformation in n-hexane, debromination and hydroxylation with cleavage of C-Br bonds as rate-limiting steps in MeOH:H2O, and debromination, hydroxylation and chlorination in simulated seawater. This present study confirmed that stable carbon isotope analysis was a robust method to discovery the underlying phototransformation mechanisms of BDE-209 in various solutions.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China.
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Zixuan Hao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Maojiao Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Guangzhi Rong
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| |
Collapse
|
8
|
Wang N, Lai C, Xu F, Huang D, Zhang M, Zhou X, Xu M, Li Y, Li L, Liu S, Huang X, Nie J, Li H. A review of polybrominated diphenyl ethers and novel brominated flame retardants in Chinese aquatic environment: Source, occurrence, distribution, and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166180. [PMID: 37562617 DOI: 10.1016/j.scitotenv.2023.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.
Collapse
Affiliation(s)
- Neng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinyu Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR. China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
9
|
Wu Y, Fenech A, Li X, Gu W, Li Y. Multi-process regulation of novel brominated flame retardants: Environmentally friendly substitute design, screening and environmental risk regulation. ENVIRONMENTAL RESEARCH 2023; 237:116924. [PMID: 37598838 DOI: 10.1016/j.envres.2023.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Novel brominated flame retardants (NBFRs), one of the most widely used synthetic flame-retardant materials, have been considered as a new group of pollutants that potentially affect human health. To overcome the adverse effects of NBFRs, a systematic approach for molecular design, screening, and performance evaluation was developed to generate environmentally friendly NBFR derivatives with unaltered functionality. In the present study, the features of NBFRs (long-distance migration, biotoxicity, bioenrichment, and environmental persistence) were determined and characterized by the multifactor comprehensive characterization method with equal weight addition, and the similarity index analysis (CoMSIA) model was constructed. Based on the three-dimensional equipotential diagram of the target molecule 2-ethylhexyl tetrabromobenzoic acid (TBB), 23 TBB derivatives were designed. Of these, 22 derivatives with decreased environmental impact and unaltered functional properties (i.e., flame retardancy and stability) were selected using 3D-QSAR models and density functional theory methods. The health risks of these derivatives to humans were assessed by toxicokinetic analysis; the results narrowed down the number of candidates to three (Derivative-7, Derivative-10, and Derivative-15). The environmental impact of these candidates was further evaluated and regulated in the real-world environment by using molecular dynamics simulation assisted by the Taguchi experimental design method. The relationship between the binding effects and the nonbonding interaction resultant force (TBB derivatives-receptor proteins) was also studied, and it was found that the larger the modulus of the binding force, the stronger the binding ability of the two. This finding indicated that the environmental impact of the designed NBFR derivatives was decreased. The present study aimed to provide a new idea and method for designing NBFR substitutes and to provide theoretical support for restraining the potential environmental risks of NBFRs.
Collapse
Affiliation(s)
- Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Adam Fenech
- School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, C1A 4P3, Canada.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
10
|
Aamir M, Guo Z, Yu J, Zhao L, Xu D, Sun X, Xu C, Niu L, Liu W. Integrating compound-specific stable isotope and enantiomer-specific analysis to characterize the isomeric and enantiomeric signatures of hexachlorocyclohexanes (HCHs) in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132196. [PMID: 37536155 DOI: 10.1016/j.jhazmat.2023.132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Organic pollutants in paddy fields may undergo different processes from those in dryland due to the anaerobic environment. The integrated use of compound-specific stable isotope analysis (CSIA) and enantiomer-specific analysis is a promising technique for understanding the behavior and fate of organic pollutants in soils. In this study, soil samples were collected from paddy fields in three major rice cultivation regions of China, spanning a transect of 4000 km. The mean concentrations of ƩHCHs in paddy soils from the Taihu Plain were the highest (1.44 ng/g). The ratios of α-HCH/β-HCH (all below 11.8) and α-HCH/γ-HCH (92% below 4.64), as well as the enantiomeric fractions (EFs) of chiral α-HCH (mean of 0.81), reflected that the distribution of HCHs was affected by the use of both technical HCHs and lindane. The preferential depletion of (-)-α-HCH and pronounced carbon isotope fractionation of α-HCH (δ13C of -28.22 ± 0.92‰ -23.63 ± 1.89‰) demonstrated its effective transformation. Factors such as altitude, soil temperature, soil pH, soil conductivity and soil organic matter significantly influenced the fate and transformation of HCHs. The current study highlights the integrated application of CSIA and enantiomer-specific analysis to provide multiple lines of evidence for the transformation of HCHs in soils.
Collapse
Affiliation(s)
- Muhammad Aamir
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiawei Yu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohui Sun
- Zhejiang Environmental Monitoring Centre, Hangzhou 310012, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
12
|
Xing W, Zhong L, Gu W, Liang M, Wang L, Wang Z, Shi L, Sun S. Occurrence and accumulation characteristics of legacy and novel brominated flame retardants in surface soil and river sediments from the downstream of Chuhe River basin, East China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97416-97425. [PMID: 37592071 DOI: 10.1007/s11356-023-29300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Surface soil and river sediment samples were collected from the downstream of Chuhe River basin, East China, to investigate the occurrence and accumulation characteristics of legacy and novel brominated flame retardants (NBFRs). The respective concentrations of BDE-209 and nine NBFRs ranged from n.d. to 41.4 ng/g dry weight (dw) and from 0.35 to 362.78 ng/g dw in the collected surface soil samples and ranged from 0.29 to 19.73 ng/g dw and from 0.70 to 66.83 ng/g dw in the collected river sediment samples. Soil samples exhibited a higher potential to accumulate BTBPE while the relative abundance of PBT in the collected sediment samples was significantly higher than that in soils. Even so, BTBPE was the predominant NBFR in both soil and sediment samples. The concentrations and relative abundances of legacy and NBFRs exhibited large spatial variation. The calculated concentration ratios of the total of the nine NBFRs (∑9NBFRs) to BDE-209 (∑9NBFRs/BDE-209) in most of the analyzed samples far exceeded 1, implying a clear shift from legacy brominated flame retardants to NBFRs in the downstream of Chuhe River basin.
Collapse
Affiliation(s)
- Weilong Xing
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Liangchen Zhong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Wen Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shuai Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| |
Collapse
|
13
|
Wang G, Guo P, Liu Y, Li C, Wang X, Wang H. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: Implication by compound-specific stable isotope analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117622. [PMID: 36867899 DOI: 10.1016/j.jenvman.2023.117622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
As a novel brominate flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) has been extensively used in various consumer products, and frequently detected in various environmental matrices. However, the microbial degradation of BTBPE remains unclear in the environment. This study comprehensively investigated the anaerobic microbial degradation of BTBPE and therein stable carbon isotope effect in the wetland soils. BTBPE degradation followed the pseudo-first-order kinetic, with degradation rate of 0.0085 ± 0.0008 day-1. Based on identification of degradation products, stepwise reductive debromination was the main transformation pathway of BTBPE, and tended to keep the stable of 2,4,6-tribromophenoxy group during the microbial degradation. The pronounced carbon isotope fractionation was observed for BTBPE microbial degradation, and carbon isotope enrichment factor (εC) was determined to be -4.81 ± 0.37‰, indicating cleavage of C-Br bond as the rate-limiting step. Compared to previously reported isotope effects, carbon apparent kinetic isotope effect (AKIEC = 1.072 ± 0.004) suggested that the nucleophilic substitution (SN2 reaction) was the potential reaction mechanism for reductive debromination of BTBPE in the anaerobic microbial degradation. These findings demonstrated that BTBPE could be degraded by the anaerobic microbes in wetland soils, and the compound-specific stable isotope analysis was a robust method to discover the underlying reaction mechanisms.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
14
|
Gao Y, Hu X, Deng C, Wang M, Niu X, Luo N, Ji Y, Li G, An T. New insight into molecular mechanism of P450-Catalyzed metabolism of emerging contaminants and its consequence for human health: A case study of preservative methylparaben. ENVIRONMENT INTERNATIONAL 2023; 174:107890. [PMID: 37001212 DOI: 10.1016/j.envint.2023.107890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Hydroxylated metabolites in the living body are considered as a potential biomarker of exposure to emerging contaminations (ECs) and breast cancer, but their formation mechanism has not received enough attention. Besides, the adverse impacts of metabolites during the metabolic transformation of ECs largely remain unknown. In this study, we employed a density functional calculation combing with in-vitro incubation of human liver microsomes to explore the bio-transformation of preservative methylparaben (MPB) in human bodies. Our results showed that hydroxylated metabolites of MPB (OH-MPB) were observed experimentally, while a formation mechanism was revealed at the molecular level. That is, hydroxylated metabolite was exclusively formed via the hydrogen abstraction from the phenolic hydroxyl group of MPB followed by the OH-rebound pathway, rather than the direct hydroxylation on the benzene ring. The increasing of hydroxyl groups on ECs could improve the metabolisms. This was confirmed in the metabolism of ECs without hydroxyl group and with multiple-hydroxyl groups, respectively. Furthermore, toxicity assessments show that compared to parent MPB, the hydroxylated metabolites have increased negative impacts on the gastrointestinal system and liver. A semiquinone product exhibits potential damage in the cardiovascular system and epoxides are toxic to the blood and gastrointestinal system. The findings deepen our insight into the biotransformation of parabens in human health, especially by providing health warnings about the potential impacts caused by semiquinone and epoxides.
Collapse
Affiliation(s)
- Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|