1
|
Shi K, Zhang J, Zhao Y, Liu C, Zhou S. Distinct co-succession of dissolved organic matter and bacterial generalists and specialists in inflow rivers of Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2025; 275:121378. [PMID: 40086578 DOI: 10.1016/j.envres.2025.121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Dissolved organic matter (DOM) significantly affects the stability of river microorganisms, but the seasonal regulatory mechanisms of generalists and specialists remain unclear. Through spectral measurement and high-throughput sequencing techniques, the structural, network, and evolutionary characteristics of generalists and specialists in Baiyangdian lake inflow rivers from 2021 to 2023 were analyzed, and the influences of environmental factors and DOM on their dynamics were quantified. Parallel factor analysis (PARAFAC) identified two protein-like components (C1+C2) and one humus-like component (C3). Among them, the protein-like components were significantly higher in urban reclaimed water (URW) than in non-urban reclaimed water (NRW), while the humus-like component was higher in summer than in winter (P < 0.001). The relative concentration of DOM was higher in summer, showing overall low humification and strong autochthonous characteristics (FI > 1.8, HIX <4). Actinobacteriota and Proteobacteria were the main components of generalists and specialists. Species replacement had a much greater impact on β-diversity than richness differences. The network structure of winter and NRW exhibited more complex topological properties, and the stability of generalist networks was lower than that of specialists. Stochastic processes dominated the community assembly process (63.73 %-93.94 %), with generalists in summer being more influenced by stochastic processes, while the opposite was true in winter. The BiSSE model indicated that specialists exhibited higher diversification potential than generalists. Path analysis showed that in summer URW, diversity and protein-like components had the greatest impact on the network stability of generalists and specialists, respectively. In NRW, humus-like component had the greatest impact on the network stability of specialists. This study clarified the mechanism by which the seasonal characteristics of DOM drive the ecological strategy differentiation of generalists and specialists in rivers, providing a theoretical basis for watershed ecological management.
Collapse
Affiliation(s)
- Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiafeng Zhang
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Chun Liu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
2
|
Yang Y, Gao H. Spatiotemporal evolution characteristics and influencing factors of the crop water use efficiency in watersheds based on the water footprint. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:620. [PMID: 38879715 DOI: 10.1007/s10661-024-12803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Climate change has exacerbated the contradiction between water scarcity and sustainable agricultural development. Assessing the crop water use efficiency and its influencing factors could provide a decision-making reference to realize Sustainable Development Goal 2. By analyzing the temporal and spatial evolution characteristics of the crop water footprint, the blue water footprint, green water footprint, and grey water footprint were introduced into the super efficiency slack-based measure model to evaluate the crop water use efficiency in basins. The influence of the driving factors was examined by using the geographic detector model. The situation in the provinces along the Yellow River Basin from 2005 to 2020 was used as a verification case. The results indicated that (1) during the study period, crop water use in the basin was mainly based on the blue water footprint, accounting for approximately 55% of the total water footprint, the grey water footprint, accounting for approximately 30% of the total water footprint, and the green water footprint, accounting for the lowest proportion, at approximately 15%. (2) The crop water use efficiency exhibited a spatial distribution pattern of high values in the east and low values in the west, with obvious upstream provinces disposable income of rural residents (0.71) > population urbanization rate (0.65) > degree of agricultural mechanization (0.63) > agricultural disaster rate (0.61). Furthermore, the interaction effects between the driving factors were greater than the effects of the single factors. The study provides an important reference for understanding the changes, driving mechanisms, and impacts of crop water use efficiency in basin areas. It promotes green agricultural transformation and development to address climate change and alleviate the pressure on water resources.
Collapse
Affiliation(s)
- Yi Yang
- School of Economics and Management, Xi'an University of Technology, Shaanxi Province, 58 Yanxiang Road, Xi'an, 710054, China.
| | - Haohao Gao
- School of Economics and Management, Xi'an University of Technology, Shaanxi Province, 58 Yanxiang Road, Xi'an, 710054, China
| |
Collapse
|
3
|
Wu Y, Zhou S, Li Y, Niu L, Wang L. Climate and local environment co-mediate the taxonomic and functional diversity of bacteria and archaea in the Qinghai-Tibet Plateau rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168968. [PMID: 38042190 DOI: 10.1016/j.scitotenv.2023.168968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Understanding the environmental response patterns of riverine microbiota is essential for predicting the potential impact of future environmental change on river ecosystems. Vulnerable plateau ecosystems are particularly sensitive to climate and local environmental changes, however, the environmental response patterns of the taxonomic and functional diversity of riverine microbiota remain unclear. Here, we conducted a systematic investigation of the taxonomic and functional diversity of bacteria and archaea from riparian soils, sediments, and water across the elevation of 1800- 4800 m in the Qinghai-Tibet Plateau rivers. We found that within the elevation range of 1800 to 3800 m, riparian soils and sediments exhibited similarities and stabilities in microbial taxonomic and functional diversity, and water microbiomes were more sensitive with great fluctuations in microbial diversity. Beyond the elevation of 3800 m, microbial diversity declined across all riverine matrixes. Local environmental conditions can influence the sensitivity of microbiomes to climate change. The combination of critical climate and local environmental factors, including total nitrogen, total organic carbon, as well as climate variables associated with temperature and precipitation, provided better explanations for microbial diversity than single-factor analyses. Under the extremely adverse scenario of high greenhouse gas emission concentrations (SSP585), we anticipate that by the end of this century, the bacterial, archaeal, and microbial functional diversity across the river network of the Yangtze and Yellow source basin would potentially change by -16.9- 5.2 %, -16.1- 5.7 %, and -9.3- 6.4 %, respectively. Overall, climate and local environments jointly shaped the microbial diversity in plateau river ecosystems, and water microbiomes would provide early signs of environmental changes. Our study provides effective theoretical foundations for the conservation of river biodiversity and functional stability under environmental changes.
Collapse
Affiliation(s)
- Yunyu Wu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, PR China
| | - Shubu Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210024, PR China
| |
Collapse
|
4
|
Sentenac H, Loyau A, Zoccarato L, Jassey VEJ, Grossart HP, Schmeller DS. Biofilm community composition is changing in remote mountain lakes with a relative increase in potentially toxigenic algae. WATER RESEARCH 2023; 245:120547. [PMID: 37708771 DOI: 10.1016/j.watres.2023.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Mountain lakes provide clear drinking water to humankind but are strongly impacted by global change. Benthic biofilms are crucial for maintaining water quality in these oligotrophic lakes, yet little is known about the effects of global change on mountain biofilm communities. By combining analyses of metabarcoding data on 16S and 18S rRNA genes with climatic and environmental data, we investigated global change effects on the composition of biofilm prokaryotic and micro-eukaryotic assemblages in a five-year monitoring program of 26 Pyrenean lakes (2016-2020). Using time-decay relationships and within-lake dissimilarity modelling, we show that the composition of both prokaryotic and micro-eukaryotic biofilm communities significantly shifted and their biodiversity declined from 2016 to 2020. In particular, analyses of temporal trends with linear mixed models indicated an increase in the richness and relative abundance of cyanobacteria, including potentially toxigenic cyanobacteria, and a concomitant decrease in diatom richness and relative abundance. While these compositional shifts may be due to several drivers of global change acting simultaneously on mountain lake biota, water pH and hardness were, from our data, the main environmental variables associated with changes for both prokaryotic and micro-eukaryotic assemblages. Water pH and hardness increased in our lakes over the study period, and are known to increase in Pyrenean lakes due to the intensification of rock weathering as a result of climate change. Given predicted climate trends and if water pH and hardness do cause some changes in benthic biofilms, those changes might be further exacerbated in the future. Such biofilm compositional shifts may induce cascading effects in mountain food webs, threatening the resilience of the entire lake ecosystem. The rise in potentially toxigenic cyanobacteria also increases intoxication risks for humans, pets, wild animals, and livestock that use mountain lakes. Therefore, our study has implications for water quality, ecosystem health, public health, as well as local economies (pastoralism, tourism), and highlights the possible impacts of global change on mountain lakes.
Collapse
Affiliation(s)
- Hugo Sentenac
- Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France.
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France
| | - Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, Stechlin 16775, Germany; Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria; Core Facility Bioinformatics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Vincent E J Jassey
- Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam 14469 Germany
| | - Dirk S Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, INPT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Hellal J, Barthelmebs L, Bérard A, Cébron A, Cheloni G, Colas S, Cravo-Laureau C, De Clerck C, Gallois N, Hery M, Martin-Laurent F, Martins J, Morin S, Palacios C, Pesce S, Richaume A, Vuilleumier S. Unlocking secrets of microbial ecotoxicology: recent achievements and future challenges. FEMS Microbiol Ecol 2023; 99:fiad102. [PMID: 37669892 PMCID: PMC10516372 DOI: 10.1093/femsec/fiad102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for environmental risk assessment of chemicals. At the intersection between microbial ecology, toxicology, and biogeochemistry, microbial ecotoxicology is a fast-expanding research area aiming to decipher the interactions between pollutants and microorganisms. This perspective paper gives an overview of the main research challenges identified by the Ecotoxicomic network within the emerging One Health framework and in the light of ongoing interest in biological approaches to environmental remediation and of the current state of the art in microbial ecology. We highlight prevailing knowledge gaps and pitfalls in exploring complex interactions among microorganisms and their environment in the context of chemical pollution and pinpoint areas of research where future efforts are needed.
Collapse
Affiliation(s)
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs – Analyse-Environnement, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Annette Bérard
- UMR EMMAH INRAE/AU – équipe SWIFT, 228, route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | | | - Giulia Cheloni
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech (Liege University), Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | - Marina Hery
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21065 Dijon, France
| | - Jean Martins
- IGE, UMR 5001, Université Grenoble Alpes, CNRS, G-INP, INRAE, IRD Grenoble, France
| | | | - Carmen Palacios
- Université de Perpignan Via Domitia, CEFREM, F-66860 Perpignan, France
- CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | | | - Agnès Richaume
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
| | | |
Collapse
|
6
|
Bertrans-Tubau L, Menard Y, Batisson I, Creusot N, Mazzella N, Millan-Navarro D, Moreira A, Morin S, Ponsá S, Abril M, Proia L, Romaní AM, Artigas J. Dissipation of pesticides by stream biofilms is influenced by hydrological histories. FEMS Microbiol Ecol 2023; 99:fiad083. [PMID: 37480243 DOI: 10.1093/femsec/fiad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Yoann Menard
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | | | | | | | | | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, F-33612 Cestas, France
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17005 Girona, Spain
| | - Joan Artigas
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Rožman M, Lekunberri I, Grgić I, Borrego CM, Petrović M. Effects of combining flow intermittency and exposure to emerging contaminants on the composition and metabolic response of streambed biofilm bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162818. [PMID: 36914121 DOI: 10.1016/j.scitotenv.2023.162818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Freshwater ecosystems are characterised by the co-occurrence of stressors that simultaneously affect the biota. Among these, flow intermittency and chemical pollution severely impair the diversity and functioning of streambed bacterial communities. Using an artificial streams mesocosm facility, this study examined how desiccation and pollution caused by emerging contaminants affect the composition of stream biofilm bacterial communities, their metabolic profiles, and interactions with their environment. Through an integrative analysis of the composition of biofilm communities, characterization of their metabolome and composition of the dissolved organic matter, we found strong genotype-to-phenotype interconnections. The strongest correlation was found between the composition and metabolism of the bacterial community, both of which were influenced by incubation time and desiccation. Unexpectedly, no effect of the emerging contaminants was observed, which was due to the low concentration of the emerging contaminants and the dominant impact of desiccation. However, biofilm bacterial communities modified the chemical composition of their environment under the effect of pollution. Considering the tentatively identified classes of metabolites, we hypothesised that the biofilm response to desiccation was mainly intracellular while the response to chemical pollution was extracellular. The present study demonstrates that metabolite and dissolved organic matter profiling may be effectively integrated with compositional analysis of stream biofilm communities to yield a more complete picture of changes in response to stressors.
Collapse
Affiliation(s)
- Marko Rožman
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain.
| | - Itziar Lekunberri
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
| | - Ivana Grgić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, E-17001 Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|