1
|
Liu L, Lu S, Jin Z, Lou J, Zhang W, Wang D. Hydrolysis of Al 13 and its coagulation mechanism: Role of speciation stability and transformation. WATER RESEARCH 2025; 281:123672. [PMID: 40273604 DOI: 10.1016/j.watres.2025.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Al13 ([AlO4Al12(OH)24(H2O)12]7+) is widely recognized as one of the advantageous species of Al-based coagulants, and its transformation process and micro-interface interaction with pollutants in water treatment continue to attract the attention of researchers. Based on relevant literatures in the past decades, this review summarizes and discusses the characterization methods, stability and aggregation, coagulation performance and mechanism of Al13. The technique development and method establishment such as 27Al nuclear magnetic resonance, electrospray ionization mass spectrometry, and Al-Ferron complexation timed spectrophotometry provide technical support for qualitative and quantitative detection of the species transformation of Al13. Al13 pre-formed by forced hydrolysis is of high structural stability, and solution pH, high Al concentration, and high temperature are important factors affecting its further hydrolysis, aggregation, dissociation or polymerization. Under circumneutral pH conditions in practical water treatment processes, unlike traditional Al salts which undergo extensive hydrolysis to generate Al(OH)3, Al13 transforms into Al13 aggregates. This is the key for Al13 to exert its superior coagulation performance and makes it shows significantly higher efficiency than traditional Al salts in removing particulate matter and organic substances. Specifically, Al13 shows a broader effective dosage range and pH range compared with AlCl3 through the coagulation mechanisms such as electrostatic patch, in-situ aggregation bridging, and complexation adsorption. Furthermore, the flocs formed by Al13 coagulation exhibit a more compact crystalline structure and higher strength, which helps reduce residual Al concentrations. A comprehensive investigation into the hydrolysis characteristics of Al13 and its role in coagulation is crucial for optimizing coagulation processes, while also providing a theoretical foundation for developing novel high-efficiency composite coagulants.
Collapse
Affiliation(s)
- Libing Liu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, Zhejiang, China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Ecology and Environment, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen, 518055, China
| | - Zhiyuan Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiangwei Lou
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, Zhejiang, China.
| |
Collapse
|
2
|
Duan S, Dong H, Jiang C, Liang H, Jiang L, Xu Q, Cheng X, Qiang Z. Removal of particulate matter and dissolved organic matter from sedimentation sludge water during pre-sedimentation process: Performances and mechanisms. J Environ Sci (China) 2025; 148:409-419. [PMID: 39095176 DOI: 10.1016/j.jes.2023.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 08/04/2024]
Abstract
Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.
Collapse
Affiliation(s)
- Shule Duan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caifang Jiang
- Guangxi Nanning Water Co., Ltd., Nanning 530029, China
| | - Hong Liang
- Guangxi Nanning Water Co., Ltd., Nanning 530029, China
| | - Ling Jiang
- Guangxi Nanning Water Co., Ltd., Nanning 530029, China
| | - Qian Xu
- Guangxi Nanning Water Co., Ltd., Nanning 530029, China
| | - Xiaoyu Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Guo K, Liu H, Gao B, Chang Z, Feng M, Liu B, Yue Q, Gao Y. A membrane fouling control strategy based on a combination of pre-treatment mitigation and in-situ membrane surface regulation using a composite coagulant. WATER RESEARCH 2024; 266:122329. [PMID: 39213681 DOI: 10.1016/j.watres.2024.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ultrafiltration technology (UF) is efficient in surface water treatment, but its development and widespread application are limited by membrane fouling. Herein, an efficient and stable polymerized ferric titanium coagulant (PFTC) was synthesized and used as a UF pretreatment agent in actual lake water treatment. The control mechanism of PFTC on membrane fouling was investigated from the perspective of organic removal efficiency and in-situ membrane surface regulation. PFTC demonstrated a remarkable affinity for soluble metabolic intermediates and hydrophilic proteins through complexation and hydrogen bonding force, achieving removal efficiencies of 66.4 % for UV254 and 81.3 % for DOC, respectively. The hydrophilic pollutants with high molecular weight and non-saturated structure could be preferentially removed by PFTC due to its diverse hydrolysates including positively charged Fe-based hydrolysates, amorphous Ti-based hydrolysates, and highly polymerized Fe-Ti copolymers. The flocs generated by PFTC exhibited strong hydrophilicity, allowing for the formation of a loose porous cake layer on the ultrafiltration membrane, which acted as a hydrophilic layer to enhance the anti-fouling performance of ultrafiltration membrane. With its dual function of contaminant removal and in-situ membrane surface regulation, PFTC alleviated 98.9 % of membrane fouling. This study provides new insights into membrane fouling control by coagulation pretreatment and efficient treatment of surface water.
Collapse
Affiliation(s)
- Kangying Guo
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Haigang Liu
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Baoyu Gao
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Ziheng Chang
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Mengjiao Feng
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Beibei Liu
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Qinyan Yue
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Yue Gao
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China.
| |
Collapse
|
4
|
Yan Y, Xu H, Wang Z, Chen H, Yang L, Sun Y, Zhao C, Wang D. Effect of surface functional groups of polystyrene micro/nano plastics on the release of NOM from flocs during the aging process. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134421. [PMID: 38718517 DOI: 10.1016/j.jhazmat.2024.134421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Currently, the hidden risk of microplastics in the coagulation process has attracted much attention. However, previous studies aimed at improving the removal efficiency of microplastics and ignored the importance of interactions between microplastics and natural organic matter (NOM). This study investigated how polystyrene micro/nano particles impact the release of NOM during the aging of flocs formed by aluminum-based coagulants Al13 and AlCl3. The results elucidated that nano-particles with small particle sizes and agglomerative states are more likely to interact with coagulants. After 7 years of floc aging, the DOC content of the nano system decreased by more than 40%, while the micron system did not change significantly. During coagulation, the benzene rings in polystyrene particles form complexes with electrophilic aluminum ions through π-bonding, creating new Al-O bonds. NOM tends to adsorb at micro/nano plastic interfaces due to hydrophobic interactions and conformational entropy. In the aging process, the structure of PS-Al13 or PS-AlCl3 flocs and the functional groups on the surface of micro/nano plastics control the absorption and release of organic matter through hydrophobic, van der Waals forces, hydration, and polymer bridging. In the system with the addition of nano plastics, several DBPs such as TCAA, DCAA, TBM, DBCM and nitrosamines were reduced by more than 50%. The reaction order of different morphological structures and surface functional groups of microplastics to Al13 and AlCl3 systems is aromatic C-H > C-OH > C-O > NH2 > aromatic CC > aliphatic C-H and C-O>H-CO> NH2 >C-OH> aliphatic C-H. The results provided a new sight to explore the effect of micro/nano plastics on the release of NOM during flocs aging.
Collapse
Affiliation(s)
- Yi Yan
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Hui Xu
- Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Zijie Wang
- China Railway Design Corporation, Tianji 300308, China
| | - Hongni Chen
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Liwei Yang
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Yan Sun
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Chuanliang Zhao
- Chang' an University, Xi'an, Shaanxi 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
5
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
He Y, Jarvis P, Huang X, Shi B. Unraveling the characteristics of dissolved organic matter removed by aluminum species based on FT-ICR MS analysis. WATER RESEARCH 2024; 255:121429. [PMID: 38503184 DOI: 10.1016/j.watres.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Given the complexity of dissolved organic matter (DOM) and its interactions with coagulant chemicals, the mechanisms of DOM removal by aluminum (Al) coagulants remains a significant unknown. In this study, six test waters containing DOM with molecular weight (MW, <1 kDa, 1-10 kDa and >10 kDa) and hydrophobicity (hydrophilic, transphilic and hydrophobic) were prepared and coagulated with Al0, Al13 and Al30. The molecular-level characteristics of DOM molecules that were removed or resistant to removal by Al species were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that at the molecular level, saturated and reduced tannins and lignin-like compounds containing abundant carboxyl groups exhibited higher coagulation efficiency. Unsaturated and oxidized lipids, protein-like, and carbohydrates compounds were relatively resistant to Al coagulation due to their higher polarity and lower content of carboxyl groups. Al13 removed molecules across a wider range of molecular weights than Al0 and Al30, thus the DOC removal efficiency of Al13 was the highest. This study furthers the understanding of interactions between Al species and DOM, and provides scientific insights on the operation of water treatment plants to improve control of DOM.
Collapse
Affiliation(s)
- Yitian He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Jarvis
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Liu B, Guo K, Yue Q, Gao Y, Gao B. New insights into the fate and interaction mechanisms of hydrolyzed aluminum-titanium species in the removal of aged polystyrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133010. [PMID: 37984144 DOI: 10.1016/j.jhazmat.2023.133010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Polyaluminum-titanium chloride composite coagulant (PATC) has been demonstrated to be a promising coagulant in microplastics (MPs) treatment. However, the interaction process between the dominant species of PATC and MPs remains unclear, which will hinder our understanding of the coagulation mechanisms. Here, the species transformation of PATC during its interaction with aged polystyrene powder (APSp) was studied. The results showed that the rise of O-containing functional groups in APSp increased the possibility of forming C-O-M coordination bonds and hydrogen bonds between APSp and PATC, which improved the removal of PSp. Furthermore, Al13(OH)53Ti13O17(H2O)204+ (Al13Ti13) was considered to be the most effective species of PATC. At pH 4, electrostatic attraction brought Al13Ti13 approached APSp first, followed by hydrogen bonding and complexation occurred, respectively. However, the Al13Ti13-APSp complexes were easily converted to monomers and dimers during coagulation, which influenced the coagulation efficiency. With the increase of pH, OH- in the solution would further polymerize the depolymerized Al2Ti into oligomers and mesomers. Under weakly acid conditions, the diversity of PATC hydrolysates and the increase in APSp binding sites correspondingly led to the maximum APSp removal of 75%. When the pH further increased to 10, PATC interacted with APSp mainly by hydrogen bonding and sweeping effect.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
8
|
Cheng X, Dong H, Qiang Z. Formation and transformation of pre-chlorination-formed disinfection byproducts in drinking water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166241. [PMID: 37591391 DOI: 10.1016/j.scitotenv.2023.166241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
As pre-chlorination is increasingly adopted in drinking water treatment plant (DWTP), an attractive question emerged: how the disinfection by-products that formed during pre-chlorination (preformed DBPs) would be transformed in the drinking water treatment process? This study investigated the DBP formation kinetics and molecular characteristics in chlorinated source water, DBP transformation and removal in practical DWTP. It was found that the formation of trihalomethanes (THMs) followed pseudo first-order kinetic model and the intensified Br- exposure facilitated the transformation of TCM into TBM. As Br- concentration shifted from 0.5 mg L-1 to 2.0 mg L-1, the predicted maximum yield of TBM was doubled to 53.7 μg L-1 with the increase of formation rate constant (k-value) from 0.249 h-1 to 0.336 h-1. Besides known DBPs, the molecular-scale investigation unveiled that the preformed unknown Cl-DBPs were a cluster of unsaturated aromatic DBPs ((DBE-O)/Cwa = 0.16, AImod, wa = 0.36) with high H/C (H/Cwa = 1.25). Pre-ozonation exhibited a preferential removal pattern towards condensed aromatic preformed Cl-DBPs with high H/C (AImod ≥ 0.67, H/C > 1.2 and O/C < 0.3). However, the removal of Cl-DBPs in coagulation-clarification process was limited with 56 more unknown Cl-DBP formulas identified. O3-biological activated carbon process exhibited effective removal of preformed DBPs featured with low MW (carbon number ≤ 13), high unsaturation (DBE ≥ 7), condensed aromaticity (AImod ≥ 0.67), and higher H/C (H/C > 1.6). When the pre-chlorination process is adopted, the removal of preformed DBPs during the conventional treatment process is limited, while advanced treatment process can effectively remove these preformed DBPs.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li S, Hong D, Sun K. Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:219-226. [PMID: 38435360 PMCID: PMC10902508 DOI: 10.1016/j.eehl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 03/05/2024]
Abstract
Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, i.e., scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Liu B, Gao Y, Yue Q, Guo K, Gao B. Microcosmic mechanism analysis of the combined pollution of aged polystyrene with humic acid and its efficient removal by a composite coagulant. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132272. [PMID: 37573824 DOI: 10.1016/j.jhazmat.2023.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
11
|
Yang B, Graham N, Liu P, Liu M, Gregory J, Yu W. Atomic-Level Structural Differences between Fe(III) Coprecipitates Generated by the Addition of Fe(III) Coagulants and by the Oxidation of Fe(II) Coagulants Determine Their Coagulation Behavior in Phosphate and DOM Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12489-12500. [PMID: 37551789 DOI: 10.1021/acs.est.3c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.
Collapse
Affiliation(s)
- Bingqian Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - John Gregory
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
12
|
Floc formation and growth during coagulation removing humic acid: Effect of stirring condition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Li Y, Zong Y, Jin X, Guo K, Hu S, Jin P, Wang X. Mechanism of real-time capture of organics by in-situ-formed microbubble flocs to enhance organics removal in hybrid ozonation-coagulation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Lu J, Huang X, Zhang Z, Pang H, Chen K, Xia H, Sui Y, Chen R, Zhao Z. Co-coagulation of micro-nano bubbles (MNBs) for enhanced drinking water treatment: A study on the efficiency and mechanism of a novel cleaning process. WATER RESEARCH 2022; 226:119245. [PMID: 36283233 DOI: 10.1016/j.watres.2022.119245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
MNBs (Micro-nano bubbles) are widely used in cleaning processes for environmental treatments, but few studies have examined the interaction of MNBs with coagulation. In this study, a novel process, i.e., MNBs-coagulation, was developed for enhanced drinking water treatment. The humic acid (HA) removal efficiency was used to evaluate the effectiveness of MNBs-coagulation for drinking water treatment. The hydrolysis component ratio of polymeric aluminum chloride (PACl) with and without MNBs, the complexation strength of HA and PACl, and flocculent functional group characterization were used to analyze the mechanism of the MNBs-coagulation process to enhance drinking water treatment. The results of a Jar test showed that the MNBs-coagulation process could improve the removal efficiency of HA (up to a 27.9% increase in DOC removal). In continuous-flow experiments to remove HA, MNBs-coagulation can increase the removal efficiency of UV254 by about 26.5% and with no significant change in turbidity. These results are attributed to the inherent hydroxyl radical generating properties of MNBs, the forced hydrolysis of PACl by MNBs to increase the Alc percentage, and the ability of MNBs to increase the complexation strength of HA with PACl. At the same time, the MNBs-coagulation process has a strong anti-interference ability, almost no interference from anions and cations such as Cl-, SO42- and Ca2+, and has a good performance in natural surface water. In summary, MNBs-coagulation has strong potential for practical applications to enhance the efficiency of drinking water treatment.
Collapse
Affiliation(s)
- Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaojiang Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kunyu Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haozhe Xia
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yiyu Sui
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rongwen Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ziang Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|