1
|
Ouyang E, Ye L, Zhang W, Zhao R, Yang H, Deng S, Xiong Y, Hu X, Zhou Z. Novel anionic functionalized magnetic β-cyclodextrin composites with excellent adsorption capacity for moxifloxacin and wide pH adaptive adsorption capability for copper ion. ENVIRONMENTAL RESEARCH 2025; 269:120937. [PMID: 39855415 DOI: 10.1016/j.envres.2025.120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Antibiotics and heavy metals pose severe risks to human health and ecological environment. Therefore, developing a multifunctional adsorbent to remove these contaminants from wastewater is an urgent need. Herein, novel anionic sulfonic acid groups functionalized magnetic β-cyclodextrin (β-CD) composites (FCD@AA) were synthesized by coating poly(2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS)) on the surface of magnetic β-CD particles (FCD). Several characterization techniques were utilized to comprehensively analyze the surface physicochemical properties of FCD@AA. The adsorption properties of FCD@AA toward antibiotics (moxifloxacin (MOX) as model) and heavy metals (copper ion (Cu2+) as model) were systematically studied under different conditions on adsorption time, temperature, initial concentration, solution pH and coexisting ionic strength. In single systems, the adsorption isotherm data for MOX and Cu2+ were well fitted to Langmuir and Freundlich models, respectively. The maximum adsorption capacities of FCD@AA toward MOX and Cu2+ were 118.98 and 19.29 mg g-1, respectively. The pseudo-second-order model could better describe the kinetic processes. In binary systems, the presence of Cu2+ exhibited a pronounced antagonism on the adsorption of MOX. The influence of co-existing MOX on the capture of Cu2+ changed from inhibition to promotion as the initial Cu2+ concentration increased. And after five adsorption cycles, FCD@AA still had satisfactory reusability. The results indicate that FCD@AA is a promising adsorbent for treating water contaminated by MOX and Cu2+, which broadens the application of magnetic β-CD adsorbents in environmental protection.
Collapse
Affiliation(s)
- Erming Ouyang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Linna Ye
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wenhao Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Rui Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hongwei Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China; Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, People's Republic of China
| | - Suting Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yuxiang Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xinhui Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ziyue Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| |
Collapse
|
2
|
Ru W, Liu J, Xiong F, Sun Y, Zhang Y, Li Y, Lv Y, Li X. Constructing a Broad-Pore-Domain Structure of Adsorbents for Acteoside Adsorption. Polymers (Basel) 2024; 17:79. [PMID: 39795482 PMCID: PMC11722942 DOI: 10.3390/polym17010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Acteoside (ACT) is an important medicinal component, but its content is scarce. To obtain higher purity of ACT, the adsorption method was used to purify it. In this study, a broad-pore-domain hyper-crosslinked polymer (BHP-Kae) was prepared to adsorb ACT from Cistanche tubulosa, which is a medicinal plant. BHP-Kae-3 possessed a unique broad-pore-domain structure. This structure reduced the transfer resistance of ACT and facilitated the rapid diffusion of ACT into BHP-Kae-3, increasing the adsorption capacity. In addition, the surface and pore channels of BHP-Kae-3 contained abundant functional groups (-OH, C=O), which provided a large number of adsorption sites and facilitated ACT adsorption, thereby improving selectivity. The experimental results showed that BHP-Kae-3 exhibited a good adsorption capacity for ACT; the adsorption capacity was 105.12 mg/g, and the selectivity was 3.41. This study demonstrates the potential for efficient separation of natural products using broad-pore-domain adsorbents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yin Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
3
|
Zhang S, Bie W, Duan X, Wu Z, Zhang L, Li H, Wang Z, Wei M, Kong F, Wang W. Porous calix[4]pyrrole-based polymers with high surface area for efficient removal of polar organic micropollutants from water. CHEMOSPHERE 2024; 366:143548. [PMID: 39413930 DOI: 10.1016/j.chemosphere.2024.143548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, effort was made to construct innovative adsorbent for the removal of polar organic micropollutants (OMPs) from water. Tetra-meso resorcinol-functionalized calix[4]pyrrole (CP) featured with endo-functionalized attribute and polyphenol hydroxyl structure was crosslinked by π-electron-rich 4,4'-bis(chloromethyl)biphenyl (BCMBP) through Friedel-Crafts reaction to generate porous calix[4]pyrrole-based polymers (PCPPs) with high surface area. The porosity of the PCPPs could be tuned by adjusting the molar ratio of hydrophilic CP to hydrophobic BCMBP, and diversified binding sites were integrated together. Based on adsorption kinetics and isotherm studies, PCPP(1-16) showed rapid adsorption rate and high removal efficiency (RE) as well as advanced adsorption capacity. The REs towards the tested polar OMPs by PCPP(1-16) were all above 95% in 30 min. Compared with granular activated carbon (GAC), the rate constant of pseudo-second-order model (k2) and adsorption capacity upon PCPP(1-16) were 8-230 times and 1.3-3.1 times greater than those by GAC. Adsorption mechanism studies confirmed the presence of multiple interactions and thermodynamic investigation revealed the spontaneous and physical adsorption nature. Besides, PCPP(1-16) showed excellent adsorption performance in real water samples at environmental levels and exhibited advanced absorption ability in flow-through mode. Accompanied by facile regeneration under eluting with methanol and cost-effective preparation, PCPP(1-16) demonstrated great potential as promising adsorbent for water treatment.
Collapse
Affiliation(s)
- Shuzhao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Wenwen Bie
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Xiongcheng Duan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Zhuorui Wu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Lin Zhang
- Comprehensive Testing Center, Yancheng Customs, Yancheng, 224002, PR China
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China.
| | - Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Meijie Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224002, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
4
|
Huang C, Zhang X, Li X, Zhao H. β-Cyclodextrin enhanced bioavailability of petroleum hydrocarbons in industrially contaminated soil: A phytoremediation field study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2348-2355. [PMID: 39154232 DOI: 10.1080/15226514.2024.2389563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Low remediation efficiency due to low bioavailability is a primary restrictive factor for phytoremediation applications. Specifically, this investigation examines whether Suaeda heteroptera Kitagawa (S. heteroptera) can be used in combination with β-cyclodextrin (β-CD) to remediate contaminated site. The study was conducted on the growth response of S. heteroptera, bioavailability and dissipation of petroleum hydrocarbons (PHs) in soil under the influence of β-CD Our preliminary studies confirmed that β-CD is effective in increasing the biomass and height of plants. The presence of β-CD could dramatically elevate polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in S. heteroptera. Moreover, a remarkable positive correlation between PHs levels in roots with the dosage of β-CD and a negative correlation between the PHs levels in roots with KOW of PHs have been observed. The dissipation of n-alkanes was estimated to be 38.73-62.27%, and the dissipation of PAHs was 36.59-60.10%. In addition, the dissipation behavior of n-alkanes and PAHs was well agreement with the first-order kinetic model. These results display that applying β-CD accelerated the desorption process of PHs from soil and promoted the absorption process of PHs onto the root epidermis. The enhancement of phytoremediation was achieved by increasing the bioavailability of PHs.
Collapse
Affiliation(s)
- Chaoyang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Haque SKN, Bhuyan MM, Jeong JH. Radiation-Induced Hydrogel for Water Treatment. Gels 2024; 10:375. [PMID: 38920922 PMCID: PMC11203253 DOI: 10.3390/gels10060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Along with serving as drug delivery sensors and flexible devices, hydrogels are playing pioneering roles in water purification. Both chemical and radiation methods can produce hydrogels, with the latter method gaining preference for its pure adducts. The water treatment process entails the removal of heavy and toxic metals (above the threshold amount), dyes, and solid wastes from industrial effluents, seawater, and groundwater, as well as sterilization for microorganism destruction. This review analyzed the different types of hydrogels produced by applying various radiations for water treatment. Particularly, we examined the hydrogels created through the application of varying levels of gamma and electron beam radiation from the electron gun and Co-60 sources. Moreover, we discuss the optimized radiation doses, the compositions (monomers and polymers) of raw materials required for hydrogel preparation, and their performance in water purification. We present and predict the current state and future possibilities of radiation-induced hydrogels. We explain and compare the superiority of one radiation method over other radiation methods (UV-visible, X-ray, microwave, etc.) based on water treatment.
Collapse
Affiliation(s)
| | - Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
6
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Sun L, Xu G, Tu Y, Zhang H, Zhang W, Zhu X, Liang Y, Li A, Xie X. Synergistic disinfection effects and reduction of disinfection by-products in water treatment using magnetic quaternized cyclodextrin polymer combined with chorine disinfection process. WATER RESEARCH 2024; 250:121078. [PMID: 38159540 DOI: 10.1016/j.watres.2023.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.
Collapse
Affiliation(s)
- Lin Sun
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Jiangyin City General Administration, Jiangyin 214433, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment Engineering, Nanjing Polytechnic Institute, Nanjing 210023, PR China
| | - Wenrui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ying Liang
- Nanjing Huachuang Institute of Environmental Technology Co., Ltd, Nanjing 211106, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Jiangxi Nanxin Environmental Protection Technology Co. Ltd, Jiujiang City, Jiangxi Province 330300, PR China.
| |
Collapse
|
8
|
Jia J, Wu D, Yu J, Gao T, Guo L, Li F. Upgraded β-cyclodextrin-based broad-spectrum adsorbents with enhanced antibacterial property for high-efficient dyeing wastewater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132610. [PMID: 37757550 DOI: 10.1016/j.jhazmat.2023.132610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The dyeing wastewater contains amounts of refractory organic compounds, and severely endangers the ecosystem and human health. To alleviate this problem, in this study, the low-cost broad-spectrum nano-adsorbent (denoted as CD/CA-g-CS) with strong antibacterial activity has been synthesized by chemical binding of β-cyclodextrin (β-CD) with chitosan (CS) and citric acid (CA) for high-efficient dyes scavenger. Taking advantage of the extraordinary water insolubility, porous nature and abundant surface groups, the synthesized CD/CA-g-CS outperforms the previously reported adsorbents in terms of adsorption performance. The CD/CA-g-CS exhibits ultrahigh adsorption capacities of 801.66, 770.50 and 946.66 mg/g, respectively mg/g for the cationic dyes of malachite green (MG), basic red (BR) and methylene blue (MB), respectively, while 389.64, 619.60 and 429.22 mg/g for the anionic dyes of acid blue (AB), acid red (AR) and acid yellow (AY), respectively. The chemical monolayer absorption is further demonstrated by the analysis based on the pseudo-second-order adsorption kinetics and Langmuir isotherm models. The regenerable CD/CA-g-CS not only performs well in one-step removal of the mixed dyes in the simulated sewage, but also exhibits superior performance in purifying real industrial wastewater. Moreover, CD/CA-g-CS endowed with antibacterial activity leads to an inhibition rate of over 99.99 % for E. coli. The newly developed CD/CA-g-CS adsorbents are highly promising for high-efficient dyeing wastewater remediation.
Collapse
Affiliation(s)
- Jie Jia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Dequn Wu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Tingting Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Leiming Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China.
| | - Faxue Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
9
|
Zhang C, Tang J, Huang Y, Fan R, Zhou L. Dispersive solid phase extraction based on cross-linked hydroxypropyl β-cyclodextrin polymers for simultaneous enantiomeric determination of three chiral triazole fungicides in water. Mikrochim Acta 2023; 191:18. [PMID: 38087124 DOI: 10.1007/s00604-023-06091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
An efficient method is presented for simultaneous enantioselective determination of three chiral triazole fungicides (namely paclobutrazol, hexaconazole, and diniconazole) in water samples by DSPE-HPLC-UV. The perfect chiral separation of the enantiomers was achieved on a Chiralpak IH column within 15 min. In order to adsorb and enrich the analytes from water matrices, a cross-linked hydroxypropyl β-cyclodextrin polymer was synthesized. The prepared material exhibited good adsorption capacity, which was assessed by adsorption kinetic and adsorption thermodynamic experiments. One-variable-at-a-time and the response surface methodology were used to optimize the extraction parameters. Under the optimum sample preparation conditions, good linearity (2.0 ~ 800 µg L-1, R2 ≥ 0.9978), detection limits (0.6 to 1.0 µg L-1), quantitation limits (2.0 to 3.2 µg L-1), recoveries (86.7 ~ 105.8%), and the relative standard deviation (intra-day RSD ≤ 3.7%, inter-day RSD ≤ 5.1%) were obtained, satisfying the requirements of pesticides residues determination. These results demonstrated that the proposed method was applicable for routine determination of chiral triazole fungicide residues in water samples.
Collapse
Affiliation(s)
- Chuhan Zhang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Jing Tang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yihe Huang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| | - Li Zhou
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No. 146, North Huanghe Street, Liaoning Province, Shenyang, 110034, China.
| |
Collapse
|
10
|
Tian Y, Wang H, Xu G, Tu Y, Zhang Y, Zhang W, Liang Y, Li A, Xie X, Peng Z, Wang Y, Xie X. Novel covalently bound organic silicon-ferrum hybrid coagulant with excellent coagulation performance and bacteriostatic ability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Fierascu RC, Fierascu I, Matei Brazdis RI, Manaila-Maximean D. Natural and Natural-Based Polymers: Recent Developments in Management of Emerging Pollutants. Polymers (Basel) 2023; 15:polym15092063. [PMID: 37177209 PMCID: PMC10181049 DOI: 10.3390/polym15092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Anthropogenic activities lead to the issue of new classes of pollutants in the environment that are not currently monitored in environmental studies. This category of pollutants (known as emerging contaminants) includes a very wide range of target substances, such as pharmaceuticals, plant protection products, personal care products, dyes, toxins, microplastics and many other industrially important intermediaries. Together with an increasing demand for clean water (both for agricultural necessities and for the increasing population consumption), the need for the removal of emerging pollutants, simultaneously with the current "green chemistry" approach, opens the door for the industrial application of natural polymers in the area of environmental protection. Recent developments in this area are presented in this paper, as well as the application of these particular natural materials for the removal of other contaminants of interest (such as radioisotopes and nanoparticles). The current knowledge regarding the processes' kinetics is briefly presented, as well as the future development perspectives in this area.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM-Bucharest, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 060042 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM-Bucharest, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Roxana Ioana Matei Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM-Bucharest, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 060042 Bucharest, Romania
| | - Doina Manaila-Maximean
- Faculty of Applied Sciences, University "Politehnica" of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
12
|
Alshati F, Alahmed TAA, Sami F, Ali MS, Majeed S, Murtuja S, Hasnain MS, Ansari MT. Guest-host Relationship of Cyclodextrin and its Pharmacological Benefits. Curr Pharm Des 2023; 29:2853-2866. [PMID: 37946351 DOI: 10.2174/0113816128266398231027100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (βCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The βCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated βCD, more soluble hydroxyl propyl methyl βCD, and sodium salts of sulfobutylether-βCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of β-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.
Collapse
Affiliation(s)
- Fatmah Alshati
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Farheen Sami
- Department of Pharmaceutics, Hygia Institute of Pharmaceutical Sciences and Research, Lucknow, India
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdome of Saudi Arabia
| | - Shahnaz Majeed
- Department of Pharmacy, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Sheikh Murtuja
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - M Saquib Hasnain
- Department of Pharmacy, Palamu Institute of Pharmacy, Chianki, Jharkhand 822102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| |
Collapse
|
13
|
Liu B, Wang S, Wang H, Wang Y, Xiao Y, Cheng Y. Quaternary Ammonium Groups Modified Magnetic Cyclodextrin Polymers for Highly Efficient Dye Removal and Sterilization in Water Purification. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010167. [PMID: 36615361 PMCID: PMC9822413 DOI: 10.3390/molecules28010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Water recovery is a significant proposition for human survival and sustainable development, and we never stop searching for more efficient, easy-operating, low-cost and environmentally friendly methods to decontaminate water bodies. Herein, we combined the advantages of β-cyclodextrin (β-CD), magnetite nanoparticles (MNs), and two kinds of quaternary ammonium salts to synthesize two porous quaternary ammonium groups capped magnetic β-CD polymers (QMCDP1 and QMCDP2) to remove organic pollutants and eradicate pathogenic microorganisms effectively through a single implementation. In this setting, β-CD polymer (CDP) was utilized as the porous substrate material, while MNs endowed the materials with excellent magnetism enhancing recyclability in practical application scenarios, and the grafting of quaternary ammonium groups was beneficial for the adsorption of anionic dyes and sterilization. Both QMCDPs outperformed uncapped MCDPs in their adsorption ability of anionic pollutants, using methyl blue (MB) and orange G (OG) as model dyes. Additionally, QMCDP2, which was modified with longer alkyl chains than QMCDP1, exhibits superior bactericidal efficacy with a 99.47% removal rate for Staphylococcus aureus. Accordingly, this study provides some insights into designing a well-performed and easily recyclable adsorbent for simultaneous sterilization and adsorption of organic contaminants in wastewater.
Collapse
Affiliation(s)
- Bingjie Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuoxuan Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - He Wang
- School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| | - Yue Cheng
- School of Science, Tianjin University, Tianjin 300350, China
- Correspondence: (Y.W.); (Y.X.); (Y.C.)
| |
Collapse
|
14
|
Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|