1
|
Verma M, Loganathan VA. Uranium concentration from acidic mine effluent using forward osmosis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124340. [PMID: 39951995 DOI: 10.1016/j.jenvman.2025.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Uranium (U) is found in the earth's crust at concentrations ca. 1 to 3 ppm, which presents opportunities for various industrial and hydrometallurgical processes aimed at achieving economical and low-energy-intensive extraction. In this study, we assessed the potential of forward osmosis (FO) to concentrate the uranium mine effluent using sodium sulphate as draw solution. The diluted draw solution can be directly reused as a raw material in the uranium leaching process without the need for regeneration. Laboratory FO experiments were performed for 160 h duration on synthetic uranium solution representing typical mine effluent characteristics of the Jadguda uranium extraction facility, Bihar, India. The results of the study showed that with forward osmosis, uranium can be concentrated to ca. 3.36 times of its initial concentration and ca. 98% rejection, but with considerable flux decline due to membrane fouling and surface crystallization. Further, the membrane can be operated after regeneration using DI water rinsing or physical cleaning with a lower flux recovery of 83.1% and 81.2%, respectively. Importantly, it was observed that operating membrane below critical concentration factor via cyclic mode can avoid surface crystallization and subsequent membrane fouling with least periodic maintenance. Additionally, with FO concentration process the U concentration much lesser than Indian regulatory guidelines for inland water discharge (i.e. 180μg of U L-1) could be achieved using draw solution. Our study highlights that the FO concentration process can significantly concentrate uranium mine effluent at room temperature, requiring less specific energy compared to conventional evaporation-based processes that are highly energy-intensive.
Collapse
Affiliation(s)
- Mohit Verma
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, 140001 Punjab, India
| | - Vijay A Loganathan
- Civil Engineering Department, Indian Institute of Technology Ropar, Rupnagar, 140001 Punjab, India.
| |
Collapse
|
2
|
Sánchez-Arévalo CM, García-Suarez L, Camilleri-Rumbau MS, Vogel J, Álvarez-Blanco S, Cuartas-Uribe B, Vincent-Vela MC. Treatment of industrial textile wastewater by means of forward osmosis aiming to recover dyes and clean water. Heliyon 2024; 10:e40742. [PMID: 39687120 PMCID: PMC11648163 DOI: 10.1016/j.heliyon.2024.e40742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The textile industry is one of the largest water consumers, and, as a result of its activity, it generates tons of wastewater. In this research, forward osmosis has been employed to tackle the critical need of treating textile wastewater. The HFFO2 membrane (Aquaporin) was used to process large volumes of real cotton dyeing wastewater, wool dyeing wastewater, and several types of textile end-of-pipe wastewater. In all cases, the permeate flux was between 6 and 8 L·h- 1 m- 2 during the major part of the process. The recovery of clean water from each wastewater surpassed 90 %, whereas the membrane rejected more than 87 % of total dissolved solids. As a result, textile dyes were concentrated on the feed side of the membrane, which enables their recovery and potential reutilization in a subsequent dying process, along with the reclaimed water. The HFFO2 membrane was efficiently cleaned by a backwash process, restoring the initial water flux. These results indicate the suitability of forward osmosis to reuse dyes and water from textile wastewater, reducing the environmental impact of this industry and favoring its sustainability.
Collapse
Affiliation(s)
- Carmen M. Sánchez-Arévalo
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
| | - Laura García-Suarez
- Jeanologia S.L., Ronda de Guglielmo Marconi, 12, 46980, Paterna, Valencia, Spain
| | | | - Jorg Vogel
- Aquaporin, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
| | - Silvia Álvarez-Blanco
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Beatriz Cuartas-Uribe
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M. Cinta Vincent-Vela
- Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Camino de Vera, s/n, 46022, Valencia, Spain
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
3
|
Ramutshatsha-Makhwedzha D, Munonde TS. Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices. Molecules 2024; 29:5533. [PMID: 39683693 DOI: 10.3390/molecules29235533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed. As a result of sample preparation methods, analytical techniques now detect parabens at trace levels ranging from µg/L to ng/L. These compounds have been detected in water, air, soil, and human tissues. While the full impact of parabens on human health and ecosystems is still being debated in the scientific community, it is widely recognized that parabens can act as endocrine disruptors. Furthermore, some studies have suggested that parabens may have carcinogenic effects. The presence of parabens in the environment is primarily due to wastewater discharges, which result in widespread contamination and their concentrations increased during the COVID-19 pandemic waves. Neglecting the presence of parabens in water exposes humans to these compounds through contaminated food and drinking water. Although there are reviews that focus on the occurrence, fate, and behavior of parabens in the environment, they frequently overlook critical aspects such as removal methods, policy development, and regulatory frameworks. Addressing this gap, the effective treatment of parabens in water relies on combined approaches that address both cost and operational challenges. Membrane filtration methods, such as nanofiltration (NF) and reverse osmosis (RO), demonstrate high efficacy but are hindered by maintenance and energy costs due to extensive fouling. Innovations in anti-fouling and energy efficiency, coupled with pre-treatment methods like adsorption, help mitigate these costs and enhance scalability. Furthermore, combining adsorption with advanced oxidation processes (AOPs) or biological treatments significantly improves economic and energy efficiency. Integrating systems like O₃/UV with activated carbon, along with byproduct recovery strategies, further advances circular economy goals by minimizing waste and resource use. This review provides a thorough overview of paraben monitoring in wastewater, current treatment techniques, and the regulatory policies that govern their presence. Furthermore, it provides perspectives that are critical for future scientific investigations and shaping policies aimed at mitigating the risks of parabens in drinking water.
Collapse
Affiliation(s)
- Denga Ramutshatsha-Makhwedzha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tshimangadzo S Munonde
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
4
|
Zhong H, Wang Q, Wu M, Zhao P, Song W, Wang X. Anaerobic acidification membrane bioreactor operating at acidic condition for treating concentrated municipal wastewater: Performance and implication. BIORESOURCE TECHNOLOGY 2024; 399:130644. [PMID: 38552856 DOI: 10.1016/j.biortech.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.
Collapse
Affiliation(s)
- Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, PR China
| | - Mengfei Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Wang R, Li J, Xu C, Xu X, Tang F, Huang M. Integrating reverse osmosis and forward osmosis (RO-FO) for printing and dyeing wastewater treatment: impact of FO on water recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92495-92506. [PMID: 37491487 DOI: 10.1007/s11356-023-28853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.
Collapse
Affiliation(s)
- Ruizhe Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoyang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fengchen Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
6
|
Lu YX, Yuan H, Shao Y, Chand H, Wu Y, Yang YL, Song HL. Shedding light on the transfer of tetracycline in forward osmosis through experimental investigation and machine learning modeling. CHEMOSPHERE 2023; 319:137959. [PMID: 36709845 DOI: 10.1016/j.chemosphere.2023.137959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tetracycline in wastewater can pose adverse impacts on the environment and human health. Forward osmosis (FO) is a promising method to reject antibiotics due to its low energy demand and high rejection rate. Tetracycline rejection during FO is a complicated process. Mechanistic models have been developed to describe antibiotic rejection by the FO membrane under ideal conditions but cannot be applied to real wastewater. Herein, the effects of draw concentration, pH, and solute type on the fate of tetracycline during FO were investigated by combining experimentation, factor analysis, and artificial neural network (ANN) modeling. High draw concentrations led to high convection that favored tetracycline diffusion. Low draw pH helped reject antibiotics potentially due to the decreased tortuosity and pore size of the FO membrane. When different draw solutes were tested, both convection and electrostatic interaction exerted effects on tetracycline retention on the FO membrane surface, and steric hindrance could further affect the amount of tetracycline in the draw solution. Exploratory factor analysis (EFA) showed that tetracycline rejection was a combined result of convection, steric hindrance, and electrostatic interactions. Path analysis revealed the significant roles of initial conductivity and draw pH in tetracycline rejection. Eight representative input variables were selected from 13 observed explanatory variables using redundancy analysis (RDA), based on which an ANN was trained and successfully predicted tetracycline diffusion and transfer through the FO membrane. These results have provided practical and predictive insights in the development of FO processes for efficient treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19312, USA
| | - Yi Shao
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Hameer Chand
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
Hassen MA, Hamdy G, Sabry RM, Ali SS, Taher FA. Synthesis and characterization of
PES
/
PSF
/
PEG
by immersion precipitation for Mediterranean seawater desalination by
FO
membrane. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mai Ali Hassen
- Faculty of science Al‐Azhar University (Girls) Nasr City Egypt
| | - Gehad Hamdy
- Chemistry Department, Faculty of Science Al‐Azhar University (Girls) Nasr City Egypt
- Al‐Azhar Technology Incubator (ATI) Al‐Azhar University Nasr City Egypt
| | - Rania M. Sabry
- Chemical Engineering and Pilot‐Plant Department National Research Center Dokki Egypt
| | - Sahar S. Ali
- Chemical Engineering and Pilot‐Plant Department National Research Center Dokki Egypt
| | - Fatma A. Taher
- Chemistry Department, Faculty of Science Al‐Azhar University (Girls) Nasr City Egypt
- Al‐Azhar Technology Incubator (ATI) Al‐Azhar University Nasr City Egypt
| |
Collapse
|
8
|
Emadzadeh D, Atashgar A, Kruczek B. Novel Polyelectrolyte-Based Draw Solute That Overcomes the Trade-Off between Forward Osmosis Performance and Ease of Regeneration. MEMBRANES 2022; 12:1270. [PMID: 36557177 PMCID: PMC9782068 DOI: 10.3390/membranes12121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) is an emerging technology for seawater and brackish desalination, wastewater treatment, and other applications, such as food processing, power generation, and protein and pharmaceutical enrichment. However, choosing a draw solute (DS) that provides an appropriate driving force and, at the same time, is easy to recover, is challenging. In this study, water-soluble poly(styrene sulfonate) (PSS) was modified by a high-electrical-conductivity 3,4-ethylenedioxythiophene (EDOT) monomer to fabricate a novel draw solute (mPSS). FO tests with the CTA membrane in the active layer facing the feed solution (AL-FS) orientation, using a 50 mS/cm aqueous solution of synthesized solute and distilled water as a feed solution exhibited a water flux of 4.2 L h-1 m-2 and a corresponding reverse solute flux of 0.19 g h-1 m-2. The FO tests with the same membrane, using a 50 mS/cm NaCl control draw solution, yielded a lower water flux of 3.6 L h-1 m-2 and a reverse solute flux of 4.13 g h-1 m-2, which was more than one order of magnitude greater. More importantly, the synthesized draw solute was easily regenerated using a commercial ultrafiltration membrane (PS35), which showed over 96% rejection.
Collapse
|
9
|
Yan M, Shao M, Li J, Jiang N, Hu Y, Zeng W, Huang M. Antifouling forward osmosis membranes by ε-polylysine mediated molecular grafting for printing and dyeing wastewater: Preparation, characterization, and performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Catalytic degradation of carbamazepine by metal organic frameworks (MOFs) derived magnetic catalyst Fe@PC in an electro-Fenton coupled membrane filtration system: Performance, Pathway, and Mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|