1
|
Long A, Sun R, Mao X, Duan Q, Wu M. Surrogate modelling-based multi-objective optimization for best management practices of nonpoint source pollution. WATER RESEARCH 2025; 269:122788. [PMID: 39579555 DOI: 10.1016/j.watres.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The integrated application of hydrological models and best management practices (BMPs) serves as a pivotal decision-making tool for managing nonpoint source (NPS) pollution in watersheds. Optimizing and selecting BMP options are critical challenges in managing NPS pollution, as these processes are typically computationally expensive and involve mixed discrete-continuous decision variables. Our study integrated a novel method, the multi-objective adaptive surrogate modeling-based optimization for constrained hybrid problems (MO-ASMOCH), with the distributed Soil and Water Assessment Tool (SWAT) model to efficiently optimize the deployment of BMPs in the Four Lakes watershed of China. We compared the optimization results with those obtained using the traditional non-dominated sorting genetic algorithm (NSGA-II) method. Our results demonstrate that MO-ASMOCH significantly outperforms NSGA-II in computational efficiency, achieving comparable Pareto-optimal solutions with just 1,150 model evaluations compared to NSGA-II's requirement of 10,000 model evaluations. This demonstrates that MO-ASMOCH is a more efficient optimization algorithm for BMP optimization problems with both discrete and continuous decision variables. We selected representative scenarios to calculate in-lake concentrations of total phosphorus (TP) and total nitrogen (TN) pollutant loads. The largest reduction scenario could reduce TN and TP loads by 18.3 % and 20.7 %, respectively, at a cost of 1.54 × 108 Chinese Yuan. Under this scenario, the water quality classification level of TN improves from inferior Class V to Class IV-V, while TP attains Class III throughout the year. The methods of this study could enhance our capability to manage NPS pollution in watersheds effectively and provide targeted decision-making insights for environmental management practices.
Collapse
Affiliation(s)
- Aoyun Long
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Ruochen Sun
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; College of Hydrology and Water Resources, Hohai University, Nanjing, China; China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, China
| | - Xiyezi Mao
- POWERCHINA Zhongnan Engineering Corporation Ltd, China
| | - Qingyun Duan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; College of Hydrology and Water Resources, Hohai University, Nanjing, China; China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, China.
| | - Mengtian Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China; College of Hydrology and Water Resources, Hohai University, Nanjing, China
| |
Collapse
|
2
|
Pyo J, Pachepsky Y, Kim S, Abbas A, Kim M, Kwon YS, Ligaray M, Cho KH. Long short-term memory models of water quality in inland water environments. WATER RESEARCH X 2023; 21:100207. [PMID: 38098887 PMCID: PMC10719578 DOI: 10.1016/j.wroa.2023.100207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Water quality is substantially influenced by a multitude of dynamic and interrelated variables, including climate conditions, landuse and seasonal changes. Deep learning models have demonstrated predictive power of water quality due to the superior ability to automatically learn complex patterns and relationships from variables. Long short-term memory (LSTM), one of deep learning models for water quality prediction, is a type of recurrent neural network that can account for longer-term traits of time-dependent data. It is the most widely applied network used to predict the time series of water quality variables. First, we reviewed applications of a standalone LSTM and discussed its calculation time, prediction accuracy, and good robustness with process-driven numerical models and the other machine learning. This review was expanded into the LSTM model with data pre-processing techniques, including the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise method and Synchrosqueezed Wavelet Transform. The review then focused on the coupling of LSTM with a convolutional neural network, attention network, and transfer learning. The coupled networks demonstrated their performance over the standalone LSTM model. We also emphasized the influence of the static variables in the model and used the transformation method on the dataset. Outlook and further challenges were addressed. The outlook for research and application of LSTM in hydrology concludes the review.
Collapse
Affiliation(s)
- JongCheol Pyo
- Department for Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yakov Pachepsky
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Soobin Kim
- School of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI), 111, Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Ather Abbas
- Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Minjeong Kim
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI), 111, Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Yong Sung Kwon
- Environmental Impact Assessment Team, Division of Ecological Assessment Research, National Institute of Ecology, Seocheon, Republic of Korea
| | - Mayzonee Ligaray
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|