1
|
Meng Y, Jiang X, Li Y, Qing C, Long X, Xia P. Response of dissolved organic matter and bacterial community to anthropogenic disturbances in a plateau lake. Front Microbiol 2025; 16:1554202. [PMID: 40241732 PMCID: PMC12000888 DOI: 10.3389/fmicb.2025.1554202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Dissolved organic matter (DOM) and bacterial communities play essential roles in lake ecosystem biogeochemical cycles. However, the effects of anthropogenic disturbances on their interactions are not fully understood. Methods This study used UV-vis techniques, excitation-emission matrix parallel factor analysis, and 16S rRNA sequencing to reveal the differences in the structures of fluorescent DOM (FDOM) and bacterial communities in lake sediments and water under different levels of anthropogenic disturbances. Methods such as Spearman correlation analysis, null model, neutral community model and random forest analysis were explored how FDOM composition and bacterial communities respond to anthropogenic disturbances in the sediments and water of the Caohai Lake. Results The results indicated that sediment FDOM was sensitive to anthropogenic disturbances, with protein-like substances dominating heavily disturbed areas (69%) and humic-like substances dominating less disturbed areas (63%). However, no significant difference in FDOM composition was found in the water. Similarly, α and β diversity indices for bacterial communities showed no marked variation (P > 0.05) between highly and lightly disturbed areas in both water and sediment samples. Nevertheless, co-occurrence network analysis revealed more negatively correlated links and longer average path length with stronger disturbances. This suggests that while the intensity of anthropogenic disturbance has not yet reached a threshold sufficient to alter the structure of the bacterial community, it might have influenced the types and quantities of resources accessible to the community. Consequently, bacteria might have responded to these changes through competitive interactions, enabling them to resist environmental fluctuations. We found that anthropogenic disturbances were positively linked stochastic processes in the bacterial community assembly and influenced groups that degraded terrestrial humic-like substances. Moreover, the sources and fluorescence components of DOM could have shaped bacterial diversity and community assembly. Discussion Overall, these findings illustrate that anthropogenic disturbance affects FDOM composition and its relationship with bacteria, providing valuable insights for managing shallow lake ecosystems.
Collapse
Affiliation(s)
- Yue Meng
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Key Laboratory of Plateau Wetland Conservation and Restoration, Guiyang, China
| | - Xin Jiang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Key Laboratory of Plateau Wetland Conservation and Restoration, Guiyang, China
| | - Yue Li
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, Guizhou, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Key Laboratory of Plateau Wetland Conservation and Restoration, Guiyang, China
| | - Xingyu Long
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Key Laboratory of Plateau Wetland Conservation and Restoration, Guiyang, China
| |
Collapse
|
2
|
Zhang J, Li Y, Yuan J, Chi F, Kuang E, Zhu Y, Sun L, Wei D, Liu J. Analysis of the fluorescence spectral characteristics of dissolved organic matter in a black soil with different straw return amounts. Sci Rep 2024; 14:29948. [PMID: 39622888 PMCID: PMC11612491 DOI: 10.1038/s41598-024-72050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 12/06/2024] Open
Abstract
Straw return improves soil carbon pool and dissolved organic matter (DOM) characteristics in black soil. Optimal straw return rate is the key to promoting straw return practices in farmland in Northeast China. The experiment was conducted at the Science and Technology Park of China Grain Storage and Northern Corporation in NenJiang, Heilongjiang Province, straw return at 0 kg hm-2, 3000 kg hm-2, 4500 kg hm-2, and 9000 kg hm-2. In the seventh year of the experiment, we used three-dimensional excitation-emission matrices combined with Parallel Factor analysis to characterize the fluorescence characteristics of DOM of black soils. The results showed substantial improvement in soil physical characteristics and soil organic matter (SOM) following straw return, SOM content rises in proportion to the amount of straw returned, and a significant positive correlation coefficient between water-holding capacity (WHC) (p < 0.001, r = 0.82) and dissolved organic matter (DOC) (p < 0.01, r = 0.77). Moreover, straw return significantly increased the richness of three fluorescent components, namely fulvic acid (UV and visible fulvic acids), humic-like acid, and protein-like (short and long-wavelength tryptophan). The fluorescence intensities of these components were lower in straw treatments than in no straw return. The fluorescence intensities of fulvic and humic acids showed decreasing and increasing trends, respectively, with increasing straw return amount. The fluorescence spectroscopy data of DOC demonstrated the key role of high straw return amounts in enhancing substantially the metabolic activity of soil microorganisms. Overall, straw-returning practices improve soil fertility and can be beneficial for black soil farmlands, with the optimal return rate observed at 4500 kg hm-2.
Collapse
Affiliation(s)
- Jiuming Zhang
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yan Li
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jiahui Yuan
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Fengqin Chi
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Enjun Kuang
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yingxue Zhu
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lei Sun
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| | - Jie Liu
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
3
|
Cheng Z, Hu Q, Guo H, Ma Q, Zhou J, Wang T, Zhu L. Long-term straw return enhanced the chlorine reactivity of soil DOM: Highlighting the molecular-level activity and transformation trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175485. [PMID: 39147061 DOI: 10.1016/j.scitotenv.2024.175485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Chemical properties and molecular diversity of dissolved organic matter (DOM) in agricultural soils are important for soil carbon dynamics and chlorine activity. Yet the chlorine reactivity of soil DOM at the molecular level under agricultural management practices remains unidentified. Here, we investigated the chlorine reactivity of soil DOM under long-term straw return and the molecular activities and transformations during chlorination. The 9-year straw return enhanced the chlorine reactivity of soil DOM, leading to increases in the production of traditional disinfection byproducts (DBPs) and decreases in the formation of emerging high molecular weight DBPs. C17HnOmCl1-2 and C22HnNmOzCl were the highest relative abundances of emerging DBPs. The emerging DBPs were primarily generated through chlorine substitution reactions, with their precursors exhibiting higher H/Cwa (1.47) and O/Cwa (0.41) ratios under straw return. The molecular transformation ability and inactive molecules of soil DOM under long-term straw return were reduced after chlorination, resulting in increased DOM instability. Chlorination led to a shift in the thermodynamic processes of soil DOM molecules from thermodynamically limited to thermodynamically favorable processes, and lignin-like compounds displayed higher potentials for transformation into protein/amino sugar-like compounds. C19H26O6 was identified as a sensitive formula for tracing chlorine reactivity under straw return, and a network illustrating the generation of DBPs from C19H26O6 was established. Overall, these results highlighted the strong chlorine reactivity of soil DOM under long-term straw return.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300385, China.
| |
Collapse
|
4
|
Ren D, Yang B, Wang Y, Wang J. Molecular-level insight into the role of soil-derived dissolved organic matter composition in regulating photochemical reactivity. WATER RESEARCH 2024; 268:122765. [PMID: 39541853 DOI: 10.1016/j.watres.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Soil-derived dissolved organic matter (DOM) links soil and water carbon pools and is an important source of photochemically produced reactive intermediates (PPRIs) in aquatic environments. Despite its importance, the variations in photochemical reactivity of soil-derived DOM molecules in producing PPRIs across broad geographical regions, and the factors driving these variations, remain unclear. Herein, we resolved the apparent quantum yields (Φ(PPRIs)) of hydroxyl radicals (•OH), singlet oxygen (1O2), and excited triplet-state DOM (3DOM*) for irradiated DOM from 22 representative soil reference materials in China, and linked them to soil pH, mineral weathering degree, and DOM characteristics. Generally, the average Φ(PPRIs) values of the soil-derived DOM followed the order of Φ(3DOM*) (1.67× 10-2) > Φ(1O2) (1.47× 10-2) > Φ(•OH) (7.31× 10-5). The DOM from less weathered soils showed higher Φ(•OH) and Φ(3DOM*) and comparable Φ(1O2) than that from more weathered soils. The differences were mainly regulated by the abundance of humic-, lignin-, tannin-, and aromatic-like compounds, as indicated by the correlation and random forest model analyses. Partial least squares and multiple linear regression analyses identified DOM molecular weight, nominal oxidation state of carbon, and soil chemical index of alteration as effective predictors of •OH yields. Soil chemical index of alteration emerged as a prioritized predictor of 3DOM* yields, while the electron-donating capacity and humic-like compound content of the soil-derived DOM were effective predictors of 1O2 yields. This study advances our understanding of how mineral weathering processes regulate the photochemical reactivity of soil-derived DOM in the aquatic environment across wide geographical regions.
Collapse
Affiliation(s)
- Dong Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinghui Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Liu Y, Li M, Ren D, Li Y. Spatial distribution of sediment dissolved organic matter in oligotrophic lakes and its binding characteristics with Pb(II) and Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43369-43380. [PMID: 38902445 DOI: 10.1007/s11356-024-34043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Dissolved organic matter (DOM), the most active component in interstitial waters, determines the stability of heavy metals and secondary release in sediments. However, little is known about the composition and metal-binding patterns of DOM in interstitial water from oligotrophic lakes affected by different anthropogenic perturbations. Here, 18 interstitial water samples were prepared from sediments in agricultural, residential, tourist, and forest regions in an oligotrophic lake (Shengzhong Lake in Sichuan Province, China) watershed. Interstitial water quality and DOM composition, properties, and Cu(II)- and Pb(II)-binding characteristics were measured via physicochemical analysis, UV-vis spectroscopic, fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC), and fluorescence titration methods. The DOM, which was produced mainly by microbial activities, had low molecular weights, humification degrees, and aromaticity. Based on EEM-PARAFAC results, the DOM was generally composed of tryptophan- (57.7%), terrestrial humic- (18.7%), microbial humic- (15.6%), and tyrosine-like (8.0%) substances. The DOM in the metal complexes was primarily composed of tryptophan-like substances, which accounted for ~42.6% of the DOM-Cu(II) complexes and ~72.0% of the DOM-Pb(II) complexes; however, microbial humic-like substances primarily contributed to the stability of DOM-Cu(II) (logKCu = 3.7-4.6) and DOM-Pb(II) (logKPb = 4.3-4.8). Water quality parameters did not significantly affect the stability of DOM-metal complexes. We demonstrated that the metal-binding patterns of DOM in interstitial water from oligotrophic lakes are highly dependent on microbial DOM composition and are affected by anthropogenic perturbations to a lesser extent.
Collapse
Affiliation(s)
- Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Mengyuan Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- Nanchong Key Laboratory of Eco-Environmental Protection and Pollution Prevention in Jialing River Basin, Nanchong, 637000, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
6
|
Yang S, Wang K, Yu X, Xu Y, Ye H, Bai M, Zhao L, Sun Y, Li X, Li Y. Fulvic acid more facilitated the soil electron transfer than humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134080. [PMID: 38522204 DOI: 10.1016/j.jhazmat.2024.134080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.
Collapse
Affiliation(s)
- Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Hao C, Sun Q, Sun X, Li Q. Novel insights into antimony mobilization in different high- antimony aquifers from the molecular signatures of dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116377. [PMID: 38657454 DOI: 10.1016/j.ecoenv.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The crucial role of the fluorescent components of dissolved organic matter (DOM) in controlling antimony (Sb) mobilization in groundwater has been confirmed. However, the molecular signatures contributing to Sb enrichment in DOM remain unknown. This study aims to investigate the origins and molecular compositions of DOM in different high-Sb aquifers (Sb-mining and no-Sb-mining aquifer), as well as compare different molecular signatures of DOM and mechanisms for Sb migration. The findings showed that Sb concentrations in Sb-mining aquifer exhibited a positive correlation with lignin- and tannin-like molecules characterized by high O/C and low H/C ratios, indicating an increased abundance of aromatic components with higher Humification Index and SUV-absorbance at 254 nm, compared to no-Sb-mining aquifer. Correspondingly, the complexation and competitive adsorption were considered as the predominate formation mechanisms on Sb enrichment in Sb-mining aquifer. In addition, high abundances of bioreactivity DOM may facilitated the migration of Sb via electron transfer and competitive adsorption in native no-Sb-mining aquifer. The outcomes of this investigation offer novel insights into the mechanism on Sb enrichment influenced by DOM at the molecule level.
Collapse
Affiliation(s)
- Chunming Hao
- Nantong Institute of Technology, Nantong, Jiangsu 226002, PR China; North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Qianqian Sun
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Ximeng Sun
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China
| | - Qiong Li
- North China Institute of Science and Technology, Sanhe, Hebei 065201, PR China.
| |
Collapse
|
8
|
Wang D, Mai L, Yu Z, Wang K, Meng Z, Wang X, Li Q, Lin J, Wu D. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level. BIORESOURCE TECHNOLOGY 2024; 391:129947. [PMID: 37914056 DOI: 10.1016/j.biortech.2023.129947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Studies on compost dissolved organic matter (DOM) previously focus on its composition and humification, without considering DOM bioavailability to understand compost fertility. To decipher the fertility basis of compost, DOM bioavailability in thermophilic compost (TC) and vermicompost (VC) was investigated and linked with its molecular composition. Results showed that DOM bioavailability of VC (36 % BDOC) was generally higher than that of TC (22 % BDOC) due to containing more tannin-like substances. Inversely, only lipid-/carbohydrate-/protein-like substances contributed to DOM bioavailability in TC. Moreover, these differences of bioavailability expanded with C/N decreased in composting materials. Specifically, the %BDOC of VC with N-rich materials (C/N < 25) was 2.1-3.0 times higher than that in TC, while it was only 1.2-1.4 times for C-rich materials (C/N < 25), because N-surplus facilitated the formation of O-/N-containing aromatics (e.g., CHON and tannin) in VC, but inhibited the decomposition of organic materials into small bioactive molecules in TC.
Collapse
Affiliation(s)
- Dingmei Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Liwen Mai
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kongtan Wang
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Institute of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ze Meng
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Xiongfei Wang
- Hainan Soil and Fertilizer Station, Haikou 571100, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China
| | - Jiacong Lin
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation, and Research Station, Danzhou 571737, China.
| |
Collapse
|
9
|
Zhao X, Chen C, Chen H, Guo Y, Zhang X, Li M, Cao L, Wang Y, Gong T, Che L, Yang G, Xian Q. Evolutions of dissolved organic matter and disinfection by-products formation in source water during UV-LED (275 nm)/chlorine process. WATER RESEARCH 2023; 243:120284. [PMID: 37441900 DOI: 10.1016/j.watres.2023.120284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Ultraviolet light-emitting diode (UV-LED) is a promising option for the traditional low-pressure UV lamp, but the evolutions of DOM composition, the formation of disinfection by-products (DBPs) and their toxicity need further study in raw water during UV-LED/chlorine process. In UV-LED (275 nm)/chlorine process, two-dimensional correlation spectroscopy (2DCOS) analysis on synchronous fluorescence and UV-vis spectra indicated the protein-like fractions responded faster than the humic-like components, the reactive sequence of peaks for DOM followed the order: 340 nm→240 nm→410 nm→205 nm→290 nm. Compared to chlorination for 30 mins, the UV-LED/chlorine process enhanced the degradation efficiency of three fluorescent components (humic-like, tryptophan-like, tyrosine-like) by 5.1%-46.1%, and the formation of carbonaceous DBPs (C-DBPs) significantly reduced by 43.8% while the formation of nitrogenous DBPs (N-DBPs) increased by 27.3%. The concentrations of C-DBPs increased by 17.8% whereas that of N-DBPs reduced by 30.4% in 24 h post-chlorination. The concentrations of brominated DBPs increased by 17.2% during UV-LED/chlorine process, and further increased by 18.5% in 24 h post-chlorination. According to the results of principal component analysis, the non-fluorescent components of DOM might be important precursors in the formation of haloketones, haloacetonitriles and halonitromethanes during UV-LED/chlorine process. Unlike chlorine treatment, the reaction of DOM in UV-LED/chlorine treatment generated fewer unknown DBPs. Compared with chlorination, the cytotoxicity of C-DBPs reduced but the cytotoxicity of both N-DBPs and Br-DBPs increased during UV-LED/chlorine process. Dichloroacetonitrile had the highest cytotoxicity, followed by monobromoacetic acid, bromochloroacetonitrile and trichloroacetic acid during 30 mins of UV-LED/chlorine process. Therefore, besides N-DBPs, the more toxic Br-DBPs formation in bromide-containing water is also not negligible in the practical applications of UV-LED (275 nm)/chlorine process.
Collapse
Affiliation(s)
- Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chuze Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yaxin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Liu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Lei Che
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou City, Zhejiang Province 313000, China
| | - Guoying Yang
- Zhejiang Eco Environmental Technology Co. LTD, Huzhou City, Zhejiang Province 313000, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Zhang L, Guo Y, Xiao K, Pan F, Li H, Li Z, Xu H. Extreme rainstorm reshuffles the spatial distribution of heavy metals and pollution risk in sediments along the mangrove tidal flat. MARINE POLLUTION BULLETIN 2023; 194:115277. [PMID: 37480789 DOI: 10.1016/j.marpolbul.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Mangroves as typical blue carbon ecosystems exhibit a high level of heavy metal accumulation capability. In this study, we investigated how extreme rainstorm effects the spatial variability and pollution risk of sediment heavy metals (i.e., Fe, Mn, Cr, Cu, Zn, Cd, Pb, As and Hg) at different compartments of a typical tidal flat, including the bare mudflat, mangrove zone, and tidal creek in Shenzhen Bay, China. The results showed that the extreme rainstorm can change the sediment particle size, which further regulated the spatial distribution, and source-sink pattern of heavy metals. Due to the strong rainstorm flushing, the concentrations of most heavy metals increased toward the sea and the comprehensive pollution level increased by 8.3 % after the extreme rainstorm. This study contributes to better understanding of how extreme rainstorm regulates heavy metal behavior in mangrove sediments to achieve sustainable development of mangroves under the pressures of extreme weather events.
Collapse
Affiliation(s)
- Licong Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yuehua Guo
- CCCC-FHEC Ecological Engineering Co. Ltd., Shenzhen 518107, PR China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Feng Pan
- College of the Environment & Ecology, Xiamen University Xiamen 361102, PR China
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhenyang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hualin Xu
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518048, PR China
| |
Collapse
|
11
|
Liu M, Graham N, Xu L, Zhang K, Yu W. Bubbleless aerated-biological activated carbon as a superior process for drinking water treatment in rural areas. WATER RESEARCH 2023; 240:120089. [PMID: 37216786 DOI: 10.1016/j.watres.2023.120089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
12
|
Liu Y, Zhang W, Chen M, Zhao X, Liu H, Ge M, Li N, Ning Z, Gao W, Fan C, Li Q. Molecular insights into effects of PBAT microplastics on latosol microbial diversity and DOM chemodiversity. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131076. [PMID: 36848842 DOI: 10.1016/j.jhazmat.2023.131076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The impact of biodegradable microplastics on the microbial community and dissolved organic matter (DOM) in latosol has not been well reported. In this study, an incubation experiment at 25 ºC for 120 days using latosol amended with low (5%) and high (10%) concentrations of polybutylene adipate terephthalate (PBAT) microplastics was carried out to explore the impacts of PBAT microplastics on soil microbial communities and DOM chemodiversity, and the intrinsic interactions between their shifts. The main bacterial and fungal phyla in soil, namely Chloroflexi, Actinobacteria, Chytridiomycota, and Rozellomycota showed a nonlinear relationship with PBAT concentration and played a pivotal role in shaping DOM chemodiversity. A higher decreased levels of lignin-like compounds and increased levels of protein-like and condensed aromatic compounds in the 5% treatment were observed than that in the 10% treatment. Furthermore, a higher increase relative abundance of CHO compounds in the 5% treatment than in the 10% treatment was ascribed to its higher oxidation degree. Co-occurrence network analysis suggested that bacteria formed more complex relationships with DOM molecules than fungi did, indicating their critical roles in DOM transformation. Our study has important implications for understanding the potential influence of biodegradable microplastics on carbon biogeochemical roles in soil.
Collapse
Affiliation(s)
- Yuqin Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Wen Zhang
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China
| | - Miao Chen
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China.
| | - Xiongwei Zhao
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Huiran Liu
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Meihong Ge
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Ning Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Ziyu Ning
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Wenlong Gao
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Changhua Fan
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| | - Qinfen Li
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, China; National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, Hainan, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, Hainan, China
| |
Collapse
|
13
|
Wang B, Shan T, Wang J, Huang F, Liu W, Tu W, Li S, Chen Q. Sources, distribution and decomposition of soil organic matter based on an effective biomarker in the pastoral areas of Zoige Plateau, China. CHEMOSPHERE 2023; 312:137295. [PMID: 36410503 DOI: 10.1016/j.chemosphere.2022.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The degradation of organic matter in soils plays an important role in the carbon cycle. Lignin is the main source of soil organics and it can be used to trace the source, distribution and turnover of organic matter. In this study the distribution and degradation of lignin were investigated to identify the source and degradation of soil organic matter during the succession of China's Zoige Plateau. Lignin monomers were determined by gas chromatography-mass spectrometry with alkaline CuO oxidation and the soils' δ13C and δ15N contents were interpreted to explore the turnover rate of lignin and organic matter. The main source of organics was identified as C3 non-woody angiosperm tissues. Lignin in the topsoil (0-30 cm) was derived from litter and roots, and it then migrated vertically to the deep soil (30-80 cm). Correlations of δ13C/δ15N with the soil's elemental composition showed that the organics degraded more quickly in meadow soil than in bog soil. The soil communities in the meadow and bog soils were generally similar, but there were certain differences in the dominant microbial phyla at different depths. The meadow soil's effectiveness as a carbon sink was gradually weakened, while that of the bog soil strengthened with depth. These results provide a scientific basis for accurately assessing the carbon sink capacity of the soils in Zoige Plateau.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China.
| | - Tingqian Shan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Junjie Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China.
| | - Wei Liu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Weiguo Tu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Qingsong Chen
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610015, People's Republic of China
| |
Collapse
|