1
|
Zhang Z, Ren X, Liu Y, Song S, Ren Y, Li L, Pang H, Yang J, Lu J. Enhancing sulfide mitigation via the synergistic dosing of calcium peroxide and ferrous ions in gravity sewers: Efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137285. [PMID: 39847929 DOI: 10.1016/j.jhazmat.2025.137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Chemical dosing constitutes an effective strategy for sulfide control in sewers; however, its efficacy requires further optimization and enhancement. In this study, a novel dosing strategy using the synergistic dosing of calcium peroxide (CaO2) and ferrous ions (Fe2+) for sulfide control was proposed, and its efficacy in controlling sulfides was evaluated using a long-term laboratory-scale reactor. The results showed that adding CaO2-Fe2+ improves the effect of sulfide control. When the ratio of the agent to the sewage (w/v) was 0.30 %, the RT50 of sulfide production rate was 8.34 days. The analysis of microbial communities in sewage biofilm revealed that the relative abundances of sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB) demonstrated an overall downward tendency, suggesting that the potent oxidizing •OH generated by the synergism of CaO2 and Fe2+ could indiscriminately restrain the growth of microorganisms. Additionally, intracellular metabolic pathways, along with enzyme activities and the relative abundances of genes associated with sulfide metabolism, were significantly impaired. The cost of CaO2-Fe2+ synergistic dosing is 31.3 % of CaO2 and 63.4 % of Fe2+ alone addition. It can be reasonably proposed that the addition of CaO2-Fe2+ may provide an efficacious and cost-effective method for the mitigation of sulfide in sewer systems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaowei Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxin Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shanshan Song
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yating Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment, and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|
2
|
Wang A, Li X, Luo X, He G, Huang D, Huang Q, Zhang XX, Chen W. Dissolved organic matter characteristics linked to bacterial community succession and nitrogen removal performance in woodchip bioreactors. J Environ Sci (China) 2025; 148:625-636. [PMID: 39095195 DOI: 10.1016/j.jes.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/04/2024]
Abstract
Woodchip bioreactors are an eco-friendly technology for removing nitrogen (N) pollution. However, there needs to be more clarity regarding the dissolved organic matter (DOM) characteristics and bacterial community succession mechanisms and their association with the N removal performance of bioreactors. The laboratory woodchip bioreactors were continuously operated for 360 days under three influent N level treatments, and the results showed that the average removal rate of TN was 45.80 g N/(m3·day) when the influent N level was 100 mg N/L, which was better than 10 mg N/L and 50 mg N/L. Dynamic succession of bacterial communities in response to influent N levels and DOM characteristics was an important driver of TN removal rates. Medium to high N levels enriched a copiotroph bacterial module (Module 1) detected by network analysis, including Phenylobacterium, Xanthobacteraceae, Burkholderiaceae, Pseudomonas, and Magnetospirillaceae, carrying N-cycle related genes for denitrification and ammonia assimilation by the rapid consumption of DOM. Such a process can increase carbon limitation to stimulate local organic carbon decomposition to enrich oligotrophs with fewer N-cycle potentials (Module 2). Together, this study reveals that the compositional change of DOM and bacterial community succession are closely related to N removal performance, providing an ecological basis for developing techniques for N-rich effluent treatment.
Collapse
Affiliation(s)
- Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangwen He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daqing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Wang L, Tian Y, Sun J, Li Y, Yang Z. The efficacy of bioretention systems amended with iron-modified biochar for the source-separated and component-specific treatment of rainwater runoff: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123728. [PMID: 39700931 DOI: 10.1016/j.jenvman.2024.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Bioretention systems offer advantages in controlling non-point source pollution from runoff rainwater. However, the systems frequently encounter challenges, including insufficient stability of nitrogen and phosphorus removal. Limited research has been performed on bioretention systems which integrate actual data from non-point source pollution cases for the quantitative and qualitative refinement of initial and non-initial rainwater. Moreover, the potential linkages between amended media and microbial communities in bioretention systems with the addition of novel functional filler have not been explored. In this study, a system for treating both initial and non-initial rainwater was established through measurements including iron-modified biochar (FeBC) packing and the optimization of the layer structures. In system treating initial rainwater, the systems loaded with FeBC maintained stable NH4+-N and NO3--N removal rates of over 95% and 80%, respectively under 12 rainfall simulation events. After a 10-day antecedent drying duration (ADD), the removal rates for NH4+-N and PO43--P remained above 78% and 85%. In systems designed to process non-initial rainwater, increasing the height of the transition layer effectively enhanced the NH4+-N removal stability. Meanwhile, increasing the height of the drainage layer could promote PO43--P removal rates to over 75%. The addition of FeBC facilitated the growth of certain denitrifiers improved overall NO3--N removal during successive rainfall events. The microbial communities may adapt to variations in the external environment by enhancing the synthesis of ribosome and the metabolism of pyrimidine and purine, further improving the stability of NH4+-N removal. This study provides a theoretical basis for the precise enhancement of nitrogen and phosphorus removal and the design of bioretention systems for differentiated treatment of rainwater, guiding their design and applications in different regions.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuan Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jie Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| |
Collapse
|
4
|
Zhou H, Timalsina H, Tang S, Circenis S, Kandume J, Cooke R, Si B, Bhattarai R, Zheng W. Simultaneous removal of nutrients and pharmaceuticals and personal care products using two-stage woodchip bioreactor-biochar treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135882. [PMID: 39298967 DOI: 10.1016/j.jhazmat.2024.135882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The co-occurrence of nutrients and pharmaceuticals and personal care products (PPCPs) in sewage effluent can degrade water quality of the receiving watersheds. This study investigated the simultaneous removal of excess nutrients and PPCP contaminants by developing a novel woodchip bioreactor and biochar (B2) treatment system. The result revealed that woodchip bioreactors could effectively remove nitrate via a denitrification process and adsorb some PPCPs. Biochar as a secondary treatment system significantly reduced the concentrations of PPCPs and dissolved reactive phosphorus (DRP) (p < 0.05), compared to the woodchip bioreactor. The removal efficiencies of all targeted contaminants by the B2 system were evaluated using various hydraulic retention times (HRTs) and biochar types (pelletized versus granular biochar). Longer HRTs and smaller biochar particles (granular biochar) could enhance the removal efficiencies of targeted contaminants. Average contaminant removals were 77.25 % for nitrate-N, 99.03 % for DRP, 69.51 % for ibuprofen, 73.65 % for naproxen, 91.09 % for sitagliptin, and 96.96 % for estrone, with woodchip bioreactor HRTs of 12 ± 1.4 h and granular biochar HRTs of 2.1 ± 0.1 h. Notably, the second-stage biochar systems effectively mitigated by-products leaching from woodchip bioreactors. The presence of PPCPs in the woodchip bioreactors enriched certain species, such as Methylophilus (69.6 %), while inhibiting other microorganisms and reducing microbial community diversity. Furthermore, a scaled-up B2 system was analyzed and assessed, indicating that the proposed engineering treatment system could provide decades of service in real-world applications. Overall, this study suggests that the B2 system has promising applications for addressing emerging and conventional contaminants.
Collapse
Affiliation(s)
- Hongxu Zhou
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Haribansha Timalsina
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Shuai Tang
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Sophie Circenis
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jason Kandume
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Richard Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA
| | - Buchun Si
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana, Champaign, Urbana, IL 61801, USA.
| | - Wei Zheng
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| |
Collapse
|
5
|
Jarosiewicz P, Font-Najera A, Mankiewicz-Boczek J, Chamerska A, Amalfitano S, Fazi S, Jurczak T. Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System. CHEMOSPHERE 2024; 367:143696. [PMID: 39510268 DOI: 10.1016/j.chemosphere.2024.143696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Urban areas face increasing pressures on water resources, necessitating innovative approaches to climate adaptation and water quality management. Nature-based Solutions (NbS) offer a sustainable pathway, yet their integration with existing infrastructure in urban settings remains occasional. This study presents a novel hybrid system-Sequential Sedimentation Biofiltration System (SSBS)-designed for stormwater treatment within confined urban spaces. The system was adjusted to the existing stormwater infrastructure by integrating a sedimentation tank (SED), three Permeable Reactive Barriers (PRBs), and a biofiltration zone (BIO). The SSBS was evaluated for its efficiency in removing nutrients and sediments, focusing on the performance of PRBs. Our findings showed limited sediment removal in SED and PRBs due to spatial constraints and a high Hydraulic Loading Rate (HLR = 1.31 m/d), achieving an average of 13.6% Total Suspended Solids (TSS) removal. However, PRBs demonstrated effective removal of ammonium (43.4%) and phosphate (59.3%), potentially due to sorption and biofilm activity, with dominant microbial communities including Proteobacteria, Bacteroidetes, and nutrient-transforming taxa such as Nitrospirae. Interestingly, PRBs increased nitrite levels (57.1%) but did not significantly impact nitrate, chloride, or TSS. The BIO zone further enhanced nutrient retention (56% PO4-P) and served as a sink for TSS (52%). This study underscores the potential for integrating traditional urban infrastructure with NbS in a sequential stormwater treatment system, demonstrating its effectiveness in space-constrained urban environments.
Collapse
Affiliation(s)
- P Jarosiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland.
| | - A Font-Najera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland
| | - J Mankiewicz-Boczek
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland
| | - A Chamerska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland
| | - S Amalfitano
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29,300, 00015, Monterotondo, Roma, Italy
| | - S Fazi
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29,300, 00015, Monterotondo, Roma, Italy
| | - T Jurczak
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
6
|
Kong Z, Wang Z, Lu X, Song Y, Yuan Z, Hu S. Significant in situ sludge yield reduction in an acidic activated sludge system. WATER RESEARCH 2024; 261:122042. [PMID: 38986284 DOI: 10.1016/j.watres.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, PR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Li J, Culver TB, Burgis CR, Zhang W, Smith JA. Validating Nitrogen Removal Models with Field Bioretention Data. JOURNAL OF ENVIRONMENTAL ENGINEERING 2024; 150. [DOI: 10.1061/joeedu.eeeng-7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/07/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Jiayi Li
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - Teresa B. Culver
- Associate Professor, Associate Chair for Academic Programs, Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904 (corresponding author). ORCID:
| | - Charles R. Burgis
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - Wuhuan Zhang
- Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904. ORCID:
| | - James A. Smith
- Henry L. Kinnier Professor of Civil Engineering, Dept. of Civil and Environmental Engineering, Univ. of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904
| |
Collapse
|
8
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
9
|
Wang X, Ma H, Huang C, Xu Z, Wang Y, Yang Y, Xiao H, Zhi Y, Chen L, Chai H. Investigation of pollutants accumulation in the submerged zone for pyrite-based bioretention facilities under continuous rainfall events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121448. [PMID: 38870797 DOI: 10.1016/j.jenvman.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Submerged zone in bioretention facilities for stormwater treatment has been approved to be an effective structure amendment to improve denitrification capability. However, the role and influence of water quality changes in the submerged zone under natural continuous random rainfall patterns are still not clear, especially when the rainfall is less than the pore water in the submerged zone. In this study, continuous rainfall events with different rainfall volume (light rain-light rain-heavy rain) were designed in a lab-scale woodchip mulched pyrite bioretention facility to test the effects of rainfall pattern. The results exhibited that light rain events significantly affected the pollutant removal performance of bioretention for the next rainfall. Different effects were observed during the long-term operation. In the 5th month, light rain reduced the ammonia removal efficiency of subsequent rainstorm events by 8.70%, while in the 12th month, when nitrate leakage occurred, light rain led to a 40.24% reduction in the next heavy rain event's nitrate removal efficiency. Additionally, light rain would also affect the concentration of by-products in the next rainfall. Following a light rain, the concentration of sulfate in the subsequent light rainfall can increase by 24.4 mg/L, and by 11.92 mg/L in a heavy rain. The water quality in the submerged zone and media characteristics analysis suggested that nitrogen conversion capacity of the substrate and microbes, such as Nitrospira (2.86%) and Thiobacillus (35.71%), as well as the in-situ accumulation of pollutants under light rain played important roles. This study clarifies the relationship between successive rainfall events and provides a more comprehensive understanding of bioretention facilities. This is beneficial for field study of bioretention facilities in the face of complex rainfall events.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Cong Huang
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Zheng Xu
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Yin Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610000, China
| | - Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Huan Xiao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
10
|
Niu C, Ying Y, Zhao J, Zheng M, Guo J, Yuan Z, Hu S, Liu T. Superior mainstream partial nitritation in an acidic membrane-aerated biofilm reactor. WATER RESEARCH 2024; 257:121692. [PMID: 38713935 DOI: 10.1016/j.watres.2024.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.
Collapse
Affiliation(s)
- Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yifeng Ying
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jing Zhao
- Sustainable Minerals Institute (SMI), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
11
|
Chen F, Zhang Q, Zheng G, Shen X, Xue Z, Zhang M, Li R, Wang Y. Enhancing bioretention efficiency for pollutant mitigation in stormwater runoff: Exploring ecosystem cycling dynamics amidst temporal variability. BIORESOURCE TECHNOLOGY 2024; 402:130827. [PMID: 38734258 DOI: 10.1016/j.biortech.2024.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.
Collapse
Affiliation(s)
- Feiwu Chen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Qian Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China.
| | - Guangtai Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiaojun Shen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhu Xue
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Mucheng Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Ruoxin Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Wang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
12
|
Kong Z, Song Y, Xu M, Yang Y, Wang X, Ma H, Zhi Y, Shao Z, Chen L, Yuan Y, Liu F, Xu Y, Ni Q, Hu S, Chai H. Multi-media interaction improves the efficiency and stability of the bioretention system for stormwater runoff treatment. WATER RESEARCH 2024; 250:121017. [PMID: 38118254 DOI: 10.1016/j.watres.2023.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Bioretention systems are one of the most widely used stormwater control measures for urban runoff treatment. However, stable and effective dissolved nutrient treatment by bioretention systems is often challenged by complicated stormwater conditions. In this study, pyrite-only (PO), pyrite-biochar (PB), pyrite-woodchip (PW), and pyrite-woodchip-biochar mixed (M) bioretention systems were established to study the feasibility of improving both stability and efficiency in bioretention system via multi-media interaction. PB, PW, and M all showed enhanced dissolved nitrogen and/or phosphorus removal compared to PO, with M demonstrating the highest efficiency and stability under different antecedent drying durations (ADD), pollutant levels, and prolonged precipitation depth. The total dissolved nitrogen and dissolved phosphorus removal in M ranged between 64%-86% and 80%-95%, respectively, with limited organic matter and iron leaching. Pore water, microbial community, and material analysis collectively indicate that pyrite, woodchip, and biochar synergistically facilitated multiple nutrient treatment processes and protected each other against by-product leaching. Pyrite-woodchip interaction greatly increased nitrate removal by facilitating mixotrophic denitrification, while biochar further enhanced ammonium adsorption and expanded the denitrification area. The Fe3+ generated by pyrite aerobic oxidation was adsorbed on the biochar surface and potentially formed a Fe-biochar composite layer, which not only reduced Fe3+-induced pyrite excessive oxidation but also potentially increased organic matter adsorption. Fe (oxyhydr)oxides intermediate product formed by pyrite oxidation, in return, controlled the phosphorus and organic matter leaching from biochar and woodchip. Overall, this study demonstrates that multi-media interaction may enable bioretention systems to achieve stable and effective urban runoff treatment.
Collapse
Affiliation(s)
- Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mei Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yunsong Yuan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fujian Liu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Yanhong Xu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Qichang Ni
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
13
|
Yang Y, Kong Z, Ma H, Shao Z, Wang X, Shen Y, Chai H. Insights into the transport and bio-degradation of dissolved inorganic nitrogen in the biochar-pyrite amended stormwater biofilter using dynamic modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119152. [PMID: 37774660 DOI: 10.1016/j.jenvman.2023.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The stormwater biofilter is a prevailing green infrastructure for urban stormwater management, but it is less effective in dissolved nitrogen removal, especially for nitrate. The mechanism that governs the nitrate leaching and performance stability of stormwater biofilters is poorly understood. In this study, a water quality model was developed to predict the ammonium and nitrate dynamics in a biochar-pyrite amended stormwater biofilter. The transport of dissolved nitrogen species was described by advection-dispersion models. The kinetics of adsorption and pyrite-based autotrophic denitrification are included in the model and simulated with a steady-state saturated flow. The model was calibrated and validated using eleven storm events. The modeling results reveal that the contribution of pyrite-based autotrophic denitrification to nitrate leaching alleviation improves with the increased drying duration. The nitrate removal efficiency was affected by a series of design parameters. Pyrite filling rate has a minor effect on nitrate removal promotion. Service area ratio and submerged zone depth are the key parameters to prevent nitrate leaching, as they influence the emergence and discharge time of nitrate breakthrough. The high inflow volume (high service area ratio) and small submerged zone can lead to earlier and increased discharge of peak nitrate otherwise the peak nitrate could be retained in the submerged zone and denitrified during the drying period. The developed mechanistic model provides a useful tool to evaluate the treatment ability of stormwater biofilters under varying conditions and offers a guideline for biofilter design optimization.
Collapse
Affiliation(s)
- Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
14
|
Gao Z, Zhang Q, Li J, Wang Y, Dzakpasu M, Wang XC. First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117976. [PMID: 37121004 DOI: 10.1016/j.jenvman.2023.117976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Identification, quantification, and control of First-Flush (FF) are considered extremely crucial in urban stormwater management. This paper reviews the methods for FF phenomenon identification, characteristics of pollutants flushes, technologies for FF pollution control, and the relationships among these factors. It further discusses FF quantification methods and optimization of control measures, aiming to reveal directions for future studies on FF management. Results showed that statistical analyses and Runoff Pollutographs Applying Curve (RPAC) fitting modelling of wash-off processes are the most applicable FF identification methods currently available. Furthermore, deep insights into the pollutant mass flushing of roof runoff may be a critical approach to characterizing FF stormwater. Finally, a novel strategy for FF control is established comprising multi-stage objectives, coupling LID/BMPs optimization schemes and Information Feedback (IF) mechanisms, aiming towards its application for the management of urban stormwater at the watershed scale.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Jie Li
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yufei Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|