1
|
Švábová M, Šváb M, Vorokhta M, Pohořelý M. Evaluation of micropollutant removal from artificially recharged water using activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138504. [PMID: 40367772 DOI: 10.1016/j.jhazmat.2025.138504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/29/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Pilot scale micropollutant removal onto three types of granular activated carbon was tested over a period of 25 months. The columns were operated in a mode as similar as possible to the functioning of the main waterworks with the emphasis on minimizing the washing of the activated carbon layers. Sampling was performed monthly and a total of 222 micropollutants were evaluated. The columns were located at a waterworks in central Bohemia (Czech Republic). Real influent water from the river Jizera after artificial recharge and sand filtration was used. The aim of this study was to verify whether the process of micropollutant removal was suitable under the operating conditions at the waterworks. Clear seasonal patterns of micropollutant concentrations in the influent were detected. All three columns were able to effectively remove or substantially decrease the concentration of most micropollutants. The best performance was shown for the activated carbon Aquasorb 5005, which had the highest surface area and a well developed porous structure with the highest proportion of mesopores. The data were evaluated in order to identify micropollutant parameters important for their removal, and the pH-dependent octanol/water partition coefficient was identified as the key parameter. Other important parameters were charge and polar surface area of the micropollutant molecules.
Collapse
Affiliation(s)
- Martina Švábová
- Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 94/41, Prague 18209, Czech Republic.
| | - Marek Šváb
- DEKONTA, a.s., Dřetovice 109, Stehelčeves 273 42, Czech Republic
| | - Maryna Vorokhta
- Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 94/41, Prague 18209, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Protection, University of Chemistry and Technology, Technická, Praha 166 28, Czech Republic
| |
Collapse
|
2
|
Tang J, Liao Y, Pan Z, Fang S, Tang M, Shao L, Han G. Interface-Confined Catalytic Synthesis of Anisotropic Covalent Organic Framework Nanofilm for Ultrafast Molecular Sieving. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415520. [PMID: 39976115 PMCID: PMC12005809 DOI: 10.1002/advs.202415520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as prominent membrane materials for efficiently fractionating organic molecules and ions due to their unique pore structure. However, the fabrication of free-standing COF nanofilms with high crystallinity remains an arduous undertaking, and feasible methods that can enable precise control over the film microstructure are barely reported. This work conceives an exquisite interface-confined catalytic strategy to prepare Tp-BD(OH)2 COF nanofilm with an anisotropic structure analogously to conventional polymeric membranes. Experimental data and molecular simulations reveal that the hydroxyl groups on the framework substantially capture and anchor the acid catalyst through hydrogen bonding interactions at the incipient stage of interfacial polycondensation, instigating confined catalysis and self-termination reaction at the interface. The distinctive asymmetric structure endows the Tp-BD(OH)2 COF nanofilm with a record-breaking pure water permeance of 525.3 L m-2 h-1 bar-1 and unprecedented dye/salt selectivity of 648.6, surpassing other reported COF films and state-of-the-art nanofiltration membranes, as well as enduring structural durability and chemical stability. The implemented interface-confined catalysis strategy opens up a new avenue for regulating the COF nanofilm microstructure and holds broad prospects for the rational design of high-performance membranes for sustainable water purification and treatment.
Collapse
Affiliation(s)
- Jiahao Tang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Yu Liao
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Zhenxiang Pan
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Songjun Fang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Mingxiu Tang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageState Key Laboratory of Urban Water Resource and Environment (SKLUWRE)School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Gang Han
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| |
Collapse
|
3
|
Yang L, Yu H, Zhao H, Xia C, Yu Q, Chen X, Cao G, Cai L, Meng S, Tang CY. Degradation of polyamide nanofiltration membranes by free chlorine and halide ions: Kinetics, mechanisms, and implications. WATER RESEARCH 2025; 272:122963. [PMID: 39689551 DOI: 10.1016/j.watres.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The kinetics of polyamide membrane degradation by free chlorine and halide ions (Br- and Cl-) were innovatively evaluated based on physicochemical properties and filtration performance, using water/solute permeability coefficient in addition to bromide incorporation as important indicators. The reaction rate constants for the reduced water and H3BO3 permeability coefficient were 1-2 orders of magnitude higher at 0-1 h than 1-10 h. N-bromination and bromination-promoted hydrolysis are dominant degradation mechanisms at 0-1 h (reflected by the breakage of hydrogen bond, the increased Ca binding content, and the increased charge density), and ring-bromination further occurs at 1-10 h (reflected by the disappearance or weakening of aromatic amide band and the nearly constant hydrogen bond). The more reactive but less abundant brominating agents (Br2O, BrOCl, BrCl, and Br2) played significant roles in membrane degradation, contradicting the conventional belief that HOBr is the only reactive species. BrCl at pH 4.0 and BrOCl and Br2O at pH 7.0 made significantly higher contributions to membrane degradation than HOBr (>76 % vs. <13 %). The increased contribution of BrCl and Br2 with the increased [Cl-] and [Br-]ex (the excess bromide, defined as [Br-]o - [HOCl]o when [Br-]o > [HOCl]o), respectively, was responsible for the greater reduction of water permeability coefficient. The innovative and simple approach developed in this study provides important insights to evaluate and predict membrane degradation.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huihui Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qinyu Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lankun Cai
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong, PR China
| |
Collapse
|
4
|
Zhou B, Luo J, Jin M, Xue N, He R, Li W, He T. Micropollutants removal from aquaculture water using layer-by-layer self-assembled nanofiltration membranes. WATER RESEARCH 2025; 271:122933. [PMID: 39693948 DOI: 10.1016/j.watres.2024.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Micropollutants (MPs) in aquaculture water are directly related to human health, but largely overlooked. The conventional water treatment technologies could not effectively remove MPs, and new technologies have been pursued with high MP removal rate, low cost and small footprint. This paper reported the first endeavor of using layer-by-layer (LBL) hollow fiber (HF) nanofiltration (NF) membranes to treat real aquaculture water. We compared three types of membranes with various surface chemical properties and pore sizes assembled by different polyelectrolytes (PEs). The MPs removal rates and operation stability of three NF membranes were studied in flocculation (Floc.)/ultrafiltration (UF)/NF, Floc./NF and direct NF processes. The best poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) NF membrane showed almost 100 % MPs removal in Floc./UF/NF, and above 95 % in direct NF process. Stable permeance was observed in three 24 h cycles for three processes. The correlation hot spot analysis between the physical properties and removal rates of MPs confirmed importance of size exclusion as the important factor for removal of MPs. The organic humus, rather than inorganic silicon and calcium, was found as the main foulant, which increased slightly the pore size of the LBL membranes with small pores, but blocked pores of membranes with large pores, affected the rejection for ions as well. The cost assessment based on (PSS/PAH)2.5 showed a total cost below 0.75 ¥/ton water, which is feasible to efficiently remove MPs from aquaculture water by NF membrane process.
Collapse
Affiliation(s)
- Bowen Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Luo
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Meng Jin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rongrong He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Luo YL, Pan YR, Wang X, Wang ZY, Daigger G, Ma JX, Tang LH, Liu J, Ren NQ, Butler D. Leveraging the water-environment-health nexus to characterize sustainable water purification solutions. Nat Commun 2025; 16:1269. [PMID: 39894865 PMCID: PMC11788440 DOI: 10.1038/s41467-025-56656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Chemicals of emerging concern (CECs) pose critical threats to both public health and the environment, emphasizing the urgent need for effective water treatment measures. Yet, the implementation of such intervention technologies often results in increased energy consumption and adverse environmental consequences. Here, we employ a comprehensive methodology that integrates multiple datasets, assumptions, and calculations to assess the human health and environmental implications of removing various CECs from source water. Our analysis of two treatment alternatives reveals that the integration of riverbank filtration with reverse osmosis offers a promising solution, yielding healthier and more environmentally favorable outcomes than conventional sequential technologies. By incorporating context-specific practices, such as utilizing renewable energy sources and clean energy technologies, we can mitigate the adverse impacts associated with energy-intensive water treatment services. This research advances our understanding of the water-health-environment nexus and proposes strategies to align drinking water provision with public health and environmental sustainability objectives.
Collapse
Affiliation(s)
- Yu-Li Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, China.
- Centre for Water Systems, University of Exeter, Exeter, UK.
| | - Zhao-Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Glen Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jia-Xin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lin-Hui Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - David Butler
- Centre for Water Systems, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Fan P, Paugam L, Biard PF, Szymczyk A. Mechanistic study of micropollutants rejection by nanofiltration of a natural water. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39737918 DOI: 10.1080/09593330.2024.2439137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants. The dielectric exclusion mechanism was found to be negligible, most likely due to the loose structure of the membrane. The complex behaviour of cations (counterions) was explained by the interplay between the Donnan exclusion, electromigration and steric hindrance effects. The model was found to overestimate the rejection of charged micropollutants, such as metolachlor NOA and metolachlor ESA. It was suggested that it may be attributed to the adsorption of micropollutants on some weakly rejected fractions of natural organic matter (NOM) such as humic substances, which was supported by higher rejection rates observed in a model solution replicating the ionic composition of the natural water matrix but lacking NOM.
Collapse
Affiliation(s)
- Penglin Fan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Lydie Paugam
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Pierre-François Biard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| | - Anthony Szymczyk
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France
| |
Collapse
|
7
|
Baig N, Matin A. Incorporating functionalized graphene oxide into diethylene triamine-based nanofiltration membranes can improve the removal of emerging organic micropollutants. J Colloid Interface Sci 2024; 676:657-669. [PMID: 39053413 DOI: 10.1016/j.jcis.2024.06.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The presence of emerging organic micropollutants (OMPs) in drinking and potable waters is a matter of great concern due to the health hazards associated with these. In this work, we present the preparation and application of a thin-film nanocomposite (TFN) membrane containing functionalized graphene oxide to effectively remove low-molecular-weight OMPs from water. Graphene oxide was functionalized with amino silane to enhance its cross-linking capability during the formation of the polyamide active layer via interfacial polymerization of diethylene triamine and trimesoyl chloride. The TEM analysis showed that amino silane functionalized GO had 2-3 layered sheets, while non-functionalized graphene oxide appeared multilayered or stacked. XPS analysis confirmed the successful functionalization of GO. Characterization of the membranes with advanced techniques confirmed the successful incorporation of the GO and its functionalization: spectra from Fourier Transform Infra Red spectroscopy had the characteristic peaks of GO and NH groups; scanning Electron Microscopy (SEM) images showed a continuous presence of GO nanosheets. Contact angle measurements showed the TFN membranes to be more hydrophilic than their thin film composite (TFC) counterparts. Incorporating functionalized oxide nanosheets in the active polyamide layer produced additional water permeation channels, resulting in an improvement of ∼25 % in permeate flux compared to the pristine TFC and the TFN membrane with non-functionalized GO. The removal efficiencies of four OMPs commonly found in natural waters: Amitriptylene HCl (ATT HCl) and Bisphenol-A (BPA), Acetaminophen (ACT), and Caffeine (CFN) were determined for the synthesized membranes. The TFN membrane with functionalized GO outperformed its TFC counterpart with ∼100 % removal for BPA, ∼ 90 % for CFN and ATT HCl, and ∼80 % removal for the low molecular weight ACT. The high-efficiency rejection of OMPs was attributed to the synergistic effects of size exclusion as well as the reduced specific interactions between the functional groups.
Collapse
Affiliation(s)
- Nadeem Baig
- IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - A Matin
- IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
8
|
Hu A, Liu Y, Wang X, Xia S, Van der Bruggen B. A machine learning based framework to tailor properties of nanofiltration and reverse osmosis membranes for targeted removal of organic micropollutants. WATER RESEARCH 2024; 268:122677. [PMID: 39490095 DOI: 10.1016/j.watres.2024.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/01/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Nanofiltration (NF) and reverse osmosis (RO) membranes play an increasingly important role in the removal of organic micropollutants (OMPs), which puts higher demands on the customization of membranes suitable for OMPs removal based on the rejection mechanisms. Here, the pathways of OMPs-targeted optimization for membranes were constructed by using machine learning (ML) to capture the correlations between OMPs removal efficiency with properties of membranes and OMPs. Through expertise assistance and rigorous modeling methodology, an accurate and robust Extreme Gradient Boosting (XGBoost) model was established, which could well recognize the dominant rejection mechanisms of OMPs (i.e., the size exclusion effect and electrostatic interactions). An exemplary application to another dataset of several high-risk OMPs showed how the optimized model could be used to estimate the overall efficiency of OMPs risk control and, more importantly, to provide quantitative guidance on membrane properties for specific removal targets. The satisfying prediction results demonstrated the good generalization of the ML model and consequently its ability to sensitively define the ideal membrane properties for the targeted removal of these (and any other concerned) OMPs. This study provides a feasible and universal ML-based framework to achieve the tailored selection and design of NF/RO membranes for OMPs risk control.
Collapse
Affiliation(s)
- Airan Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
9
|
Griffin AM, Bellona C, Strathmann TJ. Rejection of PFAS and priority co-contaminants in semiconductor fabrication wastewater by nanofiltration membranes. WATER RESEARCH 2024; 262:122111. [PMID: 39089122 DOI: 10.1016/j.watres.2024.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
Use of high-pressure membranes is an effective means for removal of per-and polyfluoroalkyl substances (PFAS) that is less sensitive than adsorption processes to variable water quality and specific PFAS structure. This study evaluated the use of nanofiltration (NF) membranes for the removal of PFAS and industry relevant co-contaminants in semiconductor fabrication (fab) wastewater. Initial experiments using a flat sheet filtration cell determined that the NF90 (tight NF) membrane provided superior performance compared to the NF270 (loose NF) membrane, with NF90 rejection values exceeding 97 % for all PFAS evaluated, including the ultrashort trifluoromethane sulfonic acid (TFMS). Cationic fab co-contaminants diaryliodonium (DIA), triphenylsulfonium (TPS), and tetramethylammonium hydroxide (TMAH) were not as highly rejected as anionic PFAS likely due to electrostatic effects. A spiral wound NF90 module was then used in a pilot system to treat a lab solution containing PFAS and co-contaminants and fab wastewater effluent. Treatment of the fab wastewater, containing high concentrations of perfluorocarboxylic acids (PFCAs), including trifluoroacetic acid (TFA: 96,413 ng/L), perfluoropropanoic acid (PFPrA: 11,796 ng/L), and perfluorobutanoic acid (PFBA: 504 ng/L), resulted in ≥92 % rejection of all PFAS while achieving 90 % water recovery in a semi-batch configuration. These findings demonstrate nanofiltration as a promising technology option for incorporation in treatment trains targeting PFAS removal from wastewater matrices.
Collapse
Affiliation(s)
- Aron M Griffin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
10
|
Monroy-Licht A, Carranza-Lopez L, De la Parra-Guerra AC, Acevedo-Barrios R. Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43561-43582. [PMID: 38918295 PMCID: PMC11252183 DOI: 10.1007/s11356-024-33698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
The 2030 Agenda, established in 2015, contains seventeen Sustainable Development Goals (SDGs) aimed at addressing global challenges. SDG-06, focused on clean water, drives the increase in basic sanitation coverage, the management of wastewater discharges, and water quality. Wastewater treatment could contribute to achieving 11 of the 17 SDGs. For this purpose, phytoremediation is a low-cost and adaptable alternative to the reduction and control of aquatic pollutants. The objective of this study is to highlight the role of macrophytes in the removal and degradation of these compounds, focusing on Eichhornia crassipes (Mart.) Solms, commonly known as water hyacinth. The reported values indicate that this plant has a removal capacity of over 70% for metals such as copper, aluminum, lead, mercury, cadmium, and metalloids such as arsenic. Additionally, it significantly improves water quality parameters such as turbidity, suspended solids, pH, dissolved oxygen, and color. It also reduces the presence of phosphates, and nitrogen compounds to values below 50%. It also plays a significant role in the removal of organic contaminants such as pesticides, pharmaceuticals, and dyes. This study describes several valuable by-products from the biomass of the water hyacinth, including animal and fish feed, energy generation (such as briquettes), ethanol, biogas, and composting. According to the analysis carried out, E. crassipes has a great capacity for phytoremediation, which makes it a viable solution for wastewater management, with great potential for water ecosystem restoration.
Collapse
Affiliation(s)
- Andrea Monroy-Licht
- Chemistry and Biology Group, Chemistry and Biology Department, Universidad del Norte, 081007, Barranquilla, Colombia.
| | - Liliana Carranza-Lopez
- Medicine and Biotechnology Research Group, School of Health Sciences, Universidad Libre Sectional Barranquilla, Bacteriology Program, 080016, Barranquilla, Colombia
| | - Ana C De la Parra-Guerra
- Department of Natural and Exact Sciences, Universidad de La Costa, 080002, Barranquilla, Colombia
- Colombian Caribbean Biodiversity Research Group, Faculty of Basic Sciences, Universidad del Atlántico, 081001, Barranquilla, Colombia
| | - Rosa Acevedo-Barrios
- Grupo de Investigación de Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, 130010, Cartagena, Colombia
| |
Collapse
|
11
|
Taylor RF, Zhou X, Xie C, Martinez F, Zhang X, Blankert B, Picioreanu C, Logan BE. Modeling Ion Transport across Thin-Film Composite Membranes During Saltwater Electrolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10969-10978. [PMID: 38860863 DOI: 10.1021/acs.est.4c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at a current density of 10 mA cm-2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.
Collapse
Affiliation(s)
- Rachel F Taylor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Xuechen Zhou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Chenghan Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Fernan Martinez
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Xinran Zhang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Bastiaan Blankert
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Cristian Picioreanu
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Environmental Science & Engineering Program, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Bruce E Logan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
| |
Collapse
|
12
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration. ENVIRONMENTAL RESEARCH 2024; 258:119423. [PMID: 38889839 DOI: 10.1016/j.envres.2024.119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
High concentration of chromium in aquatic environments is the trigger for researchers to remediate it from wastewater environments. However, conventional water treatment methods have not been satisfactory in removing chromium from water and wastewater over the last decade. Similarly, many adsorption studies have been focused on one aspect of the treatment, but this study dealt with all aspects of adsorption packages to come up with a concrete conclusion. Therefore, this study aimed to prepare pinecone biochar (PBC) via pyrolysis and apply it for Cr(VI) removal from wastewater. The PBC was characterized using FTIR, SEM-EDX, BET surface area, pHpzc, Raman analyses, TGA, and XRD techniques. Chromium adsorption was studied under the influence of PBC dose, solution pH, initial Cr(VI) concentration, and contact time. The characteristics of PBC are illustrated by FTIR spectroscopic functional groups, XRD non-crystallite structure, SEM rough surface morphology, and high BET surface area125 m2/g, pore volume, 0.07 cm3/g, and pore size 1.4 nm. On the other hand, the maximum Cr (VI) adsorption of 69% was found at the experimental condition of pH 2, adsorbent dosage 0.25 mg/50 mL, initial Cr concentration 100 mg/L, and contact time of 120 min. Similarly, the experimental data were well-fitted with the Langmuir adsorption isotherm at R2 0.96 and the pseudo-second-order kinetics model at R2 0.99. This implies the adsorption process is mainly attributed to monolayer orientation between the adsorbent and adsorbate. In the thermodynamics study of adsorption, ΔG was found to be negative implying the adsorption process was feasible and spontaneous whereas the positive values of ΔH and ΔS indicated the adsorption process was endothermic and increasing the degree of randomness, respectively. Finally, adsorbent regeneration and reusability were successful up to three cycles. In conclusion, biochar surface modification and reusability improvements are urgently required before being applied at the pilot scale.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
13
|
Ozkul S, Arbabzadeh O, Bisselink RJM, Kuipers NJM, Bruning H, Rijnaarts HHM, Dykstra JE. Selective adsorption in ion exchange membranes: The effect of solution ion composition on ion partitioning. WATER RESEARCH 2024; 254:121382. [PMID: 38471202 DOI: 10.1016/j.watres.2024.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Electrodialysis is a water desalination technology that enables selective separation of ions, making it a promising solution for sustainable water reuse. The selectivity of the process is mainly determined by the properties of ion exchange membranes that can vary depending on the composition of ions in water, such as water uptake and charge density. In this work, we studied selective adsorption of Na+ and K+ ions in various ion exchange membranes considering the effect of solution ion composition on membrane water volume fraction. For that purpose, we conducted membrane adsorption experiments using solutions with Na+ and K+ ions with different ion compositions including Li+, Ca2+ or Mg2+ ions at different concentrations (0.001 - 0.25 M). The experiments showed that with the total ion concentration and the amount of divalent ions in solution, the membrane water volume fraction decreases while the selective adsorption of the smaller (hydrated) K+ ions over the Na+ ions in the membrane increases. We developed a theoretical framework based on Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) theory to describe the effect of membrane water volume fraction on selective adsorption of the ions by including volumetric effects, such as size exclusion. The developed framework was used to describe ion partitioning results of the membrane adsorption experiments. In addition, the effect of solution ion composition on selective ion removal during electrodialysis operation was evaluated using experimental data and theoretical calculations. The results of this study show that considering volumetric effects can improve the ion partitioning description in ion exchange membranes for solutions with various ion compositions.
Collapse
Affiliation(s)
- S Ozkul
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - O Arbabzadeh
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands; Department of Civil, Environmental and Architectural Engineering, University of Padua, Via Marzolo 9, Padua 35131, Italy
| | - R J M Bisselink
- Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - N J M Kuipers
- Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - H Bruning
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - H H M Rijnaarts
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - J E Dykstra
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands.
| |
Collapse
|
14
|
Arab N, Derakhshani R, Sayadi MH. Approaches for the Efficient Removal of Fluoride from Groundwater: A Comprehensive Review. TOXICS 2024; 12:306. [PMID: 38787085 PMCID: PMC11126082 DOI: 10.3390/toxics12050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
Contamination of groundwater with fluoride represents a significant global issue, with high concentrations posing serious public health threats. While fluoride is a critical element in water, excessive levels can be detrimental to human health and potentially life-threatening. Addressing the challenge of removing fluoride from underground water sources via nanotechnological approaches is a pressing concern in environmental science. To collate relevant information, extensive literature searches were conducted across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science, the American Chemical Society, Elsevier, Springer, and the Royal Society of Chemistry. VOS Viewer software version 1.6.20 was employed for a systematic review. This article delivers an exhaustive evaluation of various groundwater fluoride removal techniques, such as adsorption, membrane filtration, electrocoagulation, photocatalysis, and ion exchange. Among these, the application of nanoparticles emerges as a notable method. The article delves into nano-compounds, optimizing conditions for the fluoride removal process and benchmarking their efficacy against other techniques. Studies demonstrate that advanced nanotechnologies-owing to their rapid reaction times and potent oxidation capabilities-can remove fluoride effectively. The implementation of nanotechnologies in fluoride removal not only enhances water quality but also contributes to the safeguarding of human health.
Collapse
Affiliation(s)
- Negar Arab
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand 9717434765, Iran;
| | - Reza Derakhshani
- Department of Geology, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Mohammad Hossein Sayadi
- Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| |
Collapse
|
15
|
Trinh PB, Schäfer AI. Removal of glyphosate (GLY) and aminomethylphosphonic acid (AMPA) by ultrafiltration with permeate-side polymer-based spherical activated carbon (UF-PBSAC). WATER RESEARCH 2024; 250:121021. [PMID: 38218047 DOI: 10.1016/j.watres.2023.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is one of its main metabolites. GLY and AMPA are toxic to humans, and their complex physicochemical properties present challenges in their removal from water. Several technologies have been applied to remove GLY and AMPA such as adsorption, filtration, and degradation with varied efficiencies. In previous works, an ultrafiltration membrane with permeate-side polymer-based spherical activated carbon (UF-PBSAC) showed the feasibility of removing uncharged micropollutants via adsorption in a flow-through configuration. The same UF-PBSAC was investigated for GLY and AMPA adsorption to assess the removal of charged and lower molecular weight micropollutants. The results indicated that both surface area and hydraulic residence time were limiting factors in GLY/AMPA adsorption by UF-PBSAC. The higher external surface of PBSAC with strong affinity for GLY and AMPA showed higher removal in a dynamic process where the hydraulic residence time was short (tens of seconds). Extending hydraulic residence times (hundreds of seconds) resulted in higher GLY/AMPA removal by allowing GLY/AMPA to diffuse into the PBSAC pores and reach more surfaces. Enhancement was achieved by minimising both limiting factors (external surface and hydraulic residence time) with a low flux of 25 L/m2.h, increased PBSAC layer of 6 mm, and small PBSAC particle size of 78 µm. With this configuration, UF-PBSAC could remove 98 % of GLY and 95 % of AMPA from an initial concentration of 1000 ng/L at pH 8.2 ± 0.2 and meet European Union (EU) regulation for herbicides (100 ng/L for individuals and 500 ng/L for total herbicides). The results implied that UF-PBSAC was able to remove charged micropollutants to the required levels and had potential for application in wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Phuong B Trinh
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
16
|
Xia S, Liu M, Yu H, Zou D. Pressure-driven membrane filtration technology for terminal control of organic DBPs: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166751. [PMID: 37659548 DOI: 10.1016/j.scitotenv.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Disinfection by-products (DBPs), a series of undesired secondary contaminants formed during the disinfection processes, deteriorate water quality, threaten human health and endanger ecological safety. Membrane-filtration technologies are commonly used in the advanced water treatment and have shown a promising performance for removing trace contaminants. In order to gain a clearer understanding of the behavior of DBPs in membrane-filtration processes, this work dedicated to: (1) comprehensively reviewed the retention efficiency of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) for DBPs. (2) summarized the mechanisms involved size exclusion, electrostatic repulsion and adsorption in the membrane retention of DBPs. (3) In conjunction with principal component analysis, discussed the influence of various factors (such as the characteristics of membrane and DBPs, feed solution composition and operating conditions) on the removal efficiency. In general, the characteristics of the membranes (salt rejection, molecular weight cut-off, zeta potential, etc.) and DBPs (molecular size, electrical property, hydrophobicity, polarity, etc.) fundamentally determine the membrane-filtration performance on retaining DBPs, and the actual operating environmental factors (such as solute concentration, coexisting ions/NOMs, pH and transmembrane pressure) exert a positive/negative impact on performance to some extent. Current researches indicate that NF and RO can be effective in removing DBPs, and looking forward, we recommend that multiple factors should be taken into account that optimize the existed membrane-filtration technologies, rationalize the selection of membrane products, and develop novel membrane materials targeting the removal of DBPs.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Meijun Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Haiyang Yu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
17
|
Pang H, Allinson M, Northcott K, Schultz A, Scales PJ. Demonstrating removal credits for contaminants of emerging concern in recycled water through a reverse osmosis barrier-A predictive framework. WATER RESEARCH 2023; 244:120427. [PMID: 37567126 DOI: 10.1016/j.watres.2023.120427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
The performance of individual reverse osmosis (RO) systems varies significantly with different contaminants of emerging concern (CECs). As such, log reduction values (LRVs) of the concentration of these chemicals cannot be arbitrarily credited in water treatment and water recycling. This study looks to present an approach to the management of chemical risks by providing a systematic validation of RO barrier performance with respect to LRV credits for various classes of CECs. In this work, a one-off sampling campaign across five treatment barriers (strainer filtration, ultrafiltration, RO, ion exchange, chlorination) of a full-scale water recycling plant was conducted, followed by a systematic sampling campaign for a period of six weeks across just the RO barrier. The CECs screening methodology used GC-MS for quantification of 948 trace organic chemicals along with specific 44 per- and polyfluoroalkyl substances (PFAS) screening using LC-MS/MS to demonstrate the removal credits of the RO barrier to a wide spectrum of CECs. The work was used to validate an LRV barrier credit framework so as to predict the performance of a polyamide RO membrane for removal of a range of chemical classes, under typical operational conditions. Conductivity was validated as an efficient surrogate for membrane integrity and RO performance, along with specified operational conditions associated with permeate flux and recovery rate. A bioassay method (photobacterium test) showed good potential to be used as a quick measure to indicate the general toxicity of a sample caused by chemical contamination, because of its high detection sensitivity and time and cost efficiency.
Collapse
Affiliation(s)
- Hongjiao Pang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - Mayumi Allinson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Kathy Northcott
- Veolia Australia & New Zealand, Melbourne, VIC 3006, Australia
| | - Aaron Schultz
- Veolia Australia & New Zealand, Brisbane, QLD 4000, Australia
| | - Peter J Scales
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
18
|
Du Y, Pramanik BK, Zhang Y, Jegatheesan V. Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance. ENVIRONMENTAL RESEARCH 2023; 231:116265. [PMID: 37263466 DOI: 10.1016/j.envres.2023.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
Modelling the removal of monovalent and divalent ions from seawater via nanofiltration is crucial for pre-treatment in seawater reverse osmosis systems. Effective separation of divalent ions through nanofiltration and allowing the permeate containing only monovalent ions to pass through the reverse osmosis system produces pure NaCl salt from the concentrate. However, the Donnan steric pore model and dielectric exclusion assume a uniformly distributed cylinder pore morphology, which is not representative of the actual membrane structure. This study analyzed the impact of membrane thickness on neutral solute removal and investigated the effect of two different methods for calculating the Peclet number on rejection rates of monovalent and divalent salts. Results show that membrane thickness has a significant effect on rejection rates, particularly for uncharged solutes in the range of 0.5-0.7 solute radius to membrane pore size ratio. Operating pressures above 10 bar favour the use of effective active layer thickness over the membrane pore size to calculate the Peclet number. At low pressures, using the effective active layer can lead to overestimation of monovalent salt rejection and underestimation of divalent salt rejection. This study highlights the importance of appropriate Peclet number calculation methods based on applied pressure when modelling membrane separation performance.
Collapse
Affiliation(s)
- Yuchen Du
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Biplob Kumar Pramanik
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Engineering Research Centre for Chemical Pollution Control and Resource Recovery, Shandong Provincial Education Department, Qingdao, 266042, China.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
19
|
Long L, Peng LE, Zhou S, Gan Q, Li X, Jiang J, Han J, Zhang X, Guo H, Tang CY. NaHCO 3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment. WATER RESEARCH 2023; 242:120255. [PMID: 37356158 DOI: 10.1016/j.watres.2023.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The existence of disinfection by-products such as haloacetic acids (HAAs) in drinking water severely threatens water safety and public health. Nanofiltration (NF) is a promising strategy to remove HAAs for clean water production. However, NF often possesses overhigh rejection of essential minerals such as calcium. Herein, we developed highly selective NF membranes with tailored surface charge and pore size for efficient rejection of HAAs and high passage of minerals. The NF membranes were fabricated through interfacial polymerization (IP) with NaHCO3 as an additive. The NaHCO3-tailored NF membranes exhibited high water permeance up to ∼24.0 L m - 2 h - 1 bar-1 (more than doubled compared with the control membrane) thanks to the formation of stripe-like features and enlarged pore size. Meanwhile, the tailored membranes showed enhanced negative charge, which benefitted their rejection of HAAs and passage of Ca and Mg. The higher rejection of HAAs (e.g., > 90%) with the lower rejection of minerals (e.g., < 30% for Ca) allowed the NF membranes to achieve higher minerals/HAAs selectivity, which was significantly higher than those of commercially available NF membranes. The simultaneously enhanced membrane performance and higher minerals/HAAs selectivity would greatly boost water production efficiency and water quality. Our findings provide a novel insight to tailor the minerals/micropollutants selectivity of NF membranes for highly selective separation in membrane-based water treatment.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
20
|
Dolar D, Ćurić I, Ašperger D. Removal, Adsorption, and Cleaning of Pharmaceutical on Polyamide RO and NF Membranes. Polymers (Basel) 2023; 15:2745. [PMID: 37376394 DOI: 10.3390/polym15122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmaceuticals are present in various waters and can be almost completely rejected by membrane separation processes, i.e., nanofiltration (NF) and reverse osmosis (RO). Nevertheless, the adsorption of pharmaceuticals can decrease their rejection, so adsorption can be considered a very important removal mechanism. In order to increase the lifetime of the membranes, the adsorbed pharmaceuticals must be cleaned from the membrane. The used pharmaceutical (albendazole), the most common anthelmintic for threatening worms, has been shown to adsorb to the membrane (solute-membrane adsorption). In this paper, which is a novelty, commercially available cleaning reagents, NaOH/EDTA solution, and methanol (20%, 50%, and ≥99.6%) were used for pharmaceutical cleaning (desorption) of the NF/RO membranes used. The effectiveness of the cleaning was verified by Fourier-transform infrared spectra of the membranes. Of all the chemical cleaning reagents used, pure methanol was the only cleaning reagent that removed albendazole from the membranes.
Collapse
Affiliation(s)
- Davor Dolar
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Iva Ćurić
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Danijela Ašperger
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
21
|
Bernadet O, Larasati A, van Veelen HPJ, Euverink GJW, Gagliano MC. Biological Oxygen-dosed Activated Carbon (BODAC) filters - A bioprocess for ultrapure water production removing organics, nutrients and micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131882. [PMID: 37356180 DOI: 10.1016/j.jhazmat.2023.131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Biological oxygen-dosed activated carbon (BODAC) filters in an Ultrapure water plant were demonstrated to have the potential to further treat secondary wastewater treatment effluent. The BODAC filters were operated for 11 years without carbon regeneration or replacement, while still functioning as pre-treatment step to reverse osmosis (RO) membranes by actively removing organic micropollutants (OMPs) and foulants. In this study, the removal of nutrients and 13 OMPs from secondary wastewater treatment effluent was investigated for 2 years and simultaneously, the granules' characterization and microbial community analysis were conducted to gain insights behind the stable long-term operation of the BODAC filters. The results showed that the BODAC granules' surface area was reduced by ∼70 % of what is in virgin carbon granules and covered by biofilm and inorganic depositions. The BODAC filters reduced the concentration of soluble organics, mainly proteins, performed as an effective nitrification system, and almost completely removed manganese. During the 2 years of observation, the filters consistently removed some OMPs such as hydrochlorothiazide, metoprolol, sotalol, and trimethoprim by at least 70 %. Finally, through microbial community analysis, we found that nitrifying and manganese-oxidizing bacteria were detected in high relative abundance on BODAC granules, supporting BODAC performance in removing OMPs and manganese as well as converting nitrogenous species in the water.
Collapse
Affiliation(s)
- Olga Bernadet
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands
| | - Amanda Larasati
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - H Pieter J van Veelen
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Gert Jan Willem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands.
| | - Maria Cristina Gagliano
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| |
Collapse
|
22
|
Wang X, Liang M, Zhang J, Chen X, Zaw M, Oo TZ, Lwin NW, Aung SH, Chen Y, Chen F. Double-photoelectrode redox desalination of seawater. WATER RESEARCH 2023; 239:120051. [PMID: 37182310 DOI: 10.1016/j.watres.2023.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
High energy consumption and low salt removal rate are key barriers to realizing practical electrochemical seawater desalination processes. Here, we demonstrate a novel solar-driven redox flow desalination device with double photoelectrodes to achieve efficient desalination without electrical energy consumption. The device consists of three parts: one photoanode unit, one photocathode unit, and one redox flow desalination unit sandwiched between the two photoelectrode units. The photoelectrode units include a TiO2 photoanode and a NiO photocathode sensitized with N719 dye, triiodide/iodide redox electrolyte, and graphite paper integrated electrodes decorated with 3,4-ethylene-dioxythiophene. Two salt feeds are located between two ferro/ferricyanide redox flow chambers. Under light illumination, high-quality freshwater is obtained from brackish water containing different concentrations of NaCl from 1000 to 12,000 ppm with a high NaCl removal rate. The device can work in multiple desalination cycles without significant performance declines. Furthermore, natural seawater with an ionic conductivity of 53.45 mS cm-1 is desalinated to freshwater. This new design opens opportunities to realize efficient and practical solar-driven desalination processes.
Collapse
Affiliation(s)
- Xing Wang
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, PR China; School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Mengjun Liang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, PR China; Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiancong Zhang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Xuncai Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Mono Zaw
- Department of Physics, Materials Research Laboratory, University of Mandalay, Mandalay 05032, Burma
| | - Than Zaw Oo
- Department of Physics, Materials Research Laboratory, University of Mandalay, Mandalay 05032, Burma
| | - Nyein Wint Lwin
- Department of Physics, Materials Research Laboratory, University of Mandalay, Mandalay 05032, Burma
| | - Su Htike Aung
- Department of Physics, Materials Research Laboratory, University of Mandalay, Mandalay 05032, Burma
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia.
| | - Fuming Chen
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, PR China; School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
23
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|