1
|
Verhille M, Hausler R. Evaluation of the impact of L-Tryptophan on the toxicology of Perfluorooctanoic acid in Daphnia magna: Characterization and perspectives. CHEMOSPHERE 2024; 367:143665. [PMID: 39489306 DOI: 10.1016/j.chemosphere.2024.143665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a pervasive environmental contaminant with well-documented toxic effects on both humans and animals, attracting significant scientific concern. Due to its affinity for proteins, research has predominantly focused on PFOA's interactions with biological macromolecules. However, the specific role of smaller molecules, such as amino acids, remains underexplored. This study uniquely evaluates the potential of l-tryptophan (L-Trp) to mitigate PFOA toxicity and investigates the interaction mechanisms involved. Results indicate that the presence of L-Trp in PFOA-contaminated water reduces acute toxicity in Daphnia magna, with an optimal molar ratio of approximately 1:2 (Trp:PFOA). The findings reveal that non-covalent interactions, particularly van der Waals forces and hydrogen bonds, are central to the Trp-PFOA complex formation. Additional contributions from hydrophobic interactions at the indole group and electrostatic forces between carbonyl and amine groups further stabilize the complex. These interactions likely reduce PFOA's toxicity by altering its bioavailability and distribution. While this study offers valuable insights into the binding mechanisms between L-Trp and PFOA, it raises important questions about the reversibility of this interaction and its applicability to other per- and polyfluoroalkyl substances (PFASs).
Collapse
Affiliation(s)
- Mathieu Verhille
- Department of Civil and Environmnetal Engineering, École de Technologie Supérieure University of Québec, Montréal, Québec, H3C 1K3, Canada; Station Expérimentale des Procédés Pilotes en Environnement (STEPPE-ÉTS, École de Technologie Supérieure), Montréal, Québec, H3C 1K3, Canada.
| | - Robert Hausler
- Department of Civil and Environmnetal Engineering, École de Technologie Supérieure University of Québec, Montréal, Québec, H3C 1K3, Canada; Station Expérimentale des Procédés Pilotes en Environnement (STEPPE-ÉTS, École de Technologie Supérieure), Montréal, Québec, H3C 1K3, Canada
| |
Collapse
|
2
|
Wang Y, Zhang J, Zhang W, Yao J, Liu J, He H, Gu C, Gao G, Jin X. Electrostatic Field in Contact-Electro-Catalysis Driven C-F Bond Cleavage of Perfluoroalkyl Substances. Angew Chem Int Ed Engl 2024; 63:e202402440. [PMID: 38426574 DOI: 10.1002/anie.202402440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 μm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing, 312000, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Suzhou High School Of Jiangsu Province, Renmin Road 699, Suzhou, 215007, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jiaming Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Huan He
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing, 401121, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Li C, Shen C, Gao B, Liang W, Zhu Y, Shi W, Ai S, Xu H, Wu J, Sun Y. Degradation and mechanism of PFOA by peroxymonosulfate activated by nitrogen-doped carbon foam-anchored nZVI in aqueous solutions. CHEMOSPHERE 2024; 351:141209. [PMID: 38224751 DOI: 10.1016/j.chemosphere.2024.141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 μM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.
Collapse
Affiliation(s)
- Changyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| | - Cong Shen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Wang Z, Jin X, Hong R, Wang X, Chen Z, Gao G, He H, Liu J, Gu C. New Indole Derivative Heterogeneous System for the Synergistic Reduction and Oxidation of Various Per-/Polyfluoroalkyl Substances: Insights into the Degradation/Defluorination Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21459-21469. [PMID: 38056012 DOI: 10.1021/acs.est.3c05940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The hydrated electron (eaq-) system is typically suitable for degrading perfluoroalkyl substances (PFASs). To enhance eaq- utilization, we synthesized a new indole compound (DIHA) that forms stable nanospheres (100-200 nm) in water via a supramolecular assembly. Herein, the DIHA nanoemulsion system exhibits high degradation efficiencies toward a broad category of PFASs, regardless of the headgroup, chain length, and branching structure, under UV (254 nm) irradiation. The strong adsorption of PFAS on the DIHA surface ensures its effective degradation/defluorination. Quenching experiments further demonstrated that the reaction took place on the surface of DIHA nanospheres. This specific heterogeneous surface reaction unveiled novel PFAS degradation and defluorination mechanisms that differ from previously reported eaq- systems. First, the photogenerated surface electrons nonselectively attacked multiple C-F bonds of the -CF2- chain. This plays a dominant degrading/defluorinating role in the DIHA system. Second, abundant hydroxyl radicals (•OH) were also produced, leading to synergistic reduction (by surface electron) and oxidation (by surface •OH) in a single system. This facilitates faster and deeper defluorination of different structured PFASs through multiple pathways. The new mechanism inspires the design of innovative organo-heterogeneous eaq- systems possessing synergistic reduction and oxidation functions, thereby making them potentially effective for treating PFAS-contaminated water.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California, Riverside, California 92521, United States
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Xu W, Li G, Qu H, Ma C, Zhang H, Cheng J, Li H. The Specific Removal of Perfluorooctanoic Acid Based on Pillar[5]arene-Polymer-Packed Nanochannel Membrane. ACS NANO 2023; 17:19305-19312. [PMID: 37768005 DOI: 10.1021/acsnano.3c06448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The conspicuous surface activity and exceptional chemical stability of perfluorooctanoic acid, commonly referred to as PFOA, have led to its extensive utilization across a broad spectrum of industrial and commercial products. Nonetheless, significant concerns have arisen regarding the environmental presence of PFOAs, driven by their recognized persistence, bioaccumulative nature, and potential human health risks. In the realm of sustainable agriculture, a pivotal challenge revolves around the development of specialized materials capable of effectively and selectively eliminating PFOA from the environment. This study proposes harnessing the exceptional properties of a pillar[5]arene polymer to construct a nanochannel membrane filled with tryptophan-alanine dipeptide pillar[5]arene polymer. Through the functionalization of these nanochannel membranes, we achieved a PFOA removal rate of 0.01 mmol L-1 min-1, surpassing the rates observed with other control chemicals by a factor of 4.5-15. The research on PFOA removal materials has been boosted because of the creation of this highly selective PFOA removal membrane.
Collapse
Affiliation(s)
- Weiwei Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haonan Qu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cuiguang Ma
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haifan Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
6
|
Zengin H, Toprak G, Zengin G. Investigation of adsorption performance of calcium oxide particles upon various treatments. WATER RESEARCH 2023; 243:120380. [PMID: 37482011 DOI: 10.1016/j.watres.2023.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
This study describes the improvements of adsorption capacities for raw calcium oxide (CaO) particles subjected to ultrasonication, activation with nitric acid and thermal treatments. The influence of acids and bases on CaO particle surface was assessed with respect to several variables including treatment methods, adsorption contact times, particle size and specific surface area characteristics, concentration and temperature along with various thermodynamic parameters. Structural analyses and physical characteristics of CaO particles were evaluated using FT-IR and SEM methods. SEM micrographs of samples revealed uniform distributions of CaO particles of average diameter 0.5-2.0 µm. The CaO surfaces showed CH3COOH as having the greatest amounts of adsorbate and modeling of the experimental adsorption isotherm data agreed well with the Freundlich adsorption isotherm. Enhancements in adsorption performance of untreated CaO particles were noted with the ultrasonication, activation with HNO3 and thermal treatment processes. The Langmuir-type adsorption demonstrated that single layer adsorption capacities of adsorbate CH3COOH at 25 oC on sonicated CaO (386.6 mg/g), with nitric acid and thermal activation (354.9 and 320.8 mg/g, respectively) were greater than that of the unsonicated CaO (296.3 mg/g) particles. Adsorption spontaneities of the processes were confirmed by the decreases in adsorption free energy values, ΔGads0, changing from -16.1 to -17.1 kJ mol-1 with temperature range 283-338 K.
Collapse
Affiliation(s)
- Huseyin Zengin
- Department of Chemistry, Faculty of Science and Literature, Gaziantep University, Gaziantep 27310, Turkey.
| | - Gokmen Toprak
- Department of Chemistry, Faculty of Science and Literature, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey
| | - Gulay Zengin
- Department of Chemistry, Faculty of Science and Literature, Gaziantep University, Gaziantep 27310, Turkey
| |
Collapse
|