1
|
Pakkir Shah AK, Walter A, Ottosson F, Russo F, Navarro-Diaz M, Boldt J, Kalinski JCJ, Kontou EE, Elofson J, Polyzois A, González-Marín C, Farrell S, Aggerbeck MR, Pruksatrakul T, Chan N, Wang Y, Pöchhacker M, Brungs C, Cámara B, Caraballo-Rodríguez AM, Cumsille A, de Oliveira F, Dührkop K, El Abiead Y, Geibel C, Graves LG, Hansen M, Heuckeroth S, Knoblauch S, Kostenko A, Kuijpers MCM, Mildau K, Papadopoulos Lambidis S, Portal Gomes PW, Schramm T, Steuer-Lodd K, Stincone P, Tayyab S, Vitale GA, Wagner BC, Xing S, Yazzie MT, Zuffa S, de Kruijff M, Beemelmanns C, Link H, Mayer C, van der Hooft JJJ, Damiani T, Pluskal T, Dorrestein P, Stanstrup J, Schmid R, Wang M, Aron A, Ernst M, Petras D. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc 2025; 20:92-162. [PMID: 39304763 DOI: 10.1038/s41596-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.
Collapse
Affiliation(s)
- Abzer K Pakkir Shah
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Axel Walter
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Marcelo Navarro-Diaz
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Judith Boldt
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jarmo-Charles J Kalinski
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Eftychia Eva Kontou
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James Elofson
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Alexandros Polyzois
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Carolina González-Marín
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Shane Farrell
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, USA
| | - Marie R Aggerbeck
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thapanee Pruksatrakul
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Nathan Chan
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Yunshu Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Magdalena Pöchhacker
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Andres Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda de Oliveira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Kai Dührkop
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Christian Geibel
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Lana G Graves
- Department of Environmental Systems Analysis, University of Tübingen, Tübingen, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Simon Knoblauch
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Kevin Mildau
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Tilman Schramm
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Karoline Steuer-Lodd
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Paolo Stincone
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Sibgha Tayyab
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Giovanni Andrea Vitale
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Berenike C Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Martinus de Kruijff
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Hannes Link
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Christoph Mayer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Justin J J van der Hooft
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tito Damiani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Robin Schmid
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mingxun Wang
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Allegra Aron
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark.
| | - Daniel Petras
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA.
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Tan Q, Wu H, Zheng L, Wang X, Xing Y, Tian Q, Zhang Y. Urban and agricultural land use led to niche differentiation of AOA, AOB and comammox along the Beiyun River continuum. WATER RESEARCH 2024; 255:121480. [PMID: 38518415 DOI: 10.1016/j.watres.2024.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
River ecological health has been severely threatened by anthropogenic land-use pressures. Here, by combining remote sensing and molecular biology methods, we evaluated the impact of land-use activities on nitrification, a fundamental ecological process in rivers, which is conducted by ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB), or the newly discovered complete ammonia oxidisers (comammox). We explored the relationships of the abundance, activity, and diversity of AOA, AOB, and comammox in river sediments with land-use pressure by proposing a quantitative land use pattern index (LPI) over a 184 km continuum along the Beiyun River in North China. We found that comammox dominated nitrification in the forestry upstream (67.07 % in summer, 56.40 % in winter), while AOB became the major player in the urban middle (56.51 % in summer, 53.08 % in winter) and agricultural downstream reaches (62.98 % in summer, 50.74 % in winter). In addition, urban and agricultural land use lowered the α diversity of AOA and comammox, as well as simplified their co-occurrence networks, but promoted AOB diversity and complicated their networks. The structural equation model illustrated that the key drivers affecting the key taxa and activities were ammonia, and C/N for AOB, and total organic matter, and pH for comammox. We thus conclude that watershed urban and agricultural land use drive the niche differentiation of AOA, AOB, and comammox, specifically leading to a robust AOB community but weakened AOA and comammox communities. Our study connects the macro and micro worlds and provides a new paradigm for studying the variation in microbial communities as well as the potential ecological consequences under the increased anthropogenic land-use pressures in the Anthropocene.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, PR China.
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
3
|
Li J, Liang E, Deng C, Li B, Cai H, Ma R, Xu Q, Liu J, Wang T. Labile dissolved organic matter (DOM) and nitrogen inputs modified greenhouse gas dynamics: A source-to-estuary study of the Yangtze River. WATER RESEARCH 2024; 253:121318. [PMID: 38387270 DOI: 10.1016/j.watres.2024.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Although rivers are increasingly recognized as essential sources of greenhouse gases (GHG) to the atmosphere, few systematic efforts have been made to reveal the drivers of spatiotemporal variations of dissolved GHG (dGHG) in large rivers under increasing anthropogenic stress and intensified hydrological cycling. Here, through a source-to-estuary survey of the Yangtze River in March (spring) and October (autumn) of 2018, we revealed that labile dissolved organic matter (DOM) and nitrogen inputs remarkably modified the spatiotemporal distribution of dGHG. The average partial pressure of CO2 (pCO2), CH4 and N2O concentrations of all sampling sites in the Yangtze River were 1015 ± 225 μatm, and 87.5± 36.5 nmol L-1, and 20.3 ± 6.6 nmol L-1, respectively, significantly lower than the global average. In terms of longitudinal and seasonal variations, higher GHG concentrations were observed in the middle-lower reach in spring. The dominant drivers of spatiotemporal variations in dGHG were labile, protein-like DOM components and nitrogen level. Compared with the historical data of dGHG from published literature, we found a significant increase in N2O concentrations in the Yangtze River during 2004-2018, and the increasing trend was consistent with the rising riverine nitrogen concentrations. Our study emphasized the critical roles of labile DOM and nitrogen inputs in driving the spatial hotspots, seasonal variations and annual trends of dGHG. These findings can contribute to constraining the global GHG budget estimations and controls of GHG emission in large rivers in response to global change.
Collapse
Affiliation(s)
- Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Chunfang Deng
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China; General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, PR China
| | - Qiang Xu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 15030, PR China
| | - Jiaju Liu
- Research Center for Integrated Control of Watershed Water Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ting Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
4
|
Liu S, Lin Y, Liu T, Xu X, Wang J, Chen Q, Sun W, Dang C, Ni J. Planktonic/benthic Bathyarchaeota as a "gatekeeper" enhance archaeal nonrandom co-existence and deterministic assembling in the Yangtze River. WATER RESEARCH 2023; 247:120829. [PMID: 37976624 DOI: 10.1016/j.watres.2023.120829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Archaea, the third proposed domain of life, mediate carbon and nutrient cycling in global natural habitats. Compared with bacteria, our knowledge about archaeal ecological modes in large freshwater environments subject to varying natural and human factors is limited. By metabarcoding analysis of 303 samples, we provided the first integrate biogeography about archaeal compositions, co-existence networks, and assembling processes within a 6000 km continuum of the Yangtze River. Our study revealed that, among the major phyla, water samples owned a higher proportion of Thaumarchaeota (62.8%), while sediments had higher proportions of Euryarchaeota (33.4%) and Bathyarchaeota (18.8%). A decline of polarization in phylum abundance profile was observed from plateau/mountain/hill to basin/plain areas, which was attributed to the increase of nutrients and metals. Planktonic and benthic Bathyarchaeota tended to co-occur with both major (e.g., methanogens or Thermoplasmata) and minor (e.g., Asgard or DPANN) taxa in the non-random networks, harboring the highest richness and abundances of keystone species and contributing the most positively to edge number, node degree, and nearest neighbor degree. Furthermore, we noted significantly positive contributions of Bathyarchaeota abundance and network complexity to the dominance of deterministic process in archaeal assembly (water: 65.3%; sediments: 92.6%), since higher carbon metabolic versatility of Bathyarchaeota would benefit archaeal symbiotic relations. Stronger deterministic assembling was identified at the lower-reach plain, and higher concentrations of ammonium and aluminum separately functioning as nutrition and agglomerator were the main environmental drivers. We lastly found that the Three Gorges Dam caused a simultaneous drop of benthic Bathyarchaeota abundance, network co-existence, and deterministic effects immediately downstream due to riverbed erosion as a local interference. These findings highlight that Bathyarchaeota are a "gatekeeper" to promote fluvial archaeal diversity, stability, and predictability under varying macroscopic and microscopic factors, expanding our knowledge about microbial ecology in freshwater biogeochemical cycling globally.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, PR China
| | - Yahsuan Lin
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, PR China.
| |
Collapse
|