1
|
Gao J, Mang Q, Li Q, Sun Y, Xu G. Microbial-algal symbiotic system drives reconstruction of nitrogen, phosphorus, and methane cycles for purification of pollutants in aquaculture water. BIORESOURCE TECHNOLOGY 2025; 430:132531. [PMID: 40233882 DOI: 10.1016/j.biortech.2025.132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Intensive aquaculture's excessive nitrogen, phosphorus, and methane emissions caused environmental degradation. This study explored how algae-bacteria symbiotic systems (ABSS) enhanced water purification by regulating element cycles. We established a Chlorella pyrenoidosa-Bacillus subtilis symbiotic system. At a 1:1 bacteria-to-algae ratio, chlorophyll a and cell dry weight were highest. C. pyrenoidosa supplied organic acids, carbohydrates, and amino acids to B. subtilis, which reciprocated with amino acids, purines, and vitamins. ABSS significantly reduced total nitrogen, ammonia nitrogen (NH4+-N), nitrite (NO2--N), nitrate (NO3--N), phosphate (PO43--P), total phosphorous, dissolved organic carbon, and chemical oxygen demand in aquaculture water. It reshaped microbial communities and enriched key genus (Limnohabitans, Planktophila, Polaromonas, Methylocystis) and upregulating genes linked to organic phosphate mineralization, methane oxidation, and nitrate reduction. These changes strengthened nitrogen-phosphorus-methane cycle coupling, boosting water purification. ABSS offers an eco-engineering solution for aquaculture pollution by optimizing microbial interactions and nutrient cycling.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
2
|
Jia Y, Huang D, Lan X, Sun X, Lin W, Sun W, Wang Y. Community structure and metabolic potentials of keystone taxa and their associated bacteriophages within rice root endophytic microbiome in response to metal(loid)s contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126028. [PMID: 40064231 DOI: 10.1016/j.envpol.2025.126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Heavy metal (HM) contamination of agricultural products is of global environmental concern as it directly threatened the food safety. Plant-associated microbiome, particularly endophytic microbiome, hold the potential for mitigating HM stress as well as promoting plant growth. The metabolic potentials of the endophytes, especially those under the HM stresses, have not been well addressed. Rice, a major staple food worldwide, is more vulnerable to HM contamination compared to other crops and therefore requires special attentions. Therefore, this study selected rice as the target plants. Geochemical analysis and amplicon sequencing were combined to characterize the rice root endophytic bacterial communities and identify keystone taxa in two HM-contaminated rice fields. Metagenomic analysis was employed to investigate the metabolic potentials of these keystone taxa. Burkholderiales and Rhizobiales were identified as predominant keystone taxa. The metagenome-assembled genome (MAG)s associated with these keystone populations suggested that they possessed diverse genetic potentials related to metal resistance and transformation (e.g., As resistance and cycling, V reduction, Cr efflux and reduction), and plant growth promotion (nitrogen fixation, phosphate solubilization, oxidative stress resistance, indole-3-acetic acid, and siderophore production). Moreover, bacteriophages encoding auxiliary metabolism genes (AMGs) associated with the HM resistance as well as nitrogen and phosphate acquisition were identified, suggesting that these phages may contribute to these crucial biogeochemical processes within rice roots. The current findings revealed the beneficial roles of rice endophytic keystone taxa and their associated bacteriophages within HM-contaminated rice root endophytic microbiome, which may provide valuable insights on future applications of employing root microbiome for safety management of agriculture productions.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, 550002, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China.
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
3
|
Cheng M, Yin X, Zhang H. Insights into the hydrogen-fueled bioreduction of vanadium(V) by marine Shewanella sp. FDA-1: Process and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136585. [PMID: 39591939 DOI: 10.1016/j.jhazmat.2024.136585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Microbial-driven V(V) reduction plays a crucial role in its biogeochemical cycle, yet the mechanisms underlying this bioreduction remain inadequately understood. While the effectiveness of organic compounds as electron donors in facilitating bacterial reduction of V(V) has been established, the role of inorganic electron donors in initiating this process at the level of pure cultured bacteria has not been explored. In this study, we report on a marine Shewanella sp. FDA-1 that utilizes hydrogen (H2) as an energy source to reduce V(V). In addition, the reduction mechanism was investigated through a combination of genomics, RT-qPCR, heterologous expression of key proteins, extracellular secretion analyses, and electron transfer activity assays. Our results demonstrate that H2 serves as an effective electron donor, enabling Shewanella sp. FDA-1 to reduce V(V) across various salinities (2-7 %) and pH values (5-9). When exposed to 5 mM V(V), the presence of 1-20 mL of H2 resulted in V(V) bioreduction rates ranging from 0.039 to 0.11 h-1 (R2 > 0.73). Amorphous V(IV) compounds were characterized as reduction products using XRD, XPS, FTIR, and SEM. Mechanistic studies indicate that the glutathione system, cytochromes, and extracellular substances such as riboflavin play important roles in V(V) reduction (p < 0.05). Furthermore, our findings reveal that the addition of H2 and lactate triggers different response sequences among these three reduction pathways, suggesting distinct reduction mechanisms between organic and inorganic electron donors. These insights enhance our understanding of microbial vanadium transformation and provide valuable guidance for developing novel H2-based remediation technologies for vanadium-contaminated environments.
Collapse
Affiliation(s)
- Manman Cheng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, China
| | - Xin Yin
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264000, China.
| |
Collapse
|
4
|
Zhang H, Cheng S, Yan W, Zhang Q, Jiang B, Xing Y, Zhang B. Interplay between vanadium distribution and microbial community in soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136303. [PMID: 39486340 DOI: 10.1016/j.jhazmat.2024.136303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Soil-plant system play an essential role in distribution and transformation of vanadium (V). V shapes the diversity of soil communities, while soil microorganisms mediate V transformation. Plants also absorb V from surrounding soil. However, the study of microbial response to V stress in different soil-plant compartments is limited, and the metabolic functions driving V transformation across these systems remain elusive. The study investigates the distribution of V in soil-plant systems nearby a V smelter. 16S rRNA sequencing and metagenomics are utilized to reveal the microbial adaptation and V transformation in bulk soil, rhizosphere, and endosphere. Bothriochloa ischaemum (L.) Keng. (BK) exhibits higher phytoextraction potential (TF = 0.74 ± 0.26). Environmental variables, including pH, V, OM, and AP, show significant (p < 0.05) influence in soil community composition, with homogeneous selection governing the assembly processes in bulk soil and rhizosphere, while stochastic process dominates endospheric assembly. Metagenomic investigation revealed a coordinated metabolic pathway between functional taxa in soil and plants, which lead to root uptake and translocation. V stress is mitigated through Nocardioide, Microvirga, and Solirubrobacter, putatively harboring V(V) reduction genes n arG and mtrC in soil. In rhizosphere, citrate synthase gltA and alkaline phosphatase phoD exhibit functional potential to facilitate formation of V-complexation to increase V mobility. In endoshere, endophytic Enterobacter further detoxifies V(V), and likely promotes V translocation through siderophore biosynthesis gene, iucA. These findings enhance our understanding on interplay between V and microbial community in soil-plant systems, which is instrumental in developing mitigation plan for V contaminated sites.
Collapse
Affiliation(s)
- Han Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shu Cheng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Wenyue Yan
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Chi Z, Li W, Zhang P, Li H. Simultaneous removal of vanadium and nitrogen in two-stage vertical flow constructed wetlands: Performance and mechanisms. CHEMOSPHERE 2024; 367:143663. [PMID: 39489303 DOI: 10.1016/j.chemosphere.2024.143663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Vanadium (V(V)) and nitrate, as co-concomitant pollutants in water bodies, pose potential threats to the eco-environment and human health. This study was to reveal the feasibility of simultaneous removal of V(V) and nitrate in the series-wound vertical flow constructed wetlands (CWs) with iron ore (B-CWs)/manganese ore (C-CWs)-wood substrates. The results showed that B-CWs could achieve efficient V(V) and NO3--N removal with the influent of 2 and 10 mg/L (V(V)/NO3--N = 1:5), respectively. With the increase of V(V)/NO3--N ratio (V(V)/NO3--N = 1:1), B/C-CWs exhibited better combined pollution removal. Even when nitrate was removed (V(V)/NO3--N = 1:0), the systems could maintain a good capacity for V(V) removal. High V(V) (20 mg/L) significantly inhibited V(V) removal, with a slight recovery of the performance as the decrease of V(V) influent. High NO3--N concentration (10 mg/L) effectively enhanced V(V) removal and restored C-CWs to the better level. V(IV) precipitates/oxides were the main reducing end-products. High abundance of V(V)-reducing bacteria and iron/manganese cycling pumps ensured efficient V(V) removal.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Wenjing Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Pengdong Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| |
Collapse
|
6
|
Jia R, Huang X, Dang P, Chen Q, Zhong S, Fan F, Wang C, Song J, Chorover J, Rensing C. Fe(III) reduction mediates vanadium release and reduction in vanadium contaminated paddy soil under different organic amendments. ENVIRONMENT INTERNATIONAL 2024; 193:109073. [PMID: 39442321 DOI: 10.1016/j.envint.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Vanadium(V) contaminated soil is abundant in iron(Fe) oxides due to co-occurrence of V and Fe bearing minerals. However, biogeochemical transformation of redox-active V and Fe in soil, and the bacteria involved, has remained less investigated. This study explored the extent to which microbial mediated organic decomposition coupled to Fe(III) reduction contributed to V(V) release/reduction in V-contaminated paddy soil under different organic amendments. Soil flooding decreased toxic reducible V while increased less toxic oxidizable V. Glucose and straw promoted V(V) release with temporarily increasing V(V) concentration by 73.59-106.34 mg/kg compared to the control treatment and subsequently promoted V(V) reduction with decreasing V(V) to concentrations eventually similar to the control treatment. Biochar incorporation under glucose and straw amendments moderately alleviated V(V) release. The significantly positive correlation between Fe(II) and V(V) concentrations during the V solubilization process indicated a temporal coupling of Fe(III) reduction and V(V) release. Clostridium and Massilia mediated Fe(III) reductive dissolution and V(V) release, while Anaeromyxobacter, Sphingomonas, Bryobacter, Acidobacteriaceae and Anaerolineaceae contributed to V(V) reduction. This study provides a deeper understanding of V biotransformation coupled to Fe and C cycling and suggests a remediation strategy for V-contaminated soils via regulating Fe(III) reduction to weaken V(V) release or to promote V(V) reduction.
Collapse
Affiliation(s)
- Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Xiaoxuan Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Panpan Dang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Qiaolin Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Fangmei Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Chao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, PR China
| | - Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, PR China.
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
7
|
Yuliani D, Morishita F, Imamura T, Ueki T. Vanadium Accumulation and Reduction by Vanadium-Accumulating Bacteria Isolated from the Intestinal Contents of Ciona robusta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:338-350. [PMID: 38451444 PMCID: PMC11043195 DOI: 10.1007/s10126-024-10300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.
Collapse
Affiliation(s)
- Dewi Yuliani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, State Islamic University of Malang, Malang, 65145, Indonesia
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Tatsuya Ueki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan.
| |
Collapse
|
8
|
Yang Y, Huang Y, Liu Y, Jiao G, Dai H, Liu X, Hughes SS. The migration and transformation mechanism of vanadium in a soil-pore water-maize system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169563. [PMID: 38145672 DOI: 10.1016/j.scitotenv.2023.169563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The μ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yunhe Liu
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ganghui Jiao
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaowen Liu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
9
|
Wu Y, Zhou S, Li Y, Niu L, Wang L. Climate and local environment co-mediate the taxonomic and functional diversity of bacteria and archaea in the Qinghai-Tibet Plateau rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168968. [PMID: 38042190 DOI: 10.1016/j.scitotenv.2023.168968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Understanding the environmental response patterns of riverine microbiota is essential for predicting the potential impact of future environmental change on river ecosystems. Vulnerable plateau ecosystems are particularly sensitive to climate and local environmental changes, however, the environmental response patterns of the taxonomic and functional diversity of riverine microbiota remain unclear. Here, we conducted a systematic investigation of the taxonomic and functional diversity of bacteria and archaea from riparian soils, sediments, and water across the elevation of 1800- 4800 m in the Qinghai-Tibet Plateau rivers. We found that within the elevation range of 1800 to 3800 m, riparian soils and sediments exhibited similarities and stabilities in microbial taxonomic and functional diversity, and water microbiomes were more sensitive with great fluctuations in microbial diversity. Beyond the elevation of 3800 m, microbial diversity declined across all riverine matrixes. Local environmental conditions can influence the sensitivity of microbiomes to climate change. The combination of critical climate and local environmental factors, including total nitrogen, total organic carbon, as well as climate variables associated with temperature and precipitation, provided better explanations for microbial diversity than single-factor analyses. Under the extremely adverse scenario of high greenhouse gas emission concentrations (SSP585), we anticipate that by the end of this century, the bacterial, archaeal, and microbial functional diversity across the river network of the Yangtze and Yellow source basin would potentially change by -16.9- 5.2 %, -16.1- 5.7 %, and -9.3- 6.4 %, respectively. Overall, climate and local environments jointly shaped the microbial diversity in plateau river ecosystems, and water microbiomes would provide early signs of environmental changes. Our study provides effective theoretical foundations for the conservation of river biodiversity and functional stability under environmental changes.
Collapse
Affiliation(s)
- Yunyu Wu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, PR China
| | - Shubu Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210024, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210024, PR China
| |
Collapse
|
10
|
Xu R, Kolton M, Tao W, Sun X, Su P, Huang D, Zhang M, Yang Z, Guo Z, Gao H, Wang Q, Li B, Chen C, Sun W. Anaerobic selenite-reducing bacteria and their metabolic potentials in Se-rich sediment revealed by the combination of DNA-stable isotope probing, metagenomic binning, and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131834. [PMID: 37327607 DOI: 10.1016/j.jhazmat.2023.131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms play a critical role in the biogeochemical cycling of selenium (Se) in aquatic environments, particularly in reducing the toxicity and bioavailability of selenite (Se(IV)). This study aimed to identify putative Se(IV)-reducing bacteria (SeIVRB) and investigate the genetic mechanisms underlying Se(IV) reduction in anoxic Se-rich sediment. Initial microcosm incubation confirmed that Se(IV) reduction was driven by heterotrophic microorganisms. DNA stable-isotope probing (DNA-SIP) analysis identified Pseudomonas, Geobacter, Comamonas, and Anaeromyxobacter as putative SeIVRB. High-quality metagenome-assembled genomes (MAGs) affiliated with these four putative SeIVRB were retrieved. Annotation of functional gene indicated that these MAGs contained putative Se(IV)-reducing genes such as DMSO reductase family, fumarate and sulfite reductases. Metatranscriptomic analysis of active Se(IV)-reducing cultures revealed significantly higher transcriptional levels of genes associated with DMSO reductase (serA/PHGDH), fumarate reductase (sdhCD/frdCD), and sulfite reductase (cysDIH) compared to those in cultures not amended with Se(IV), suggesting that these genes played important roles in Se(IV) reduction. The current study expands our knowledge of the genetic mechanisms involved in less-understood anaerobic Se(IV) bio-reduction. Additinally, the complementary abilities of DNA-SIP, metagenomics, and metatranscriptomics analyses are demonstrated in elucidating the microbial mechanisms of biogeochemical processes in anoxic sediment.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Wan Tao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Pingzhou Su
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Duanyi Huang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Miaomiao Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou 510642, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
11
|
Yunda E, Gutensohn M, Ramstedt M, Björn E. Methylmercury formation in biofilms of Geobacter sulfurreducens. Front Microbiol 2023; 14:1079000. [PMID: 36712188 PMCID: PMC9880215 DOI: 10.3389/fmicb.2023.1079000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction Mercury (Hg) is a major environmental pollutant that accumulates in biota predominantly in the form of methylmercury (MeHg). Surface-associated microbial communities (biofilms) represent an important source of MeHg in natural aquatic systems. In this work, we report MeHg formation in biofilms of the iron-reducing bacterium Geobacter sulfurreducens. Methods Biofilms were prepared in media with varied nutrient load for 3, 5, or 7 days, and their structural properties were characterized using confocal laser scanning microscopy, cryo-scanning electron microscopy and Fourier-transform infrared spectroscopy. Results Biofilms cultivated for 3 days with vitamins in the medium had the highest surface coverage, and they also contained abundant extracellular matrix. Using 3 and 7-days-old biofilms, we demonstrate that G. sulfurreducens biofilms prepared in media with various nutrient load produce MeHg, of which a significant portion is released to the surrounding medium. The Hg methylation rate constant determined in 6-h assays in a low-nutrient assay medium with 3-days-old biofilms was 3.9 ± 2.0 ∙ 10-14 L ∙ cell-1 ∙ h-1, which is three to five times lower than the rates found in assays with planktonic cultures of G. sulfurreducens in this and previous studies. The fraction of MeHg of total Hg within the biofilms was, however, remarkably high (close to 50%), and medium/biofilm partitioning of inorganic Hg (Hg(II)) indicated low accumulation of Hg(II) in biofilms. Discussion These findings suggest a high Hg(II) methylation capacity of G. sulfurreducens biofilms and that Hg(II) transfer to the biofilm is the rate-limiting step for MeHg formation in this systems.
Collapse
|