1
|
An H, Liu T, Xiao X, Liu M, Hu Y, Wei P, Yao W, Tang X, Lai Y, Luo X, Luo S. Magnetic biochar-supported nanoscale zero-valent iron for remediation of arsenic and cadmium-contaminated soils: The role of free radicals. ENVIRONMENTAL RESEARCH 2025; 276:121484. [PMID: 40147515 DOI: 10.1016/j.envres.2025.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Remediating arsenic (As) and cadmium (Cd) in soils through immobilization faces challenges, primarily in isolating amendments from soil. While previous studies have focused on altering heavy metal speciation, they have not reduced total metal content, risking reactivation and secondary contamination. This study synthesized and characterized magnetic biochar loaded with nanoscale zero-valent iron (nZVI-MBC), which uses magnetic separation to decrease As and Cd levels in soil, offering a potential permanent solution for contaminant removal. The ability of nZVI-MBC to stabilize As and Cd in soil was evaluated. The results demonstrate that nZVI-MBC reduced total As and Cd content by 13.7 % and 12.3 %, respectively, and decreased their bioavailability by 34.1 % and 93.2 %, converting these metals into more stable forms. Post-treatment, increases in soil pH, cation exchange capacity, and organic matter were observed, along with enhanced soil enzyme activity. The stabilization mechanisms included electrostatic attraction, surface adsorption, complexation, and co-precipitation. Moreover, nZVI-MBC promoted the generation of hydroxyl radicals (•OH) and environmentally persistent free radicals (EPFRs), which facilitated the oxidation of As(III) to As(V), thereby reducing As migration. This study confirms that nZVI-MBC is a promising soil amendment for effective heavy metal remediation.
Collapse
Affiliation(s)
- Huanhuan An
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mengting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yi Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Pangzhi Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Weipeng Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Yongkang Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
2
|
Gong X, Xu G, Yuan C, Xu X, Wang J, Cao X. Tidal fluctuations induce accumulation and transformation of seawater Cr(Ⅵ) in coastal sediments. WATER RESEARCH 2025; 278:123382. [PMID: 40049097 DOI: 10.1016/j.watres.2025.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/14/2025]
Abstract
Tidal fluctuations play a critical role in regulating the transport and fate of contaminants in coastal environments. This study explored the dynamic redistribution of chromium (Cr) from seawater to sediment under tidal influence, as well as the accumulation and transformation of Cr in sediment through laboratory experiments and numerical simulations. After 35 tidal cycles, Cr concentrations in seawater declined rapidly and stabilized at approximately 27 % of the initial level. Notably, Cr migrated into sediment, ultimately accumulating in the bottom layer. Colloidal particles (350-800 nm) composed of clay minerals served as the primary transport vectors for Cr within sediment. During tidal fluctuations, 94.5 %-98.2 % of Cr(VI) in sediment was reduced to Cr(III), predominantly mediated by Fe(II) in the top sediment and by sulfur-reducing bacteria in the bottom layers. Consistent with experimental findings, numerical reactive transport modeling demonstrated that Cr(III) initially peaked in the middle sediment layer before stabilizing in the bottom layer, whereas Cr(VI) remained confined to the top layer. These findings elucidate tide-induced mobilization and natural reduction mechanisms governing Cr-contaminated seawater infiltration into sediment, offering novel insights into the fate of Cr discharged from coastal wastewater sources within seawater-sediment systems.
Collapse
Affiliation(s)
- Xuanang Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoyang Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Shandong 271018, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecology Security, Shanghai 200029, China.
| |
Collapse
|
3
|
Wang J, Chen M, Li Y, Yang Y, Xie Z. Extracellular electron shuttles induced transformation and mobilization of Fe/As with the occurrence of biogenic vivianite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117779. [PMID: 39854866 DOI: 10.1016/j.ecoenv.2025.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Microorganisms that utilize organic matter to reduce Fe oxides/hydroxides constitute the primary geochemical processes controlling the formation of high-arsenic (As) groundwater. Biogenic secondary iron minerals play a significant role in As migration. However, the influence of quinone electron shuttles and competitive anionic phosphate on this process has not been thoroughly studied. In this study, 10 mM phosphate effectively increased the growth and reproduction of the indigenous metal-reducing bacterium Bacillus D2201, ensuring high biomass participation in goethite reduction. Three forms of goethite (pure goethite [Gt], goethite with coprecipitated As [Gt-As], and goethite with adsorbed As [Gt*As]) were synthesized and reduced by strain D2201 to investigate the fate of As/Fe. The results showed that the amount of Fe(II) released and precipitated in the Gt-As group with the addition of 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and phosphate was the highest. Various solid-phase analytical techniques revealed that a significant amount of dissolved Fe(II) precipitated and formed the secondary mineral vivianite owing to phosphate input. Vivianite formation was pH-dependent, with high pH levels inhibiting vivianite development. As migration in the Gt-As system exhibited desorption and re-adsorption phenomena. The total As content decreased by 59.0 %, 53.7 %, and 49.4 %, at pH 6.0, 7.0, and 8.0, respectively, compared to the maximum As content values. The As re-adsorption percentage in the Gt*As group was lower than that in the Gt-As group, with decreases of 30.2 %, 16 %, and 10.3 % at pH, 6.0, 7.0, and 8.0, respectively. The results indicated that phosphate and AQDS enhanced goethite bioreduction and facilitated the migration of As and Fe. However, the subsequent formation of secondary vivianite resulted in the re-fixation of As and Fe. Our research suggested that metal-reducing bacteria may not universally facilitate As migration from sediments to groundwater, as previously assumed. This study highlights the effects of phosphate, As doping methods, and pH levels on As migration and transformation and refines theories on microbiologically induced high-As groundwater formation.
Collapse
Affiliation(s)
- Jia Wang
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Mengna Chen
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, PR China
| | - Yalong Li
- Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Yang Yang
- Yangtze Ecological Environmental Protection Industrial Technology Research Institute, Wuhan 430200, PR China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Barats A, Renac C, Garrido-Hoyos S, Gonzalez-Perez B, Garcia-Mendoza K, Esteller-Alberich MV, Jara-Marini ME, Aguilar-Chavez A. Assessment of the water quality in the coastal Yaqui valley (Mexico): Implications for human health and ecological risks. ENVIRONMENTAL RESEARCH 2025; 264:120275. [PMID: 39486679 DOI: 10.1016/j.envres.2024.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
This study examines the water quality in the Yaqui Valley in Mexico, a semi-arid region impacted by mining, agriculture, and aquaculture. Contamination sources, health risks and ecological impacts are investigated. Freshwater was found to be contaminated by dissolved As, presumed to result from mining activities in the mountains. Drainage water revealed an overall contamination by dissolved As and by suspended particles enriched with Al, Fe and Mn, associated with runoff processes. Intermittent contamination of drainage water by Cu, K+, NO3- and PO43- is attributed to the use of fertilizers or pesticides. In the coastal area, drainage water contains high concentrations of Na, Ca, SO42- and Cl, related to salinization processes, as well as higher concentrations of dissolved As, related to solid/liquid interactions that are enhanced by salinization. This drainage water discharges into the bay, degrading the seawater quality and increasing ecological risks. Outputs of this study can serve as a reference for the protection of this economically important coastal ecosystem. Concerning health risks, this study demonstrates that groundwater is also contaminated by dissolved As, believed to be associated with transfers from the geological basement to the dissolved phase of water, and other major chemicals related to salinization processes. The findings indicate that ingesting the groundwater poses a significant risk to human health with a primary exposure risk associated with dissolved As, particularly among children. This study presents crucial data for the Yaqui population, water managers and researchers, and provides novel insights into the management and mitigation of the identified risks.
Collapse
Affiliation(s)
- Aurélie Barats
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, 250 Rue Albert Einstein, 06560, Valbonne, France.
| | - Christophe Renac
- Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, 250 Rue Albert Einstein, 06560, Valbonne, France
| | - Sofia Garrido-Hoyos
- Mexican Institute of Water Technology (IMTA), Paseo Cuauhnhuac, 8532, Morelos, Jiutepec, Mexico
| | - Beatriz Gonzalez-Perez
- Instituto de Tecnología y Ciencias del Agua (ITCA). Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca km 14.5 Toluca, Estado de México, Mexico
| | - Karina Garcia-Mendoza
- Mexican Institute of Water Technology (IMTA), Paseo Cuauhnhuac, 8532, Morelos, Jiutepec, Mexico
| | - Maria Vicenta Esteller-Alberich
- Instituto de Tecnología y Ciencias del Agua (ITCA). Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca km 14.5 Toluca, Estado de México, Mexico
| | - Martin Enrique Jara-Marini
- Centro de Investigación en Alimentación y Desarrollo. Unidad Hermosillo. Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico
| | - Ariosto Aguilar-Chavez
- Mexican Institute of Water Technology (IMTA), Paseo Cuauhnhuac, 8532, Morelos, Jiutepec, Mexico
| |
Collapse
|
5
|
Sheik AG, Kumar A, Sharanya AG, Amabati SR, Bux F, Kumari S. Machine learning-based monitoring and design of managed aquifer rechargers for sustainable groundwater management: scope and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35529-3. [PMID: 39585566 DOI: 10.1007/s11356-024-35529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Managed aquifer recharge (MAR) replenishes groundwater by artificially entering water into subsurface aquifers. This technology improves water storage, reduces over-extraction, and ensures water security in water-scarce or variable environments. MAR systems are complex, encompassing various components such as water storage, soil, meteorological factors, groundwater management (GWM), and receiving bodies. Over the past decade, the utilization of machine learning (ML) methodologies for MAR modeling and prediction has increased significantly. This review evaluates all supervised, semi-supervised, unsupervised, and ensemble ML models employed to predict MAR factors and parameters, rendering it the most comprehensive contemporary review on this subject. This study presents a concise and integrated overview of MAR's most effective ML approaches, focusing on design, suitability for water quality (WQ) applications, and GWM. The paper examines performance measures, input specifications, and the variety of ML functions employed in GWM, and highlights prospects. It also offers suggestions for utilizing ML in MAR, addressing issues related to physical aspects, technical advancements, and case studies. Additionally, previous research on ML-based data-driven and soft sensing techniques for MAR is critically evaluated. The study concludes that integrating ML into MAR systems holds significant promise for optimizing WQ management and enhancing the efficiency of groundwater replenishment strategies.
Collapse
Affiliation(s)
- Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | | | - Seshagiri Rao Amabati
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy, Visakhapatnam - 530 003, , Andhra Pradesh, India
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
6
|
Zhou Y, Wan X, Lei M, Chen T. Arsenic release during groundwater recharge and effects of coexisting ions in a typical inland basin with high arsenic concentration: Modeling and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175359. [PMID: 39122042 DOI: 10.1016/j.scitotenv.2024.175359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Groundwater recharge is a viable solution to groundwater overexploitation. However, the injection of recharge water may break the dissolution balance and induce the release of trace elements especially arsenic (As), which has been identified in river deltas. Only a few studies have been conducted in inland basins with high As concentration, high pH, and low Eh. Aiming to analyze As release with groundwater recharge in inland high-As regions and determine the effects of coexisting ions in recharge water, this study established PHase Equilibria Calculation (PHREEQC) models using rainwater and groundwater data from three inland sedimentary basins with slow groundwater flow in semi-arid regions. The simulations fitted with the batch experiments, achieving an R-squared (R2) of 0.98. The coexisting ions in the recharge water significantly affected As release during recharge. Ca2+ inhibited the release of total arsenic (Total-As) by increasing the surface charge of iron oxides. NO3- inhibited Total-As release by promoting the conversion of trivalent As into pentavalent As. Conversely, HCO3- facilitated As release by competing with arsenate for adsorption sites. On the basis of the modeling and batch experiment results, Total-As release with groundwater recharge was predicted. The results indicated that the high Ca2+ concentration in the recharge water inhibited the As release by 83.5 %, which can be used as a strategy to control As release during groundwater recharge in high-As inland basins.
Collapse
Affiliation(s)
- Yanru Zhou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Wei Y, Zhang J, Cao X, Yeh TCJ, Chen Y, Chen C, Xiang M, Wang L, Zhan Z, Li H. Fukushima's Radioactive Water Threatens Coastal Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18450-18455. [PMID: 39394999 DOI: 10.1021/acs.est.4c10136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Affiliation(s)
- Yaqiang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Jiao Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian-Chyi Jim Yeh
- Department of Hydrology and Atmospheric Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Yuling Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liheng Wang
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zi Zhan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Yuan C, Hu L, Ren Z, Xu X, Gui X, Gong XA, Wu R, Sima J, Cao X. Marine microplastics enhance release of arsenic in coastal aquifer during seawater intrusion process. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134804. [PMID: 38880042 DOI: 10.1016/j.jhazmat.2024.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Microplastics (MPs), omnipresent contaminants in the ocean, could be carried by seawater intrusion into coastal aquifers, which might affect the fate of heavy metals existing in aquifers. Herein, we investigated the release behavior of arsenic (As) in coastal aquifers during MPs-containing seawater intrusion by applying laboratory experiment and numerical simulation. We found that seawater with marine MPs enhanced the release of As in aquifers, especially for dissolved As(V) and colloidal As. Negatively charged MPs competed with As(V) for the adsorption sites on iron (hydr)oxides in aquifers, resulting in the desorption of As(V). In addition, MPs could promote the release of Fe-rich colloids by imparting negative charge to its surface and providing it with sufficient repulsive force to detach from the matrix, thereby leading to the release of As associated with Fe-rich colloid. We also developed a modeling approach that well described the transport of As in coastal aquifer under the impact of MPs, which coupled variable density flow and kinetically controlled colloids transport with multicomponent reactive transport model. Our findings elucidated the enhancement of MPs on the release of As in aquifers during seawater intrusion, which provides new insights into the risk assessment of MPs in coastal zones.
Collapse
Affiliation(s)
- Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan-Ang Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingke Sima
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Xuhui, Shanghai 200233, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Wang X, Wang J, Mao SH, Zhou Z, Liu Q, He Q, Zhuang GC. Speciation and distribution of arsenic in cold seep sediments of the South China Sea. MARINE POLLUTION BULLETIN 2024; 202:116258. [PMID: 38493606 DOI: 10.1016/j.marpolbul.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Arsenic (As) is an abundant metalloid in marine environments, while the biogeochemical cycling of As in cold seeps remains poorly understood. We characterized the speciation of As and investigated controls of As distribution in cold seeps of South China Sea. High methane concentrations (0.2-5.5 mmol/L) and rapid sulfate depletion were observed in the seepage. Dissolved inorganic arsenic (DIAs) was enriched in the porewater ranging from 7.5 to 23.5 μg/L. As in the solid phase ranged from 2.9 to 22.6 μg/g, and sulfide mineral-bound As dominated the total arsenic (TAs) pool, followed by iron (manganese, aluminum) oxide-bound As. The significant correlations between porewater Fe2+ and DIAs reflect the controls of iron on DIAs release. Incubation experiments showed that adsorption to the solid phase and sulfate reduction activity affected the bioavailability and removal of DIAs, suggesting that multiple processes regulate the speciation and transformation of As in seep sediments.
Collapse
Affiliation(s)
- Xue Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinyan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shi-Hai Mao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhen Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qian He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guang-Chao Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Lyu P, Song J, Yin Z, Wu J, Wu J. Integrated SEAWAT model and GALDIT method for dynamic vulnerability assessment of coastal aquifer to seawater intrusion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171740. [PMID: 38494017 DOI: 10.1016/j.scitotenv.2024.171740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Seawater intrusion (SI) has become a global issue exacerbated by intense anthropogenic activities and climate change. It is imperative to seek a synergistic strategy to reconcile environmental and economic benefits in the coastal regions. However, the intricate SI process and data scarcity present formidable challenges in dynamically assessing the coastal groundwater vulnerability. To address the challenge, this study proposed a novel framework that integrates the existing vulnerability assessment method (GALDIT) and variable-density groundwater model (SEAWAT). The future scenarios from 2019 to 2050 were investigated monthly under climate change (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and human activities (80 % and 50 % of current groundwater abstraction) in Longkou city, China, a typical coastal region subject to extensive SI, compared with the status quo in 2018. Results indicated that by 2050, the high vulnerability area, is in a narrow buffer within 1.2 km from the shoreline and exhibits minor changes while the salt concentration here increased by about 2700 mg/L compared with the current situation. The moderate vulnerability zone expands by about 30 km2, and the low vulnerable area decreases proportionally. The groundwater over-abstraction is identified as a more critical factor compared to the regional precipitation under climate change. When groundwater abstraction is reduced to 80 % of the current scale, the expansion rate of the moderate-vulnerable area slows down significantly, with an expansion area of only 18 km2 by 2050. Further reducing groundwater abstraction to 50 % of the current scale shifts the evolution trend of the medium-vulnerable area from expansion to contraction, with the area shrinking by about 11 km2 by 2050. The integrated vulnerability assessment framework can be applied not only in the similar coastal regions but also provides insights into other natural hazards.
Collapse
Affiliation(s)
- Panpan Lyu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Song
- School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
| | - Ziyue Yin
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Wei Y, Chen Y, Cao X, Xiang M, Huang Y, Li H. A Critical Review of Groundwater Table Fluctuation: Formation, Effects on Multifields, and Contaminant Behaviors in a Soil and Aquifer System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2185-2203. [PMID: 38237040 DOI: 10.1021/acs.est.3c08543] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The groundwater table fluctuation (GTF) zone is an important medium for the hydrologic cycle between unsaturated soil and saturated aquifers, which accelerates the migration, transformation, and redistribution of contaminants and further poses a potential environmental risk to humans. In this review, we clarify the key processes in the generation of the GTF zone and examine its links with the variation of the hydrodynamic and hydrochemistry field, colloid mobilization, and contaminant migration and transformation. Driven by groundwater recharge and discharge, GTF regulates water flow and the movement of the capillary fringe, which further control the advection and dispersion of contaminants in soil and groundwater. In addition, the formation and variation of the reactive oxygen species (ROS) waterfall are impacted by GTF. The changing ROS components partially determine the characteristic transformation of solutes and the dynamic redistribution of the microbial population. GTF facilitates the migration and transformation of contaminants (such as nitrogen, heavy metals, non-aqueous phase liquids, and volatile organic compounds) through colloid mobilization, the co-migration effect, and variation of the hydrodynamic and hydrochemistry fields. In conclusion, this review illustrates the limitations of the current literature on GTF, and the significance of GTF zones in the underground environment is underscored by expounding on the future directions and prospects.
Collapse
Affiliation(s)
- Yaqiang Wei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuling Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuan Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Bo G, Fang T, Chen L, Gong Z, Ma J. Shipboard determination of arsenite and total dissolved inorganic arsenic in estuarine and coastal waters with an automated on-site-applicable atomic fluorescence spectrometer. Talanta 2024; 266:125082. [PMID: 37595527 DOI: 10.1016/j.talanta.2023.125082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
The speciation of trace level arsenic (As) in estuarine and coastal waters is crucial for both biogeochemical and toxicological studies of this toxic metalloid. However, the accurate and on-site determination of As in complex seawater matrices is challenging because of the low concentration of As, the easy conversion of arsenite (As(III)) to arsenate (As(V)), and the considerable effect of salinity on the determination of As via conventional methods. In this study, a custom-made shipboard atomic fluorescence spectrometer (AFS) is reported for the on-site speciation of inorganic As in estuarine and coastal waters. After comprehensive optimization of the instrumental and chemical parameters, the method demonstrated high sensitivity (limits of detection: 0.02 μg L-1), good linearity (R2 > 0.999 for all calibration curves up to 8 μg L-1), high precision (relative standard deviations (RSDs) of less than 2% at 1 μg L-1 over a year-long evaluation), and excellent performance for sample analysis for different matrices with varying salinities (recoveries: 96.3%-105.3%). The portable and field-applicable AFS was successfully applied to the on-site and shipboard simultaneous determination of As(III) and total dissolved inorganic arsenic (TDIAs) in the coastal waters of Shandong, Jiangsu, Zhejiang, Fujian, and Guangdong province of China, demonstrating its robustness and applicability in harsh conditions.
Collapse
Affiliation(s)
- Guangyong Bo
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, 363000, People's Republic of China
| | - Tengyue Fang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, 363000, People's Republic of China
| | - Luodan Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, 363000, People's Republic of China.
| |
Collapse
|