1
|
Fu X, Liang M, Ning Y, Feng N, Lu Y, Zhan F, Yuan Y, Huang X, Wang C, Xi B, Cui J. Ultrafast, Targeting Fluorion-Capture Electrochemical Nanosystem Assembled with Polymeraldine Salt-Modulated Ti 3C 2T x MXene. NANO LETTERS 2025; 25:5210-5219. [PMID: 40117187 DOI: 10.1021/acs.nanolett.4c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Fluoride-containing groundwater has become a major concern since it serves as a source of drinking water for over half the world's population. Here, we develop an ion-selective polymeraldine salt (PANI-Clx; PANI = polyaniline) modulated Ti3C2Tx MXene electrode as a mediator for electrochemical capture of fluoride ion (F-) from groundwater. The single-stage configuration equipped with PANI-Clx/Ti3C2Tx electrode as anode and activated carbon as cathode exhibits an ultrafast removal rate of 4.7 mg-F- g-1 min-1 toward F- and high selectivity coefficients. Density-functional theory calculations and characterizations reveal that PANI-Clx/Ti3C2Tx can lower the charge-transfer resistance and activation energy, promoting the synergy of high selectivity of nitrogen-related motifs in PANI-Clx and a fast rate of ion intercalation in Ti3C2Tx. A stack-based multi-stage configuration operated at a staircase descent voltage mode is applied to produce freshwater from practical groundwater with low energy consumption (0.92 kWh kg-1-F-). Our findings pave the way for the electrochemical production of potable water from fluorine-containing groundwater.
Collapse
Affiliation(s)
- Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mingxing Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuting Ning
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Nan Feng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuting Lu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fei Zhan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing 100029, P. R. China
| | - Ying Yuan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Xin Huang
- Eco-Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, P. R. China
| | - Chunyan Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Zhao X, Li D, Deng L, Chen Y, Hu S, Zhang M, Wu D, Liu H, Liu Y. Enhanced hybrid capacitive performance for efficient and selective potassium extraction from wastewater: Insights from regulating electrode potential. WATER RESEARCH 2025; 281:123570. [PMID: 40174568 DOI: 10.1016/j.watres.2025.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Prussian blue analogues hold great promise for directly extracting potassium resource from wastewater via hybrid capacitive deionization (HCDI). However, there remain unresolved scientific issues regarding low efficiency and selectivity arising from asymmetric potential distribution induced by spontaneous charge matching. This work systematically investigated the underlying mechanisms for enhancing the storage capacity and specific affinity of representative Berlin Green towards K+ through precise regulation of insertion potential during HCDI operation. Empowered by controlling electrochemical intercalation behaviors, the compatibility between ionic and electronic kinetics was significantly enhanced. Impressive values of 160.12 mg/g, 61.27 %, and 0.07 kWh/mol were achieved under potentiostatic mode (0.1 V vs. Ag/AgCl) for insertion capacity, charge efficiency, and energy consumption, respectively. These results significantly outperformed the optimal levels obtained under constant cell voltage (0.9 V), which were 128.52 mg/g, 47.50 %, and 0.12 kWh/mol, respectively. In both aqueous solution with binary components and urine, the results emphasized the potential of the synergy effect between lattice hindrance and insertion chemistry in promoting intercalation selectivity, with the highest selectivity coefficients of 28.35 (K+/Na+), 76.22 (K+/Ca2+) and 175.12 (K+/Mg2+), respectively. The presented concept-to-proof offers a versatile approach for the advancement of high-performance HCDI and paves the way towards its sustainable application in nutrient recycling from natural waters or wastewaters.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dan Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linghui Deng
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shujie Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Mengyue Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Di Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yuan Liu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
3
|
Cheng J, Huang L. Innovative MOF materials for a sustainable future: Tackling energy and environmental challenges. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 24:100545. [PMID: 40144699 PMCID: PMC11938268 DOI: 10.1016/j.ese.2025.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Affiliation(s)
- Junye Cheng
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Zheng X, Zhang W, Cao X, Li Y, Jiang X, Chen Y, Li Y, Zhang T. Efficient Defluorination: Application of Calcium Sulfate Precipitation Method in Zinc Sulfate Solution. ACS OMEGA 2025; 10:439-448. [PMID: 39829524 PMCID: PMC11740137 DOI: 10.1021/acsomega.4c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
In the process of zinc hydrometallurgy, the content of fluorine in zinc sulfate solution directly affects the stripping of the zinc plate, which easily leads to the deterioration of working conditions. It not only has a serious impact on the entire zinc hydrometallurgical system but also causes huge economic losses. Especially in the process of zinc secondary resource utilization, the concentration of fluoride ions in the electrolyte exceeds the control standard of smelting enterprises, which has become a long-term technical challenge in the smelting industry. So far, no efficient and economical solution has been developed to effectively remove fluoride from a zinc sulfate solution with a high fluorine content. In view of this background, this study focuses on the application of the precipitation method, which stands out for its wide adaptability, simple operation, and cost advantages. The thermodynamic analysis of the purification and defluorination process of zinc sulfate solution was carried out, and the effects of different experimental conditions on the purification and defluorination of zinc sulfate solution were systematically explored. The results showed that when the solution was acidic, only a fluorite precipitated phase was formed in the system. In order to make the system only form a fluorite precipitated phase, the pH of the solution should be controlled below 7. Under the conditions of the molar ratio of Ca/F2 is 1, the reaction time is 45 min, the solution pH is 4.5, the reaction temperature is 24 °C, and the stirring speed of 900 r min -1, the fluorine removal rate can reach 83.19%, and the zinc loss rate is about 2%.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Weiguang Zhang
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Xuejiao Cao
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Yibing Li
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Xuexian Jiang
- Guilin
University of Technology AT Nanning, Nanning, Guangxi 532100, China
| | - Yang Chen
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Yuping Li
- College
of Materials Science and Engineering, Guilin
University of Technology, Guilin, Guangxi 541004, China
- Key
Laboratory of New Technology for Non Ferrous Metals and Materials
Processing, Guilin University of Technology, Guilin, Guangxi 541004, China
- Collaborative
Innovation Center for Exploration of Nonferrous Metal Deposits and
Efficient Utilization of Resources, Guilin
University of Technology, Guilin, Guangxi 541004, China
| | - Tingan Zhang
- School
of Materials and Metallurgy, Northeastern
University, Shenyang, Liaoning 110004, China
| |
Collapse
|
5
|
Xiong J, Xiao Y, Tan Z, Xu X, Wang Z, Zhang L, Shi Y, Pi K, Qiu G, Yang X. Influence of coexisting anions on the one-step electrochemical reduction and precipitation removal of Cr(VI): Implications for advanced wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123167. [PMID: 39488961 DOI: 10.1016/j.jenvman.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Electroreduction of Cr(VI) coupled with in-situ precipitation of Cr(III) on the cathode is a promising method for removing Cr(VI) from wastewaters. However, the influence of coexisting anions in wastewaters on the electrochemical removal process remains unclear. This study investigated the impact of common inorganic anions, including nitrate (NO3-), chloride (Cl-), phosphate (PO43-) and sulfate (SO42-), on the electrochemical removal processes of Cr(VI). The results indicated that HCrO4- was directly electrochemically reduced to Cr3+, and the OH- generated through electro-mediated water reduction could complex with Cr3+, thereby transforming Cr3+ into chromium hydroxide (Cr(OH)3) coated at cathode. Coexisting anions would partially penetrate the alkaline Cr(III) complexes, inhibiting the formation of Cr(OH)3 passivation layer and promoting the electroreduction of Cr(VI), whose penetration ability followed the order of SO42- > PO43- > Cl- > NO3-. Both the inhibitory effect on Cr(III) precipitation and promoting effect on Cr(VI) reduction were intensified with increasing concentrations of these anions in the range of 1-100 mmol L-1. Accordingly, after electrolysis of 10 mg L-1 Cr(VI) at an initial pH of 3.0 and -0.2 V (vs. Ag/AgCl), the highest electrochemical reduction ratio of Cr(VI) (99.9%) was achieved in the presence of 100 mmol L-1 SO42-, while the total Cr removal ratio was minimal (3.3%). In contrast, the presence of NO3- at 1 mmol L-1 resulted in a nearly lowest reduction ratio of Cr(VI) (92.9%), with the maximum total Cr removal ratio (92.8%). These findings provide new insights into the electrochemical removal mechanisms of Cr(VI) in complex solution environments.
Collapse
Affiliation(s)
- Jianhan Xiong
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Yuchi Xiao
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Zhengling Tan
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Xiangrui Xu
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Zhipeng Wang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Liangliang Zhang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Yafei Shi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Kewu Pi
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | - Guohong Qiu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, Hubei Province, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| |
Collapse
|
6
|
Li A, Lu T, Zhang Y, Deng S, Duan X, Qiu G. Mechanisms for synergistically enhancing cadmium remediation performance of biochar: Silicon activation and functional group effects. BIORESOURCE TECHNOLOGY 2024; 404:130913. [PMID: 38821426 DOI: 10.1016/j.biortech.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
This work proposes an advanced biochar material (β-CD@SiBC) for controllable transformation of specific silicon (Si) forms through endogenous Si activation and functional group introduction for efficient cadmium (Cd) immobilization and removal. The maximum adsorption capacity of β-CD@SiBC for Cd(II) reached 137.6 mg g-1 with a remarkable removal efficiency of 99 % for 200 mg L-1Cd(II). Moreover, the developed β-CD@SiBC flow column exhibited excellent performance at the environmental Cd concentration, with the final concentration meeting the environmental standard for surface water quality (0.05 mg L-1). The remediation mechanism of β-CD@SiBC could be mainly attributed to mineral precipitation and ion exchange, which accounted for 42 % and 29 % of the remediation effect, respectively, while functional group introduction enhanced its binding stability with Cd. Overall, this work proposes the role and principle of transformation of Si forms within biochar, providing new strategies for better utilizing endogenous components in biomass.
Collapse
Affiliation(s)
- Anyu Li
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Tao Lu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Yutong Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Shengjun Deng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Xianjie Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Guohong Qiu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Foroutan R, Mohammadi R, Razeghi J, Ahmadi M, Ramavandi B. Amendment of Sargassum oligocystum bio-char with MnFe 2O 4 and lanthanum MOF obtained from PET waste for fluoride removal: A comparative study. ENVIRONMENTAL RESEARCH 2024; 251:118641. [PMID: 38458588 DOI: 10.1016/j.envres.2024.118641] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The use of biomass and waste to produce adsorbent reduces the cost of water treatment. The bio-char of Sargassum oligocystum (BCSO) was modified with MnFe2O4 magnetic particles and La-metal organic framework (MOF) to generate an efficient adsorbent (BCSO/MnFe2O4@La-MOF) for fluoride ions (F-) removal from aqueous solutions. The performance of BCSO/MnFe2O4@La-MOF was compared with BCSO/MnFe2O4 and BCSO. The characteristics of the adsorbents were investigated using various techniques, which revealed that the magnetic composites were well-synthesized and exhibited superparamagnetic properties. The maximum adsorption efficiencies (BCSO: 97.84%, BCSO/MnFe2O4: 97.85%, and BCSO/MnFe2O4@La-MOF: 99.36%) were achieved under specific conditions of pH 4, F- concentration of 10 mg/L, and adsorbent dosage of 3, 1.5, and 1 g/L for BCSO, BCSO/MnFe2O4, and BCSO/MnFe2O4@La-MOF, respectively. The results demonstrated that the experimental data adheres to a pseudo-second-order kinetic model. The enthalpy, entropy, and Gibbs free energy were determined to be negative; thus, the F- adsorption was exothermic and spontaneous in the range of 25-50 °C. The equilibrium data of the process exhibited conformity with the Langmuir model. The maximum adsorption capacities of F- ions were determined as 10.267 mg/g for BCSO, 14.903 mg/g for the BCSO/MnFe2O4, and 31.948 mg/g for BCSO/MnFe2O4@La-MOF. The KF and AT values for the F- adsorption were obtained at 21.03 mg/g (L/mg)1/n and 100 × 10+9 L/g, indicating the pronounced affinity of the BCSO/MnFe2O4@La-MOF towards F- than other samples. The significant potential of the BCSO/MnFe2O4@La-MOF magnetic composite for F- removal from industrial wastewater, makes it suitable for repeated utilization in the adsorption process.
Collapse
Affiliation(s)
- Rauf Foroutan
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Jafar Razeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mehrshad Ahmadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
8
|
Xie S, Xiao Y, Huang L, Li J, Yan J, Li Q, Li M, Zhang H. The Constructing of the Oxide Phase Diagram for Fluoride Adsorption on La-Fe-Al: A Collaborative Study of Density Functional Calculation and Experimentation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:619. [PMID: 38607153 PMCID: PMC11013458 DOI: 10.3390/nano14070619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
In recent years, fluoride pollution in water is a problem that has attracted much attention from researchers. The removal of fluoride-containing wastewater by adsorption with metal oxide as an adsorbent is the most common treatment method. Based on this, the effect of the doping ratio of La2O3, Fe2O3, and Al2O3 on the fluoride-removal performance was discussed by constructing a phase diagram. In this study, the adsorption mechanism of nanocrystalline lanthanum oxide terpolymer was investigated by density functional theory calculation and experiment. The optimal pH condition selected in the experiment was three, and the adsorption kinetics of fluoride ions were more consistent with the quasi-second-order kinetic model. The adsorption thermodynamics was more consistent with the Langmuir model. When the La-Fe-Al ternary composite oxides achieved the optimal adsorption efficiency for fluoride ions, the mass synthesis ratio was Al2O3:(Fe2O3:La2O3 = 1:2) = 1:100, resulting in a fluoride ion removal rate of up to 99.78%. Density functional calculations revealed that the La-Fe-Al ternary composite oxides had three important adsorption sites for La, Fe, and Al. Among them, the adsorption capacity for HF was Fe2O3 > La2O3 > Al2O3, and for F- was La2O3 > Al2O3 > Fe2O3. This provided good guidance for designing adsorbents to remove fluoride.
Collapse
Affiliation(s)
- Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Yao Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Jiaxin Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; (S.X.); (Y.X.); (J.L.); (J.Y.); (Q.L.); (M.L.)
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Li XG, Chen J, Wang X, Rao L, Zhou R, Yu F, Ma J. Perspective into ion storage of pristine metal-organic frameworks in capacitive deionization. Adv Colloid Interface Sci 2024; 324:103092. [PMID: 38325008 DOI: 10.1016/j.cis.2024.103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Metal-organic frameworks (MOFs), featuring tunable conductivity, tailored pore/structure and high surface area, have emerged as promising electrode nanomaterials for ion storage in capacitive deionization (CDI) and garnered tremendous attention in recent years. Despite the many advantages, the perspective from which MOFs should be designed and prepared for use as CDI electrode materials still faces various challenges that hinder their practical application. This summary proposes design principles for the pore size, pore environment, structure and dimensions of MOFs to precisely tailor the surface area, selectivity, conductivity, and Faradaic activity of electrode materials based on the ion storage mechanism in the CDI process. The account provides a new perspective to deepen the understanding of the fundamental issues of MOFs electrode materials to further meet the practical applications of CDI.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jinfeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xinyu Wang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Runhong Zhou
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; School of Civil Engineering, Kashi University, Kashi 844008, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Cao S, Lu Y, Tang Y, Sun Y, Zhou H, Zhang G, Lin X, Pang H. Constructing ion-transport blockchain by polypyrrole to link CoTi-ZIF-9 derived carbon materials for high-performance seawater desalination. J Colloid Interface Sci 2024; 654:466-475. [PMID: 37862798 DOI: 10.1016/j.jcis.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The instability and poor electronic conductivity of carbon materials derived from bimetallic zeolite imidazolate frameworks (ZIFs) pose significant challenges for utilizing these carbon materials as direct electrodes for achieving rapid electron transfer and high-performance capacitive deionization (CDI). However, modifying ZIFs through conductive polymers is a wise tool to enhance the target characteristics of ZIFs. Herein, a strategy is proposed to use polypyrrole (PPy) to interlink the carbon units derived from CoTi-ZIF-9 to construct a blockchain network system with high capacity and fast electrochemical kinetics for high performance CDI. In this system, PPy serves as a branched link connecting each carbon unit, so that the ions in the electrolyte can achieve low barrier and fast transmission in the three-dimensional network structure between the unit structures. As expected, with the improved charge transfer efficiency between electrode materials and electrolyte, the CDI cell exhibits excellent desalination capacity (77.3 mg g-1). In addition, density functional theory calculations also indicate that the introduction of PPy results in a higher electron density near the fermi surface of carbon material, which is conducive to electron transport and reaction kinetics. This work may provide important concepts for the design of CDI electrodes with high-conductivity and high-performance.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
11
|
Wang C, Qiu Y, Wang C, Xu Y, Ren LF, Shao J. Efficient groundwater defluorination over a wide concentration gradient through capacitive deionization with a three-layer structured membrane coating electrode. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132703. [PMID: 37821246 DOI: 10.1016/j.jhazmat.2023.132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Fluoride (F-) pollution in groundwater is an important environmental issue and capacitive deionization (CDI) holds promise for defluorination at moderate concentrations (e.g., 200 -1000 mg L-1). However, existing electrodes suffer from the overlap of electrical-double-layer (EDL) and severe co-ion effects at low (e.g., <200 mg L-1) and high sodium fluoride (NaF) concentrations (e.g., >1000 mg L-1), respectively, exhibiting poor salt adsorption capacity (SAC). Hence, a three-layer structured electrode, "membrane/carbon nanotube (CNT)/activated carbon (AC)" (CNT-MCE), was prepared through electrospinning CNT onto AC, followed by a polymer membrane coating. Compared to AC and membrane coated electrode, CNT-MCE with mesopore-dominated structure prevented EDL overlap, achieving a higher SAC of 40.8 mg g-1 at 100 mg L-1 NaF. At 1500 mg L-1 NaF, the positively charged CNT-MCE exhibited an improved SAC of 58.8 mg g-1 by inhibiting co-ion effects. Meanwhile, CNT-MCE consistently demonstrated superb SACs at 200 - 800 mg L-1 NaF and maintained excellent stability over a wide concentration gradient by inhibiting severe oxidation. Notably, CNT-MCE successfully decreased the F- concentration in simulated groundwater from 3.4 to 1.1 mg L-1. Overall, our work provides an efficient strategy of electrode design to broaden the applicability of CDI for groundwater defluorination over a wide concentration gradient.
Collapse
Affiliation(s)
- Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China
| | - Yubo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China.
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240 Shanghai, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, No. 2 Cuihu North Road, Kunming 650504, Yunnan, PR China.
| |
Collapse
|
12
|
Chen Y, Yin X, Zheng N, Lin Z, Fujita T, Ning S, Chen Y, Wang X. Flexible self-supporting Na 3MnTi(PO 4) 3@C fibers for uranium extraction from seawater by electro sorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132664. [PMID: 37778313 DOI: 10.1016/j.jhazmat.2023.132664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
As an eco-friendly technique with the superior adsorption performance, electroadsorption has shown great potential for application in uranium (U(VI)) recovery in recent years. However, the electrodes used in the electrosorption generally suffer the adsorbent to be loaded on the conductors, which greatly limited the adsorption performance of the electrodes for uranyl ions. In present study, a flexible self-supporting Na3MnTi(PO4)3@C fibers (NMTP@C fibers) electrode material was rationally designed and prepared by electrostatic spinning method and annealing technique, and its ability to capture U(VI) efficiently was preliminarily demonstrated by batch adsorption and electro sorption. The plentiful phosphate groups provide sufficient active sites for adsorption, while the axially continuous electron conduction and radially short-range ion transport give NMTP@C fibers fast charge/ion transport capability. The NMTP@C fiber can remove 99% of 5 ppm U(VI) in seawater by electro absorption within 1 h. After several cycles of adsorption under seawater conditions, the adsorbent can still maintain a stable adsorption capacity. The adsorption mechanism of NMTP@C nanofibers for U(VI) was investigated by XPS, FT-IR, Raman, SEM-EDS, and XRD, which was electrostatic interactions and surface complexation. These results suggest that NMTP@C fibers are promising high-capacity adsorbents for efficient and selective capture of U(VI) from seawater.
Collapse
Affiliation(s)
- Yuliang Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China.
| | - Ningchao Zheng
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Zheyang Lin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Yanliang Chen
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013, PR China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China.
| |
Collapse
|
13
|
Yu J, Zhang H, Liu Q, Zhu J, Liu J, Chen R, Wang J. Synergistic adsorption and photocatalysis reduction of uranium by UiO-66 (Ce)-CdS/PEI-modified chitosan composite sponge. Int J Biol Macromol 2023; 253:126866. [PMID: 37703982 DOI: 10.1016/j.ijbiomac.2023.126866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/13/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Uranium is a critical element of the nuclear industry, and while extracting it from seawater is considered the most promising way to meet the growing demand for uranium, there are still some problems that still need to be solved. This work designed a UiO-66(Ce)-CdS/PEI-modified chitosan composite sponge (USPS) with an adsorption-photocatalytic synergistic effect to extract uranium efficiently. On the one hand, the drawback that the powder material is difficult to be recycled is solved. On the other hand, the uranium extraction capacity of the substrate sponge is improved. Compared with the unmodified PCS sponge, the uranium extraction capacity of the USPS-4 composite sponge is 1.63 fold higher than that of the PCS sponge. In addition, the USPS-4 composite sponge exhibits excellent selectivity and regenerability. The mechanism of uranium extraction can be summarized as the coordination chelation of uranium with active functional groups in the adsorption process and the reduction of hexavalent uranium by photogenerated electrons in the photocatalytic process. This study provides a new strategy for designing and preparing a novel material with high uranium extraction performance, easy separation, and recovery.
Collapse
Affiliation(s)
- Jiaqi Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongsen Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China.
| |
Collapse
|
14
|
Shi M, Lu K, Jia H, Hong X, Yan Y, Qiang H, Wang F, Xia M. 3D-Printed river-type thick carbon electrodes for docking possible practical application-level capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167339. [PMID: 37748601 DOI: 10.1016/j.scitotenv.2023.167339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The low carbon mass loading along with serious imbalance between the carbon mass loading and the electrode performance greatly hinders practical applications of capacitive deionization (CDI). Traditional thick bulk-type (BT) carbon electrodes often suffer from extremely limited active sites, thereby being vital to explore a basic strategy to unlock the performance. Herein, 3D-printed thick carbon electrodes were utilized for CDI desalination for the first time. The experimental outcomes revealed that BT electrodes existed a serious salt adsorption capacity (SAC) drop under variable mass loading of 3-30 mg/cm2. In contrary, 3D-printed river-type (RT) electrodes acquired a superior SAC of 10.67 mg/g and achieved 54.1 % SAC rise compared with that of BT electrodes (500 mg/L; 1.0 V; 30 mg/cm2). Meanwhile, RT electrodes took only 12 min to reach the equilibrium SAC of BT electrodes, being 44 min faster. Further, RT electrodes with diverse mass loading of 30-45 mg/cm2 were investigated, and it still kept 7.13 mg/g SAC under ultrahigh mass loading of 45 mg/cm2. This strategy has been successfully extended and carbons with proper micro-meso pore distribution, high specific capacitances and low resistance may be a better selection. Besides, the impact of electrode channel structure on the desalting performance was investigated, and the influence mechanism was revealed via COMSOL simulation. Overall, this work demonstrates the splendid feasibility of utilizing 3D-printed thick carbon electrodes for possible practical application-level CDI desalination.
Collapse
Affiliation(s)
- Mingxing Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huijuan Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianyong Hong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yanghao Yan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hua Qiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
15
|
Min Y, Xu L, Su J, Ma J, Ali A, Li X. Enhanced ammonia nitrogen and phenol removal by immobilized bacteria through composite mycelium pellet-driven quinone redox cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118893. [PMID: 37688959 DOI: 10.1016/j.jenvman.2023.118893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
The composite mycelium pellet (CMP) was coupled with Pseudomonas sp. Y1 (CMP-Y1) to remove phenol and ammonia nitrogen (NH4+-N). The CMP was formed by the self-assembly of fungal mycelium with sponge iron (SIO), gallic acid (GA), and oxalic acid. The results showed that CMP with abundant pore size and successful internal loading of sponge iron containing iron nanoparticles. CMP could induce GA redox cycle to form Fenton-like reaction and thus achieve efficient phenol removal (93.32%, 24 h). Meanwhile, the removal efficiencies of phenol, NH4+-N, and chemical oxygen demand (COD) using CMP-Y1 at 12 h were 93.71, 92.40, and 89.00%, respectively. The increase in the electron transfer activity of strain Y1 by the addition of CMP could facilitate the nitrogen removal processes. In addition, high-throughput sequencing results indicated the abundance of antioxidant and repair genes was increased, which might be a strategy of strain Y1 to cope with oxidative stress. This strategy provided the possibility for the practical application of the combination of advanced oxidation and biological treatment, and offered new insights into the symbiotic system of fungi and bacteria.
Collapse
Affiliation(s)
- Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
16
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
17
|
Khan MS, Leong ZY, Li DS, Qiu J, Xu X, Yang HY. A mini review on metal-organic framework-based electrode materials for capacitive deionization. NANOSCALE 2023; 15:15929-15949. [PMID: 37772477 DOI: 10.1039/d3nr03993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Capacitive deionization (CDI) is an electrochemical method of extracting ions from solution at potentials below electrolysis. It has various applications ranging from water remediation and desalination to heavy metal removal and selective resource recovery. A CDI device applies an electrical charge across two porous electrodes to attract and remove ions without producing waste products. It is generally considered environmentally friendly and promising for sustainability, yet ion removal efficiency still falls short of more established filtration methods. Commercially available activated carbon is typically used for CDI, and its ion adsorption capacity is low at approximately 20-30 mg g-1. Recently, much interest has been in the highly porous and well-structured family of materials known as metal-organic frameworks (MOFs). Most MOFs are poor conductors of electricity and cannot be directly used to make electrodes. A common workaround is to pyrolyze the MOF to convert its organic components to carbon while maintaining its underlying microstructure. However, most MOF-derived materials only retain partial microstructure after pyrolysis and cannot inherit the robust porosity of the parent MOFs. This review provides a systematic breakdown of structure-performance relationships between a MOF-derived material and its CDI performance based on recent works. This review also serves as a starting point for researchers interested in developing MOF-derived materials for CDI applications.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhi Yi Leong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
18
|
Wu Q, Zhang Y, Lin Y, Wei W, Liu G, Cui X, Su M, Jiang H, Wu T, Li X, Lv X, Tao K, Xie E, Zhang Z. Three-Dimensional Polypyrrole-Decorated CuCo 2S 4 Nanowires Anchored on Nickel Foam: A Promising Electrode for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46971-46981. [PMID: 37755826 DOI: 10.1021/acsami.3c09922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The exploitation of high-performance supercapacitors is crucial to promote energy storage technologies. Benefiting from the three-dimensional conductive micronanostructures and high specific capacity of the PPy@CuCo2S4@NF (polypyrrole/copper cobalt sulfide/nickel foam) composite electrode, this electrode exhibits a high specific capacity of 1403.21 C g-1 at 1 A g-1 and a capacitance retention of 85.79% after 10,000 cycles at 10 A g-1. The assembled PPy@CuCo2S4@NF//AC aqueous hybrid supercapacitor (AHSC) reveals a wide operating potential window of 1.5 V and achieves a high specific capacity of 322.52 C g-1 at 1 A g-1 and a capacitance retention of 86.84% after 15,000 cycles at 10 A g-1. The AHSC also exhibits a high power density of 733.69 W kg-1 at an energy density of 67.19 W h kg-1, surpassing those of previously reported spinel-based supercapacitors. Ex situ X-ray diffraction and X-ray photoelectron spectroscopy results show that the CuCo2S4 spinel structure changes to CuS2 and CoS2 cube structures, and the oxidation states of Cu and Co increase during charging and discharging processes. Density functional theory calculations suggest a superior conductivity for CuCo2S4 compared to that for CuCo2O4, demonstrating that CuCo2S4 has superior electrochemical performance. These findings attest to the considerable potential of the spinel materials for advanced energy storage applications.
Collapse
Affiliation(s)
- Qingfeng Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuhao Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuan Lin
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaosha Cui
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Meixia Su
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Haiqing Jiang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Tianyu Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xijuan Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xueliang Lv
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Kun Tao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Rhee H, Kwak R. Induced-charge membrane capacitive deionization enables high-efficient desalination with polarized porous electrodes. WATER RESEARCH 2023; 244:120436. [PMID: 37556990 DOI: 10.1016/j.watres.2023.120436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
Exposure of a conducting porous material to an electric field in electrolytes induces an electric dipole, which results in capacitive charging of cations and anions at opposite poles. In this letter, we investigate a novel desalination method using this induced-charge capacitive deionization (ICCDI). To do this, we devise a microscale ICCDI platform that can visualize in situ ion concentrations, pH shifts, and fluid flows, and study ion transport dynamics and desalination performances compared to conventional CDI with unipolar / bipolar connections. Similar ion concentration and fluid flow characteristics were observed in Ohmic, limiting, and over-limiting regimes, but variations in desalination performance trends were noted based on the number of stacks. In a single cell, ICCDI generates a higher electric field at the opposite poles of porous electrodes than simple conducted electrodes in CDIs with unipolar/bipolar connections, leading to superior salt removal and/or lower ionic current at a given applied voltage. This marks a clear contrast from CDI with bipolar connection, which lacks any advantage over CDI with unipolar connection in a single cell. These metrics of ICCDI however deteriorated as the stack number increased, likely due to short-circuiting between the dipoles. As a result, ICCDI in current form shows higher desalination efficient than conventional CDIs with low stack numbers (< 6), so we offer the scale-up module by repeating 4-stack ICCDI units. Our study enhances comprehension of ion transport dynamics and desalination performance in ICCDI, and the results could aid in the development of ICCDI for energy/cost-efficient desalination.
Collapse
Affiliation(s)
- Hahnsoll Rhee
- Department of Mechanical Convergence Engineering, Hanyang University, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Hanyang University, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
21
|
Wei D, Cao Y, Yan L, Gang H, Wu B, Ouyang B, Chen P, Jiang Y, Wang H. Enhanced Pseudo-Capacitance Process in Nanoarchitectural Layered Double Hydroxide Nanoarrays Hollow Nanocages for Improved Capacitive Deionization Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24427-24436. [PMID: 37171395 DOI: 10.1021/acsami.3c02044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Layered double hydroxides (LDHs) are perceived as a hopeful capacitive deionization (CDI) faradic electrode for Cl- insertion due to its tunable composition, excellent anion exchange capacity, and fast redox activity. Nevertheless, the self-stacking and inferior electrical conductivity of the two-dimensional structure of LDH lead to unsatisfactory CDI performance. Herein, the three-dimensional (3D) hollow nanocage structure of CoNi-layered double hydroxide/carbon composites is well designed as a CDI anode by cation etching of the pre-carbonized ZIF-67 template. C/CoNi-LDH has a unique 3D hollow nanocage structure and abundant pore features, which can effectively suppress the self-stacking of LDH sheets and facilitate the transport of ions. Moreover, the introduced amorphous carbon layer can act as a conductive network. When employed as the CDI anode, C/CoNi-LDH exhibited a high Cl- removal capacity of 60.88 mg g-1 and a fast Cl- removal rate of 18.09 mg g-1 min-1 at 1.4 V in 1000 mg L-1 NaCl solution. The mechanism of the Cl- intercalation pseudo-capacitance reaction of C/CoNi-LDH is revealed by electrochemical kinetic analysis and ex situ characterization. This study provides vital guidance for the design of high-performance electrodes for CDI.
Collapse
Affiliation(s)
- Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiyin Gang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuxin Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| |
Collapse
|
22
|
Mariella Babu A, Varghese A. Electrochemical Deposition for Metal Organic Frameworks: Advanced Energy, Catalysis, Sensing and Separation Applications. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
23
|
Zhao Z, Zhou H, Han X, Han L, Xu Z, Wang P. Rapid, Highly-Efficient and Selective Removal of Anionic and Cationic Dyes from Wastewater Using Hollow Polyelectrolyte Microcapsules. Molecules 2023; 28:molecules28073010. [PMID: 37049773 PMCID: PMC10095712 DOI: 10.3390/molecules28073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, poly (allylamine hydrochloride) (PAH)/ poly (styrene sulfonic acid) sodium salt (PSS) microcapsules of (PAH/PSS)2PAH (P2P MCs) and (PAH/PSS)2 (P2 MCs) were obtained by a layer-by-layer method. The P2 MCs show high adsorption capacity for Rhodamine B (642.26 mg/g) and methylene blue (909.25 mg/g), with an extremely low equilibrium adsorption time (~20 min). The P2P MCs exhibited high adsorption capacities of reactive orange K-G (ROKG) and direct yellow 5G (DY5G) which were 404.79 and 451.56 mg/g. Adsorption processes of all dyes onto microcapsules were best described by the Langmuir isotherm model and a pseudo-second-order kinetic model. In addition, the P2P MCs loaded with reactive dyes (P2P–ROKG), could further adsorb rhodamine B (RhB) dye, and P2 MCs that had adsorbed cationic MB dyes could also be used for secondary adsorption treatment of direct dye waste-water, respectively. The present work confirmed that P2P and P2 MCs were expected to become an excellent adsorbent in the water treatment industry.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Hongbing Zhou
- Zhejiang Huaguang Automotive Interior Decoration Co., Ltd., Rui’an 325200, China
| | - Xu Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Lun Han
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Xu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China
- Correspondence: (Z.X.); (P.W.)
| |
Collapse
|