1
|
Liu X, Huang D, Zhu C, Zhu F, Zhu X, Zhou D. Production of Reactive Oxygen Species during Redox Manipulation and Its Potential Impacts on Activated Sludge Wastewater Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23042-23052. [PMID: 39689161 DOI: 10.1021/acs.est.4c11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Reactive oxygen species (ROS) are ubiquitous in redox-fluctuating environments, exerting profound impacts on biogeochemical cycles. However, whether ROS can be generated during redox manipulation in activated sludge wastewater treatment processes (AS-WTPs) and the underlying impacts remain largely unknown. This study demonstrates that ROS production is ubiquitous in AS-WTPs due to redox manipulation and that the frequency and capacity of ROS production depend on the operating modes. The anaerobic/oxic continuous-flow reactor showed persistent ROS generation (0.8-2.1 μM of instantaneous H2O2), whereas the oxic/anoxic sequencing batch reactor (0.21-0.28 mM of H2O2 per cycle) and the anaerobic/anoxic digestion reactor (0.27-0.29 mM of H2O2 per cycle) exhibited periodic ROS production. Our results illustrated that ROS generated during redox manipulation can contribute to the removal of organic micropollutants. Due to their high activity, ROS can directly accelerate the abiotic oxidation of organic phenolics and Fe(II) minerals in sludges. ROS could also affect biotic nitrification by changing the microbial community composition and regulating the relative expression of functional genes, such as amoA, nrxA, and nrxB. This research demonstrates the ubiquitous production of ROS during redox manipulation in AS-WTPs, which provides new insights into pollutant removal and the abiotic and biotic elemental transformation in AS-WTPs.
Collapse
Affiliation(s)
- Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiangdong Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Ye Z, Shen Z, Zhang Y, Rosado-García FM, Ye J, Ji Y, Yu X, Feng M. Solar-driven environmental fate of chlorinated parabens in natural and engineered water systems. WATER RESEARCH 2024; 265:122269. [PMID: 39178595 DOI: 10.1016/j.watres.2024.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Parabens are classified as emerging contaminants in global waters, and the ubiquitous emergence of their high-risk chlorinated products generated from chlorine-based wastewater disinfection has attracted increasing attention. However, rather limited information is available on their photofate after discharging into surface waters, and their degradation behavior after solar-based engineering water treatment is unclear. Herein, the reactivity of four chlorinated parabens with different photochemically produced reactive intermediates was measured. Quantitative contribution analysis in abating such compounds showed the dominance of direct photolysis in sunlit natural freshwaters. Introducing a technical solar/peroxymonosulfate (PMS) system could greatly improve the removal of chlorinated parabens. The economic analysis suggested that chlorinated parabens exhibited a minimum value of economic input as 93.41-158.04 kWh m-3 order-1 at 0.543-0.950 mM PMS. The high-resolution mass spectrometry analysis of the degradation products suggested that dechlorination, hydroxylation, and ester chain cleavage were the dominant transformation pathways during photolysis and solar/PMS treatment. Furthermore, the in silico prediction indicated severe aquatic toxicity of certain products but enhanced biodegradability. Overall, this investigation filled a knowledge gap on the reactivity of chlorinated parabens with diverse reactive transients and their quantitative contributions to the photolysis and solar/PMS treatment of emerging micropollutants in water.
Collapse
Affiliation(s)
- Zhantu Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhen Shen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yilin Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Jiawei Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Kang JK, Lee H, Kim SB, Oh JE, Bae H. Differentiated adsorption of acetaminophen and diclofenac via alkyl chain-modified quaternized SBA-15: Insights from molecular simulation. CHEMOSPHERE 2024; 366:143404. [PMID: 39326708 DOI: 10.1016/j.chemosphere.2024.143404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The increasing presence of pharmaceuticals and personal care products (PPCPs) in aquatic systems pose significant environmental concerns. This study addresses this issue by synthesizing quaternized mesoporous SBA-15 (QSBA) with varied alkyl chain lengths of C1QSBA, C8QSBA, and C18QSBA. QSBA utilizes dual mechanisms: hydrophobic interactions via the alkyl chain and electrostatic attraction/ion exchange via the ammonium group. Diclofenac (DCF) and acetaminophen (ACT) were selected as target PPCPs due to their contrasting dissociation properties and hydrophobicity, which are the main characteristics of PPCPs. The adsorption of DCF and ACT revealed that longer alkyl chains enhanced the adsorption capacity of ACT through hydrophobic interactions, whereas dissociated DCF (DCF-) adsorption was superior owing to its high hydrophobicity (log Kow = 4.5) and electrostatic attraction. pH levels between 6 and 8 resulted in a high affinity for DCF-. Notably, among the three alkyl chains, only C18QSBA exhibited the most effective adsorption for DCF-. These PPCPs adsorption trends were confirmed through molecular simulations of adsorption under conditions in which competing ions coexisted. The molecular simulations show that while DCF- has lower adsorption energy than Cl-, OH-, and H3O+ ions in QSBA, enhancing its adsorption under various pH conditions. Conversely, ACT exhibits a higher adsorption energy, which reduces its adsorption efficiency. This suggests the potential application of QSBA with long alkyl chains in the treatment of highly hydrophobic and negatively charged PPCPs. Furthermore, this study emphasizes the importance of simulating adsorption under competing ion conditions.
Collapse
Affiliation(s)
- Jin-Kyu Kang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, 53064, Republic of Korea
| | - Hyebin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Song-Bae Kim
- Water Environmental Systems and Deep Learning Laboratory, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Tan B, Gou G, Ren Y, Fang Z, Liu C, Lai B, Li N, Li J. Comparative study of organic removal by pre-adsorption oxidation and synchronous adsorption oxidation processes: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134784. [PMID: 38843635 DOI: 10.1016/j.jhazmat.2024.134784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Both adsorption and oxidation occur and contribute to organics removal in carbonaceous materials based advanced oxidation processes, while the correction of adsorption and oxidation, and the role of adsorption in the veritable removal of organic are not clear. Herein, we investigated the performance of carbamazepine (CBZ) removal by peroxymonosulfate (PMS) activated by magnetic Fe-doped biochar through two models of pre-adsorption oxidation and synchronous adsorption oxidation processes. The adsorption process was better fitted by pseudo-second-order kinetic model and the adsorption mechanism was obtained by comprehensive analysis of equilibrium adsorption capacities, surface functional groups, specific surface area, pore volume, and ID/IG value. It is noted that pre-adsorption highly inhibited the further oxidation of CBZ in 0.5Fe@LSBC700/PMS system due to the occupied catalytic active sites. Total CBZ removal in pre-adsorption oxidation (45 %) was inferior to synchronous adsorption oxidation (∼100 %), as well as the veritable CBZ oxidation removal of 27 % for pre-adsorption oxidation vs ∼100 % in synchronous adsorption oxidation at 30 min. Oxidation degradation of CBZ based on radical oxidation was identified by quenching experiments and electron paramagnetic resonance measurements. This work is conducive to identifying the role of adsorption during the removal of organics in the adsorption-oxidation process, as well as veritable adsorption and oxidation removal of organics.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Ge Gou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Zhuoyao Fang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Dung NT, Khiem TC, Thao NP, Phu NA, Son NT, Dat TQ, Phuong NT, Trang TT, Nhi BD, Thuy NT, Lin KYA, Huy NN. Enhancing catalytic activity of CuCoFe-layered double oxide towards peroxymonosulfate activation by coupling with biochar derived from durian peel for antibiotic degradation: The role of C=O in biochar and underlying mechanism of built-in electric field. CHEMOSPHERE 2024; 361:142452. [PMID: 38810804 DOI: 10.1016/j.chemosphere.2024.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
CuCoFe-LDO/BCD was successfully synthesized from CuCoFe-LDH and biochar derived from durian shell (BCD). Ciprofloxacin (CFX) degraded more than 95% mainly by O2•- and 1O2 in CuCoFe-LDO/BCD(2/1)/PMS system within 10 min with a rate constant of 0.255 min-1, which was 14.35 and 2.66 times higher than those in BCD/PMS and CuCoFe-LDO/PMS systems, respectively. The catalytic system exhibited good performance over a wide pH range (3-9) and high degradation efficiency of other antibiotics. Built-in electric field (BIEF) driven by large difference in the work function/Fermi level ratio between CuCoFe-LDO and BCD accelerated continuous electron transfer from CuCoFe-LDO to BCD to result in two different microenvironments with opposite charges at the interface, which enhanced PMS adsorption and activation via different directions. As a non-radical, 1O2 was mainly generated via PMS activation by C=O in BCD. The presence of C=O in BCD resulted in an increase in atomic charge of C in C=O and redistributed the charge density of other C atoms. As a result, strong adsorption of PMS at C atom in C=O and other C with a high positive charge was favorable for 1O2 generation, whereas an enhanced adsorption of PMS at negatively charged C accounted for the generation of •OH and SO4•-. After adsorption, electrons in C of BCD became deficient and were fulfilled with those transferred from CuCoFe-LDO driven by BIEF, which ensured the high catalytic activity of CuCoFe-LDO/BCD. O2•-, on the other hand, was generated via several pathways that involved in the transformation of •OH and SO4•- originated from PMS activation by the transition of metal species in CuCoFe-LDO and negatively charged C in BCD. This study proposed a new idea of fabricating a low-cost metal-LDH and biomass-derived catalyst with a strong synergistic effect induced by BIEF for enhancing PMS activation and antibiotic degradation.
Collapse
Affiliation(s)
- Nguyen Trung Dung
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Ta Cong Khiem
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Phuong Thao
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Anh Phu
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Truong Son
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Tran Quang Dat
- Faculty of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet St., Bac Tu Liem District, Hanoi, Viet Nam
| | - Nguyen Thu Phuong
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay, Hanoi, Viet Nam
| | - Tran Thi Trang
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet St., Cau Giay District, Hanoi, Viet Nam
| | - Bui Dinh Nhi
- Faculty of Chemical and Environmental Technology, Viet Tri University of Industry, 9 Tien Son St., Viet Tri City, Phu Tho Province, Viet Nam
| | - Nguyen Thi Thuy
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Kun-Yi Adrew Lin
- Innovation and Development Center of Sustainable Agriculture and Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Nguyen Nhat Huy
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
6
|
Quan X, Chen Y, Yin L, Zuo W, Tian Y, Zhang J. Enhanced Selective Degradation of Pharmaceutical and Personal Care Products by β-Cyclodextrin-Decorated ZIF-67 Nanocomposites in Reclaimed Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34973-34987. [PMID: 38918892 DOI: 10.1021/acsami.4c05315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A peroxymonosulfate oxidation system was developed via modification of β-cyclodextrin (β-CD) on the surface of Fe2+-doped ZIF-67 (CD/Fe@ZIF-67) as an activator. The 99.7% carbamazepine, 91.3% bisphenol A (BPA), and 95.4% diclofenac (DCF) degradation efficiency were achieved within 10 min, 60, and 1 min, respectively. The hydrophobicity of these three pollutants is positively correlated with their adsorption kinetic constants by CD/Fe@ZIF-67 due to the introduction of β-CD. Scavenger experiments and electron spin resonance spectra confirmed that carbamazepine was preferentially oxidized by SO4•- [λ(SO4•-)(70.5%) > λ(•OH)(28.2%) > λ(O2•-)(1.3%)], where SO4•- and O2•- played dominant roles in the degradation of BPA [λ(SO4•-)(71.7%) > λ(O2•-)(22.8%) > λ(•OH)(5.5%)], and O2•- was responsible for DCF removal [λ(O2•-) = 93.2%]. Additionally, the particulate catalyst was immobilized in the shell side of a ceramic membrane in a membrane reactor for catalyst recovery. This reactor achieved nearly 100% removal efficiency under optimal conditions: 0.036 wt % catalyst loading, 0.5 mM peroxymonosulfate concentration, 1 L inflow, 10 mg/L initial carbamazepine concentration, and 0.012 L/min hydraulic retention time. In summary, this study elucidates the active role of β-CD in a polymetallic/peroxymonosulfate system and provides valuable insights into the development of effective oxidation methods for pharmaceutical and personal care products in wastewater.
Collapse
Affiliation(s)
- Xi Quan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Yifan Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
- Chongqing Research Institute of HIT, Chongqing 401151, China
| |
Collapse
|
7
|
Jin Y, Yu J, Yu J, Wu Y, Deng S, Jiang Y, Huang Z, Wu D, Zhu W. Ce/N @BC prepared based on plant metallurgy strategy: A novel activator of peroxymonosulfate for the degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123558. [PMID: 38355088 DOI: 10.1016/j.envpol.2024.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
A novel carbon catalyst was created based on plant metallurgy strategy for organic pollutants removal. Plants rich in CeO2 NPs in water were used as carbon precursors and pyrolyzed with urea to obtain Ce/N co-doped carbon catalysts, which were used in the degradation of sulfamethoxazole (SMX) by active peroxymonosulfate (PMS). The results showed that the Ce/N @BC/PMS system achieved to 94.5% degradation of SMX in 40 min at a rate constant of 0.0602 cm-1. The activation center of PMS is widely dispersed Ce oxide nanocrystals, and CeO2 NPs promote the formation of oxygen centered PFR with enhanced catalytic ability and longer half-life. In addition, N-doping facilitates the transfer of π-electrons within the sp2 carbon of biochar, increasing active sites and thus improving PMS activation efficiency. The degradation process was contributed to by both radical and non-radical activation mechanisms including 1O2 and direct electron transfer, with O2•- serving as 1O2's precursor. Through the DFT calculations, LC-MS and toxicological analyses, the degradation pathway of pollutants and the toxicity changes throughout the entire degradation process were further revealed, indicating that the degradation of SMX could effectively reduce ecological toxicity.
Collapse
Affiliation(s)
- Yuanxiao Jin
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China.
| | - Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Yuerong Wu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences, 610046, Chengdu, PR China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Donghai Wu
- School of Life Sciences, Chongqing University, Chongqing, 400044, PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
8
|
Jin H, Xu X, Liu R, Wu X, Chen X, Chen D, Zheng X, Zhao M, Yu Y. Electro-oxidation of Ibuprofen using carbon-supported SnO x-CeO x flow-anodes: The key role of high-valent metal. WATER RESEARCH 2024; 252:121229. [PMID: 38324989 DOI: 10.1016/j.watres.2024.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.
Collapse
Affiliation(s)
- Huachang Jin
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaozhi Xu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renlan Liu
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaobo Wu
- Ecological Environment Protection Administrative Law Enforcement Team of Rui'an City, Wenzhou, Zhejiang 325035, China
| | - Xueming Chen
- College of Environmental and Resources Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dongzhi Chen
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xiangyong Zheng
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- National & Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yang Yu
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
9
|
Gao Y, Wang G, Wang X, Dong X, Zhang X. Synchronously improved permeability, selectivity and fouling resistance of Fe-N-C functionalized ceramic catalytic membrane for effective water treatment: The critical role of Fe. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132888. [PMID: 37922578 DOI: 10.1016/j.jhazmat.2023.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.
Collapse
Affiliation(s)
- Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Xiao H, Chen Z, Ding J, Zhang N, Ye Z, Xiao Z, Wang S, Xie P, Chen Y. Effective and low-toxicity: A membrane cleaning method using peroxymonosulfate catalytic chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132827. [PMID: 37879274 DOI: 10.1016/j.jhazmat.2023.132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
In chemical membrane cleaning, the challenge is to efficiently remove irreversible fouling while minimizing the impact on membrane materials. Particularly, traditional hypochlorite cleaning will further lead to the generation of toxic halogenated by-products. To address these issues, a combined system composed of peroxymonosulfate and chloride (PMS/Cl-) was applied to clean irreversible-humic-acid-fouled polyethersulfone (PES) membranes. After fouled membranes were soaked for 1 h in a PMS/Cl- solution (10 mM/15 mM) at 25 °C under neutral conditions, 94% flux recovery and 96% resistance removal were realized. Surface properties of virgin and cleaned membranes were very similar, confirming the effectiveness of the PMS/Cl- solution in removing irreversible foulants. The stability of membrane separation performance during multiple fouling and cleaning cycles further confirmed the minimal impact on membrane materials. Rapid diminution of the peaks centered in the region of fulvic-like and humic-like components, monitored under 3D-fluorescence for the cleaning solution, was attributed to PMS-catalyzed chlorination, thereby revealing the primary foulant detachment mechanism. Crucially, the approach exhibited lower toxicity than hypochlorite, as evidenced by reduced halogenated by-products and lower acute toxicity to Photobacterium phosphoreum T3. Overall, this novel cleaning system is promising for the efficient and environmentally friendly removal of irreversible organic foulants in practical water-treatment.
Collapse
Affiliation(s)
- Haoliang Xiao
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Ding
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China; Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430010, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ning Zhang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhimin Ye
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhonghua Xiao
- Hubei Industrial Construction Group Co., Ltd, Wuhan 430076, China
| | - Songlin Wang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Pengchao Xie
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (MOHURD), Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|