1
|
Wang Z, Lu X, Zheng M, Hu Z, Batstone D, Yuan Z, Hu S. Quadrupling the capacity of post aerobic digestion treating anaerobically digested sludge using a moving-bed biofilm (MBBR) configuration. WATER RESEARCH X 2024; 24:100240. [PMID: 39193397 PMCID: PMC11347825 DOI: 10.1016/j.wroa.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Wastewater treatment plants produce large amounts of sludge requiring stabilization before safe disposal. Traditional biological stabilization approaches are cost-effective but generally require either an extended retention time (10-40 days), or elevated temperatures (40-80 °C) for effective pathogens inactivation. This study overcomes these limitations via a novel acidic aerobic digestion process, leveraging an acid-tolerant ammonia-oxidizing bacterium (AOB) Candidatus Nitrosoglobus. To retain this novel but slowly growing AOB, we proposed the first-ever application of a classical wastewater configuration-moving bed biofilm reactor (MBBR)-for sludge treatment. The AOB in biofilm maintains acidic pH and high nitrite levels in sludge, generating free nitrous acid in situ to expedite sludge stabilization. This process was tested in two laboratory-scale aerobic digesters processing full-scale anaerobically digested sludge. At an ambient temperature of 20 °C, pathogens were reduced to levels well below the threshold specified for the highest stabilization level (Class A), within a retention time of 3.5 days. A high volatile solids reduction of 27.4 ± 5.2% was achieved. Through drastically accelerating stabilization and enhancing reduction, this process substantially saves capital and operational costs for sludge disposal.
Collapse
Affiliation(s)
- Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC) The University of Queensland St. Lucia Queensland 4072 Australia
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC) The University of Queensland St. Lucia Queensland 4072 Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC) The University of Queensland St. Lucia Queensland 4072 Australia
| | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC) The University of Queensland St. Lucia Queensland 4072 Australia
| | - Zhiguo Yuan
- School of Energy and Environment City University of Hong Kong Hong Kong SAR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC) The University of Queensland St. Lucia Queensland 4072 Australia
| |
Collapse
|
2
|
Wang Z, Lu X, Zhang X, Yuan Z, Zheng M, Hu S. Ammonium-based bioleaching of toxic metals from sewage sludge in a continuous bioreactor. WATER RESEARCH 2024; 256:121651. [PMID: 38657312 DOI: 10.1016/j.watres.2024.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The broader reuse of sewage sludge as a soil fertilizer or conditioner is impeded by the presence of toxic metals. Bioleaching, a process that leverages microbial metabolisms and metabolites for metal extraction, is viewed as an economically and environmentally feasible approach for metal removal. This study presents an innovative bioleaching process based on microbial oxidation of ammonia released from sludge hydrolysis, mediated by a novel acid tolerant ammonia-oxidizing bacteria (AOB), Ca. Nitrosoglobus. Over a span of 1024 days, a laboratory-scale bioleaching reactor processing anaerobically digested (AD) sludge achieved an in-situ pH of 2.5 ± 0.3. This acidic environment facilitated efficient leaching of toxic metals from AD sludge, upgrading its quality from Grade C to Grade A (qualified for unrestricted use), according to both stabilization and contaminants criteria. The improved quality of AD sludge could potentially reduce sludge disposal expenses and enable a broader reuse of biosolids. Furthermore, this study revealed a pH-dependent total ammonia affinity of Ca. Nitrosoglobus, with a higher affinity constant at pH 3.5 (67.3 ± 20.7 mg N/L) compared to pH 4.5-7.5 (7.6 - 9.6 mg N/L). This finding indicates that by optimizing ammonium concentrations, the efficiency of this novel ammonium-based bioleaching process could be significantly increased.
Collapse
Affiliation(s)
- Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Wang S, Lan B, Yu L, Xiao M, Jiang L, Qin Y, Jin Y, Zhou Y, Armanbek G, Ma J, Wang M, Jetten MSM, Tian H, Zhu G, Zhu YG. Ammonium-derived nitrous oxide is a global source in streams. Nat Commun 2024; 15:4085. [PMID: 38744837 PMCID: PMC11094135 DOI: 10.1038/s41467-024-48343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bangrui Lan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Qin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuting Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingchen Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Manting Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, AJ, 6525, the Netherlands
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, 02467, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, 02467, USA
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zhang S, Li C, Lv H, Cui B, Zhou D. Anammox activity improved significantly by the cross-fed NO from ammonia-oxidizing bacteria and denitrifying bacteria to anammox bacteria. WATER RESEARCH 2024; 249:120986. [PMID: 38086204 DOI: 10.1016/j.watres.2023.120986] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nitric oxide (NO) has been suggested as an obligate intermediate in anaerobic ammonium oxidation (anammox), nitrification and denitrification. At the same time, ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (DNB) are always existed in anammox flora, so what is the role of NO produced from AOB and DNB? Could it accelerate nitrogen removal via the anammox pathway with NO as an electron acceptor? To investigate this hypothesis, nitrogen transforming of an anammox biofilter was analyzed, functional gene expression of anammox bacteria (AnAOB), AOB and DNB were compared, and NO source was verified. For anammox biofilter, anammox contributed to 91.3 % nitrogen removal with only 14.4 % of AnAOB being enriched, while DNB was dominant. Meta-omics analysis and batch test results indicated that AOB could provide NO to AnAOB, and DNB also produced NO via up-regulating nirS/K and down-regulating nor. The activation of the anammox pathway of NH4++NO→N2 caused the downregulation of nirS and nxr in Ca. Kuenenia stuttgartiensis. Additionally, changes in nitrogen transforming pathways affected the electron generation and transport, limiting the carbon metabolism of AnAOB. This study provided new insights into improving nitrogen removal of the anammox system.
Collapse
Affiliation(s)
- Sixin Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunrui Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Han Lv
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
5
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Zong H. Changes in pH and Nitrite Nitrogen Induces an Imbalance in the Oxidative Defenses of the Spotted Babylon ( Babylonia areolata). Antioxidants (Basel) 2023; 12:1659. [PMID: 37759962 PMCID: PMC10526028 DOI: 10.3390/antiox12091659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In order to reveal the acute toxicity and physiological changes of the spotted babylon (Babylonia areolata) in response to environmental manipulation, the spotted babylon was exposed to three pH levels (7.0, 8.0 and 9.0) of seawater and four concentrations of nitrite nitrogen (0.02, 2.7, 13.5 and 27 mg/L). The activities of six immunoenzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP) and peroxidase (POD), were measured. The levels of pH and nitrite nitrogen concentrations significantly impacted immunoenzyme activity over time. After the acute stress of pH and nitrite nitrogen, the spotted babylon appeared to be unresponsive to external stimuli, exhibited decreased vigor, slowly climbed the wall, sank to the tank and could not stand upright. As time elapsed, with the extension of time, the spotted babylon showed a trend of increasing and then decreasing ACP, AKP, CAT and SOD activities in order to adapt to the mutated environment and improve its immunity. In contrast, POD and GSH-PX activities showed a decrease followed by an increase with time. This study explored the tolerance range of the spotted babylon to pH, nitrite nitrogen, and time, proving that external stimuli activate the body's immune response. The body's immune function has a specific range of adaptation to the environment over time. Once the body's immune system was insufficient to adapt to this range, the immune system collapsed and the snail gradually died off. This study has discovered the suitable pH and nitrite nitrogen ranges for the culture of the spotted babylon, and provides useful information on the response of the snail's immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (R.D.); (R.Y.); (Z.F.); (W.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian 116023, China
| |
Collapse
|
6
|
Ni G, Leung PM, Daebeler A, Guo J, Hu S, Cook P, Nicol GW, Daims H, Greening C. Nitrification in acidic and alkaline environments. Essays Biochem 2023; 67:753-768. [PMID: 37449414 PMCID: PMC10427799 DOI: 10.1042/ebc20220194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments. Here, we review the literature and identify knowledge gaps on the metabolic diversity, ecological distribution, and physiological adaptations of nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying microorganisms depend on a suite of physiological adaptations to maintain pH homeostasis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a membrane potential at pH extremes. We also recognize the broader implications of their activities primarily in acidic environments, with a focus on agricultural productivity and nitrous oxide emissions, as well as promising applications in treating municipal wastewater.
Collapse
Affiliation(s)
- Gaofeng Ni
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, Queensland, Australia
| | - Perran Cook
- School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|