1
|
Yan J, Li R, Wang C, Yang S, Shao M, Zhang L, Li P, Feng X. Transport and transformation of colloidal and particulate mercury in contaminated watershed. WATER RESEARCH 2025; 278:123428. [PMID: 40049095 DOI: 10.1016/j.watres.2025.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/25/2025] [Accepted: 03/01/2025] [Indexed: 04/14/2025]
Abstract
Submicron colloids ubiquitously present in aquatic environments and can facilitate long transport of absorbed contaminants. Impact of particle size distribution on mercury (Hg) mobility and transformation in the complex aqueous matrices is still unclear. In this study, we considered Hg mine wastes as a natural Hg releasing source to local rivers, and collected water samples from the source to the downstream during high and low flow periods. The water samples were analyzed for Hg morphology, concentration, speciation, and isotope to understand transport and transformation dynamics along the river flows. We found that visible Hg compounds observed by transmission electron microscopy were mainly bound to particles with size fractions of <0.05 and >0.45 μm in the upstream, while the proportion of Hg bound to particles with 0.05-0.45 μm only accounted for 20.0 ± 17.1 % of the total Hg (THg). With increasing distance from the mine waste pile in the downstream, the <50 nm size fraction Hg became the dominant from due to settling of large particles and remained constant throughout the whole river. The Hg isotope results also revealed that the <50 nm size fraction Hg could migrate steadily for long distances into the downstream. Most importantly, a significantly positive correlation was observed between the proportion of the <50 nm size fraction Hg to water THg and the proportion of methylmercury (MeHg) to water THg, indicating the <50 nm size fraction Hg as an important substrate for Hg methylation in the river. These results highlighted the pivotal role of the the <50 nm size particles as a significant reservoir for Hg in aquatic environment.
Collapse
Affiliation(s)
- Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H5T4, Canada
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Wang D, Lin X, Wu G, Xu Z, Liu J, Xu X, Jia D, Liang L, Habibullah-Al-Mamun M, Qiu G. Synchronous changes in mercury stable isotopes and compound-specific amino acid nitrogen isotopes in organisms through food chains. ENVIRONMENT INTERNATIONAL 2025; 196:109327. [PMID: 39952203 DOI: 10.1016/j.envint.2025.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The relationship between stable isotope of mercury (Hg, Δ199Hg and δ202Hg) and compound-specific nitrogen isotope of amino acids (CSIA-AA, δ15NGlu and δ15NPhe) remains poorly understood. In this study, we investigated bird species and their prey in an abandoned Hg mining area, southern China to elucidate these correlations for a better understanding of Hg sources, biological transfer, accumulation and amplification through food chains. Our findings revealed distinct isotopic patterns: Δ199Hg showed a positive correlation with δ15NGlu, indicating trophic transfer processes, while a negative correlation with δ15NPhe suggested differences in Hg sources among birds. The wide ranges of δ15NPhe and Δ199Hg observed in birds appear to reflect mixtures of multiple nitrogen and Hg sources, likely due to their diverse food sources and the large variation in the proportion of MeHg in total Hg (MeHg%). The consistent slope between Δ199Hg/δ15Nphe and MeHg%/δ15Nphe, reflecting both energy and Hg sources, provides new insights into the biotransfer and accumulation of Hg in organisms. Notably, the trophic magnification factor (TMF) of MeHg observed in water birds, such as egrets, reached an exceptionally high value of 97.7 estimated from CSIA of multiple amino acids (i.e., TMFM), underscoring the significance of investigating Hg sources in birds. Our results demonstrate that the synchronous changes between CSIA-AA and odd Hg isotopes effectively identify Hg sources and transfer across multiple ecological systems.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007 China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228 China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002 China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000 Bangladesh
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China.
| |
Collapse
|
3
|
Liang X, Hu ZC, Liu YR, Gao C, Zhang Y, Hao YY, Zhang L, Zhao J, Zhu L. Precipitation patterns strongly affect vertical migration and methylation of mercury in legacy contaminated sites. WATER RESEARCH 2024; 267:122511. [PMID: 39340865 DOI: 10.1016/j.watres.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Legacy-contaminated sites act as significant sources of mercury (Hg) to their surrounding surface and underground environments. Intensified extreme precipitation is posing great threats to the environment and human health by changing the fate of pollutants, yet little is known about its effect on the vertical migration and methylation of Hg in contaminated sites. Here, we applied a range of simulated extreme precipitation patterns (frequency and intensity) to column leaching assays with soils collected near a contaminated site. We observed that precipitation with high frequency but low intensity resulted in more vertical migration of Hg through the soil profile than that with low frequency but high intensity. The majority (> 90%) of leached Hg was prone to migrate vertically within the top 10 cm of the soil profile. Furthermore, rainfall stimulated microbial Hg methylation, as demonstrated by enhanced production of methylmercury (MeHg) in both simulated and field-contaminated soils. We identified specific microbial taxa including Geobacteraceae, Desulfuromonadaceae, Syntrophaceae, Oscillospiraceae, and Methanomicrobiaceae as key predictors of MeHg production, which differed from those typically observed in overlying water of croplands. Particularly, the relative abundance of these dominant Hg methylators significantly increased during rainfall-induced leaching compared to that of the control, suggesting the crucial yet previously overlooked impacts of increased precipitation events on the process of microbial Hg methylation in industry-contaminated sites. Given the rising incidences of extreme precipitation events worldwide due to climate change, this study highlights the significance of assessing Hg mobility and microbial transformation in legacy contaminated sites.
Collapse
Affiliation(s)
- Xujun Liang
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Zhi-Cheng Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cunbin Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun-Yun Hao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jiating Zhao
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Lizhong Zhu
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Wang C, Yang S, Li R, Yan J, Hu Y, Lai C, Li Z, Li P, Zhang L, Feng X. Atmospheric Mercury Concentrations and Isotopic Compositions Impacted by Typical Anthropogenic Mercury Emissions Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39252629 DOI: 10.1021/acs.est.4c07649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Coal-fired power plants (CFPPs) and cement plants (CPs) are important anthropogenic mercury (Hg) emission sources. Mercury speciation profiles in flue gas are different among these sources, leading to significant variations in local atmospheric Hg deposition. To quantify the impacts of Hg emissions from CFPPs and CPs on local-scale atmospheric Hg deposition, this study determined concentrations and isotopes of ambient gaseous elemental mercury (GEM), particulate-bound mercury (PBM), and precipitation total Hg (THg) at multiple locations with different distances away from a CFPP and a CP. Higher concentrations of GEM and precipitation THg in the CFPP area in summer were caused by higher Hg emission from the CFPP, resulting from higher electricity demand. Higher concentrations of GEM, PBM, and precipitation THg in the CP area in winter compared to those in summer were related to the higher output of cement. Atmospheric Hg concentration peaked near the CFPP and CP and decreased with distance from the plants. Elevated GEM concentration in the CFPP area was due to flue gas Hg0 emissions, and high PBM and precipitation Hg concentrations in the CP area were attributed to divalent Hg emissions. It was estimated that Hg emissions from the CFPP contributed 58.3 ± 20.9 and 52.3 ± 25.9% to local GEM and PBM, respectively, and those from the CP contributed 47.0 ± 16.7 and 60.0 ± 25.9% to local GEM and PBM, respectively. This study demonstrates that speciated Hg from anthropogenic emissions posed distinct impacts on the local atmospheric Hg cycle, indicating that Hg speciation profiles from these sources should be considered for evaluating the effectiveness of emission reduction policies. This study also highlights the Hg isotope as a useful tool for monitoring environmental Hg emissions.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yanxin Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuyan Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jung E, Park S, Kim H, Han S. Spatiotemporal variation in methylmercury and related water quality variables in a temperate river under highly dynamic hydrologic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173090. [PMID: 38729360 DOI: 10.1016/j.scitotenv.2024.173090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The understanding of the essential environmental factors affecting the spatiotemporal variation in methylmercury (MeHg) in river water is limited to date, despite its importance for predicting the effect of ongoing climate change on MeHg accumulation in freshwater ecosystems. This study aimed to explore the variation in MeHg concentration and related environmental factors in the downstream zone of the Yeongsan River under highly dynamic hydrologic conditions by using water quality and hydrologic data collected from 1997 to 2022, and Hg and MeHg data collected from 2017 to 2022. The mean concentration of unfiltered MeHg was 35.7 ± 13.7 pg L-1 (n = 24) in summer and 26.7 ± 7.43 pg L-1 (n = 24) in fall. Dissolved oxygen (DO), conductivity, nitrate, and dissolved organic carbon (DOC) were determined to be the most influential variables in terms of MeHg variation based on the partial least squares regression model, and their effects on the MeHg concentration were negative, except for DOC. Heatmaps representing the similarity distances between temporal trends of hydrologic and water quality variables were constructed to determine fundamental factors related to the time-based variations in DO, conductivity, nitrate, and DOC using a dynamic time warping algorithm. The heatmap cluster analysis showed that the temporal trends of these variables were closely related to rainfall variation rather than irradiance or water temperature. Overall, biogeochemical factors directly related to in situ methylation rate of Hg(II)-rather than transport of Hg(II) and MeHg from external sources-mainly control the spatiotemporal variation of MeHg in the downstream zone of the Yeongsan River.
Collapse
Affiliation(s)
- Eunji Jung
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sungsook Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyunji Kim
- National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
Yang X, Yu R, Wang T, Wen X, He Y, Li Z, Ma C, Chen W, Zhang C. Algae-leached DOM inhibits the Hg(II) reduction and uptake by lettuce in aquatic environments under light conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106928. [PMID: 38688065 DOI: 10.1016/j.aquatox.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The significant role of aquatic phytoplankton in global primary productivity, accounting for approximately 50 % on an annual basis, has been recognized as a crucial factor in the reduction of Hg(II). In this study, we compared the efficiency of Hg(II) photoreduction mediated by three types of algae leaching dissolved organic matter (DOM) and humic acid (DOM-HA). Especially, we investigated the potential effects of algae-leached DOM on the photoreduction of Hg(II) and its subsequent uptake by lettuce, which serves as an indicator of Hg bioavailability for aquatic plants. The results revealed that under light conditions, the conversion of Hg(II) to Hg(0) mediated by algae-leached DOM and DOM-HA was 6.4-39.9 % higher compared to dark condition. Furthermore, the free radical quenching experiment demonstrated that the reduction of Hg(II) mediated by DOM-HA was higher than algae-leached DOM, mainly due to its ability to generate superoxide anion (O2•-). Moreover, the photoreduction efficiences of Hg(II) mediated by algae-leached DOM were 29-18 % lower compared to DOM-HA. The FT-IR analysis revealed that the production of -SH from algae-leached DOM led to the formation of strong metal-complexes, which restricts the reduction process from Hg(II) to Hg(0). Finally, the hydroponics experiment demonstrated that algae-leached DOM inhibited the bioavailability of Hg(II) to plants more effectively than DOM-HA. Our research emphasizes the significant functional roles and potential mechanisms of algae in reducing Hg levels, thereby influencing the availability of Hg in aquatic ecosystems.
Collapse
Affiliation(s)
- Xu Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China.
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Hong M, Wang J, Yang B, Liu Y, Sun X, Li L, Yu S, Liu S, Kang Y, Wang W, Qiu G. Inhibition of pyrite oxidation through forming biogenic K-jarosite coatings to prevent acid mine drainage production. WATER RESEARCH 2024; 252:121221. [PMID: 38324985 DOI: 10.1016/j.watres.2024.121221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/23/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 μm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.
Collapse
Affiliation(s)
- Maoxin Hong
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| | - Baojun Yang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| | - Yang Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Xin Sun
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Laishun Li
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Shichao Yu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Shitong Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yang Kang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Wei Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Passarelli I, Villacis Verdesoto MV, Jiménez-Oyola S, Flores Huilcapi AG, Mora-Silva D, Anfuso G, Esparza Parra JF, Jimenez-Gutierrez M, Carrera Almendáriz LS, Avalos Peñafiel VG, Straface S, Mestanza-Ramón C. Analysis of Mercury in Aquifers in Gold Mining Areas in the Ecuadorian Amazon and Its Associated Risk for Human Health. TOXICS 2024; 12:162. [PMID: 38393257 PMCID: PMC10892106 DOI: 10.3390/toxics12020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Gold mining activity is a source of supply in many areas of the world, and especially in developing countries, it is practiced illegally and by applying unsafe techniques. Particularly in Ecuador, artisanal and small-scale gold mining (ASGM) is widespread, and it is based on the use of toxic substances, such as mercury (Hg), in gold recovery. Hg is a heavy metal that is water-insoluble, which, once mobilized, poses a threat to both the environment and human health. This study analyzes Hg concentrations in the six provinces of Napo, Sucumbíos, Orellana, Pastaza, Morona Santiago, and Zamora Chinchipe of the Ecuadorian Amazon region to conduct a human health risk assessment. Significant differences in Hg levels were found between provinces, but concentrations were below MPL imposed by Ecuadorian regulations everywhere. Nevertheless, a worrisome picture emerges, especially with regard to the most vulnerable receptors represented by the child population. There are multiple factors of incidence that may affect the possible future development of the phenomenon, and with reference to the social, economic, and environmental context of the region, it can be concluded that it may be appropriate to plan further investigation to arrive at a more comprehensive assessment. The results of this study can be used by decision makers to plan further investigation and to implement monitoring networks, risk mitigation strategies, and groundwater protection measures.
Collapse
Affiliation(s)
- Irene Passarelli
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy; (I.P.)
| | | | - Samantha Jiménez-Oyola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, ESPOL Polytechnic University, Campus Gustavo Galindo km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090101, Ecuador
| | - Ana Gabriela Flores Huilcapi
- Faculty of Food Science and Engineering and Biotechnology, Universidad Técnica de Ambato, Av. Colombia y Chile, Ambato 180104, Ecuador
| | - Demmy Mora-Silva
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca 220001, Ecuador
| | - Giorgio Anfuso
- Department of Earth Sciences, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Spain;
| | - Jose Fernando Esparza Parra
- Escuela Superior Politécnica de Chimborazo (ESPOCH), Faculty of Natural Resources, Panamericana Sur km 1 ½, Riobamba 060155, Ecuador
| | | | | | | | - Salvatore Straface
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy; (I.P.)
| | - Carlos Mestanza-Ramón
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy; (I.P.)
| |
Collapse
|
9
|
Zhang C, Xia T, Zhang L, Chen Z, Zhang H, Jia X, Jia L, Zhu X, Li G. Mercury pollution risks of agricultural soils and crops in mercury mining areas in Guizhou Province, China: effects of large mercury slag piles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:53. [PMID: 38245580 DOI: 10.1007/s10653-023-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
The historical large mercury slag piles still contain high concentrations of mercury and their impact on the surrounding environment has rarely been reported. In this study, three different agricultural areas [the area with untreated piles (PUT), the area with treated piles (PT), and the background area with no piles (NP)] were selected to investigate mercury slag piles pollution in the Tongren mercury mining area. The mercury concentrations of agricultural soils ranged from 0.42 to 155.00 mg/kg, determined by atomic fluorescence spectrometry of 146 soil samples; and mercury concentrations in local crops (rice, maize, pepper, eggplant, tomato and bean) all exceeded the Chinese food safety limits. Soil and crop pollution trends in the three areas were consistent as PUT > PT > NP, indicating that mercury slag piles have exacerbated pollution. Mercury in the slag piles was adsorbed by multiple pathways of transport into soils with high organic matter, which made the ecological risk of agricultural soils appear extremely high. The total hazard quotients for residents from ingesting mercury in these crops were unacceptable in all areas, and children were more likely to be harmed than adults. Compared to the PT area, treatment of slag piles in the PUT area may decrease mercury concentrations in paddy fields and dry fields by 46.02% and 70.36%; further decreasing health risks for adults and children by 47.06% and 79.90%. This study provided a scientific basis for the necessity of treating large slag piles in mercury mining areas.
Collapse
Affiliation(s)
- Chengcheng Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Tianxiang Xia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| | - Lina Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhuo Chen
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Haonan Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoyang Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Lin Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoying Zhu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Guangbing Li
- Tongren Environmental Science and Technology Consulting Center, Tongren, 554399, China
| |
Collapse
|
10
|
Kang J, Liu M, Qu M, Guang X, Chen J, Zhao Y, Huang B. Identifying the potential soil pollution areas derived from the metal mining industry in China using MaxEnt with mine reserve scales (MaxEnt_MRS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121687. [PMID: 37105461 DOI: 10.1016/j.envpol.2023.121687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Identifying the potential soil pollution areas derived from the metal mining industry usually requires extensive field investigation and laboratory analysis. Moreover, the previous studies mainly focused on a single or a few mining areas, and thus couldn't provide effective spatial decision support for controlling soil pollution derived from the metal mining industry at the national scale. This study first conducted a literature investigation and web crawler for the relevant information on the metal mining areas in China. Next, MaxEnt with mine reserve scales (MaxEnt_MRS) was proposed for spatially predicting the probabilities of soil pollution derived from the metal mining industry in China. Then, MaxEnt_MRS was compared with the basic MaxEnt. Last, the potential soil pollution areas were identified based on the pollution probabilities, and the relationships between the soil pollution probabilities and the main environmental factors were quantitatively assessed. The results showed that: (i) MaxEnt_MRS (AUC = 0.822) obtained a better prediction effect than the basic MaxEnt (AUC = 0.807); (ii) the areas with the soil pollution probabilities higher than 54% were mainly scattered in the eastern, south-western, and south-central parts of China; (iii) GDP (45.7%), population density (30.1%), soil types (15.5%), average annual precipitation (3.9%), and land-use types (3.1%) contributed the most to the prediction of the soil pollution probabilities; and (iv) the soil pollution probabilities in the areas with all the following conditions were higher than 54%: GDP, 7600-2612670 thousand yuan/km2; population density, 152-551 people/km2; precipitation, 924-2869 mm/year; soil types, Ferralisols or Luvisols; and land-use types, townland, mines, and industrial areas. The above-mentioned results provided effective spatial decision support for controlling soil pollution derived from the metal mining industry at the national scale.
Collapse
Affiliation(s)
- Junfeng Kang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Maosheng Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Mingkai Qu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China.
| | - Xu Guang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Jian Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yongcun Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| |
Collapse
|
11
|
Yang S, Li P, Sun K, Wei N, Liu J, Feng X. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments. WATER RESEARCH 2023; 241:120150. [PMID: 37269625 DOI: 10.1016/j.watres.2023.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
12
|
Jin X, Yan J, Ali MU, Li Q, Li P. Mercury Biogeochemical Cycle in Yanwuping Hg Mine and Source Apportionment by Hg Isotopes. TOXICS 2023; 11:toxics11050456. [PMID: 37235270 DOI: 10.3390/toxics11050456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Although mercury (Hg) mining activities in the Wanshan area have ceased, mine wastes remain the primary source of Hg pollution in the local environment. To prevent and control Hg pollution, it is crucial to estimate the contribution of Hg contamination from mine wastes. This study aimed to investigate Hg pollution in the mine wastes, river water, air, and paddy fields around the Yanwuping Mine and to quantify the pollution sources using the Hg isotopes approach. The Hg contamination at the study site was still severe, and the total Hg concentrations in the mine wastes ranged from 1.60 to 358 mg/kg. The binary mixing model showed that, concerning the relative contributions of the mine wastes to the river water, dissolved Hg and particulate Hg were 48.6% and 90.5%, respectively. The mine wastes directly contributed 89.3% to the river water Hg contamination, which was the main Hg pollution source in the surface water. The ternary mixing model showed that the contribution was highest from the river water to paddy soil and that the mean contribution was 46.3%. In addition to mine wastes, paddy soil is also impacted by domestic sources, with a boundary of 5.5 km to the river source. This study demonstrated that Hg isotopes can be used as an effective tool for tracing environmental Hg contamination in typical Hg-polluted areas.
Collapse
Affiliation(s)
- Xingang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
13
|
Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal. Int J Mol Sci 2023; 24:ijms24055009. [PMID: 36902440 PMCID: PMC10003538 DOI: 10.3390/ijms24055009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
To explore the strong tolerance of bacteria to Hg pollution, aquatic Rheinheimera tangshanensis (RTS-4) was separated from industrial sewage, with a maximum Hg(II) tolerant concentration of 120 mg/L and a maximum Hg(II) removal rate of 86.72 ± 2.11%, in 48 h under optimum culture conditions. The Hg(II) bioremediation mechanisms of RTS-4 bacteria are as follows: (1) the reduction of Hg(II) through Hg reductase encoded by the mer operon; (2) the adsorption of Hg(II) through the production of extracellular polymeric substances (EPSs); and (3) the adsorption of Hg(II) using dead bacterial biomass (DBB). At low concentrations [Hg(II) ≤ 10 mg/L], RTS-4 bacteria employed Hg(II) reduction and DBB adsorption to remove Hg(II), and the removal percentages were 54.57 ± 0.36% and 45.43 ± 0.19% of the total removal efficiency, respectively. At moderate concentrations [10 mg/L < Hg(II) ≤ 50 mg/L], all three mechanisms listed above coexisted, with the percentages being 0.26 ± 0.01%, 81.70 ± 2.31%, and 18.04 ± 0.62% of the total removal rate, respectively. At high concentrations [Hg(II) > 50 mg/L], the bacteria primary employed EPS and DBB adsorption to remove Hg(II), where the percentages were 19.09 ± 0.04% and 80.91 ± 2.41% of the total removal rate, respectively. When all three mechanisms coexisted, the reduction of Hg(II) occurred within 8 h, the adsorption of Hg(II) by EPSs and DBB occurred within 8-20 h and after 20 h, respectively. This study provides an efficient and unused bacterium for the biological treatment of Hg pollution.
Collapse
|