1
|
Wang Z, Lu Z, Xia Y, Wei Y, Liu H, Tang H, Liu X, Shi J, Zhang J, Liu C. L-cysteine-grafted polyacrylonitrile sheets with amphoteric adsorption sites enabling efficient removal of Hg(II) from acidic wastewater. WATER RESEARCH 2025; 282:123624. [PMID: 40222221 DOI: 10.1016/j.watres.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Conventional adsorbents for Hg(II) are not suitable for acidic environments because they degrade and lose activity. In this study, high-density sulfur and nitrogen-containing porous polyacrylonitrile sheet (HSN-PANS) was developed by grafting l-cysteine. The amphoteric HSN-PANS adsorbent can effectively remove Hg(II) from acidic wastewater, reducing its concentration from 11 mg/L to below the drinking water standard of 1 μg/L at pH 2. It shows high adsorption capacity (764 mg/g), strong anti-interference properties, and excellent selectivity. The adsorption mechanism involves coordination and electrostatic interactions. Thanks to its stable structure and efficient desorption, HSN-PANS demonstrates excellent acid resistance and reusability, retaining 99.9 % adsorption efficiency after 43 cycles. Furthermore, it performs reliably in industrial wastewater treatment. Notably, an HSN-PANS-packed column can treat about 5845 bed volumes (69 L) of Hg(II)-spiked acidic wastewater until reaching a breakthrough point of 1 μg/L, concentrating the adsorbed Hg(II) into 1.8 L of desorbent. This study demonstrates the potential of HSN-PANS as an effective adsorbent for directly and efficiently removing Hg(II) from acidic wastewater, providing a promising solution to reduce Hg(II) emissions in industrial processes.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Zijun Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yufen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yuanfeng Wei
- Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Huiling Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Haifang Tang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Xiangxiong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Jinfang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Junfeng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
2
|
Li D, Deng W, Wang Y, Tian Y, Wang D. Thiolated non-conjugated nano polymer network for advanced mercury removal from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136817. [PMID: 39667150 DOI: 10.1016/j.jhazmat.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Developing advanced adsorbents for selectively deducing mercury (Hg) in water to one billionth level is of great significance for public health and ecological security, but achieving the balance among efficiency, cost and environmental friendliness of adsorbents still faces enormous challenges. Herein, we present a high thiol content non-conjugated nano polymer network (PVB-SH) through simple microemulsion polymerization for efficient Hg ion (Hg(II)) removal. The PVB-SH is prepared by conventional commercial reagents and does not consume toxic organic solutions. This nano network reveals uniformly distributed nano sizes, leading to good accessibility of adsorption sites. The long and flexible polymer chains in the network allow two thiol sites to coordinate with one Hg(II), displaying significantly stronger binding than 1:1 coordination. Therefore, PVB-SH shows high affinity toward Hg(II) (Kd = 3.04 × 107 mL/g) and can selectively reduce Hg(II) in water to extremely low level of 0.14 μg/L, well below the safe limit of 2 μg/L. PVB-SH possesses excellent renewability (removal efficiency = 99.58 % after 10 regenerations), good resistance to various environmental factors (pH, ions and organic matter) and long-term stability in acid, alkali, and salt solutions. Impressively, PVB-SH is further made into a membrane by simple phase-inversion and can effectively purify 1592.4 L/m2 Hg(II) polluted drinking water before the breakthrough point of 2 μg/L. These results demonstrate the good practical potential of PVB-SH for decontamination of Hg from aqueous media.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Cui T, Chen D, Duan R, Yang F, Li D, Tian L, Zhang Y, Wang H, Xu R. Taloring sawdust derived hydrochar via red mud for cadmium removal: Electron transfer insight and recyclability assessment. CHEMOSPHERE 2025; 370:143924. [PMID: 39653192 DOI: 10.1016/j.chemosphere.2024.143924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Iron modified bio-adsorbents gained a lot of attention recently, especially some iron-contain wastes were employed for fabrication. However, the influence of indigenous impurities in wastes was merely investigated. In this study, red mud (RM), an iron-rich by-product was employed as source to prepare Fe modified hydrochar (RM@HC) by a facile hydrothermal method, and then employed for Cd(II) removal from wastewater. The RM@HC demonstrated excellent adsorption performance with capacity of 598.26 mg/g and maintained with a wide pH range. Further, the removal mechanisms were comprehensively elucidated and calculated, which was attributed to the various interactions include physical adsorption (29.07%), reduction (27.61%), and co-precipitation (25.81%). Moreover, the abundant metal oxides in RM@HC contributed to the removal through co-precipitation by building a highly alkaline environment. This work provided a promising choice for the sustainable reutilization of RM by designing a green bio-adsorbent to remove heavy metals from wastewater.
Collapse
Affiliation(s)
- Ting Cui
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ran Duan
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Fan Yang
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, PR China
| | - Danting Li
- Kunming Engineering Corporation Limited, Kunming 650500, PR China
| | - Lin Tian
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Yong Zhang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China.
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China.
| |
Collapse
|
4
|
Xu H, Li HR, Li JY, Qu JJ, Li SS. Sensitive detection of Hg(II) on MoS 2/NiS 2 based on interfacial engineering to accelerate the Ni 2+/Ni 3+ cycle: Identification the role of atomic-level heterojunction-induced electron transfer in electroanalysis. Anal Chim Acta 2024; 1331:343339. [PMID: 39532423 DOI: 10.1016/j.aca.2024.343339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The valence change of transition metal ions in nanomaterials can highly enhance the electrochemical detection performance toward heavy metal ions (HMIs), and how to further promote the valence change calls enormous concerns in electroanalysis. In this work, an interfacial engineering that combing the MoS2 and NiS2 together to form the MoS2/NiS2 complex is proposed. The density functional theory (DFT) results reveals that the novel atomic-level heterojunction between MoS2 and NiS2 will build an internal electric field (IEF), which leads to an enhanced conductivity and valence change behavior of Ni atoms in MoS2/NiS2 complex, resulting in a superior detection performance. In detail, the formation of atomic-level heterojunctions in the MoS2/NiS2 complex accelerates electron transfer due to the valence changes associated with Ni2+/Ni3+ cycling. The active Mo4+ species on MoS2 act as electron donors, facilitating the reduction of Ni3+ to Ni2+ on NiS2, thereby promoting Ni2+/Ni3+ cycling. As anticipated, the MoS2/NiS2 complex exhibits exceptional detection performance for Hg(II), with a sensitivity of 459.13 μA μM-1 cm-2, surpassing even that of other composite materials. In general, these findings are expected to significantly advance the application of electron transfer acceleration in electroanalysis based on the construction of heterojunction.
Collapse
Affiliation(s)
- Huan Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Hao-Ran Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Jing-Yi Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Jian-Jun Qu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, PR China.
| |
Collapse
|
5
|
Wang H, Wei S, Huang S, Liu W, Wang Z. Practical Remediation of Hg-Contaminated Groundwater by MoS 2: Batch and Column Tests. Molecules 2024; 29:5132. [PMID: 39519773 PMCID: PMC11547822 DOI: 10.3390/molecules29215132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Trace mercury contamination in groundwater poses a serious threat to ecological systems and human health. The kinetics and isotherms of MoS2 (MS) for Hg removal were studied in batch tests under an unfavorable high salinity and low mercury environment. Flower-like MS with nanosheets can effectively remove Hg in the groundwater matrix, with a shorter equilibrium time (3 h), superior removal efficiency (94.26%), excellent distribution coefficient (5.69 × 106 mL g-1), and higher maximum adsorption capacity (926.10 ± 165.25 mg g-1). Furthermore, the Adams-Bohart model (R2 = 0.9052-0.9416) can accurately describe the dynamic interception process of the initial stage (≤40 PVs), and the Yan model (R2 = 0.9765-0.9941) depicts the whole process (140 PVs) of MS in a fixed column well. A higher dosage of m, but lower C0 and νp facilitate the interception efficiency in column tests. Based on the characterizations of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which were used to simultaneously consider the species of Hg and the groundwater matrix, surface complexation, electrostatic attraction, ion exchange, and precipitation is a plausible interfacial adsorption mechanism of MS for mercury. The excellent performance demonstrates that MS with nanosheets is a promising candidate for the PRB remediation of trace Hg in saline groundwater.
Collapse
Affiliation(s)
- Haifeng Wang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Shuai Wei
- Department of Science and Technology Evaluation Service, Henan Provincial Science Research Platform Service Center, Zhengzhou 450008, China
| | - Shuai Huang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Wei Liu
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Zongwu Wang
- Kaifeng Key Laboratory of Food Composition and Quality Assessment, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| |
Collapse
|
6
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Ma L, Li D, Chen X, Xu H, Tian Y. A sustainable carbon aerogel from waste paper with exceptional performance for antibiotics removal from water. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134738. [PMID: 38815396 DOI: 10.1016/j.jhazmat.2024.134738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In this work, a sustainable 3D carbon aerogel (AO-WPC) is prepared from waste paper (WP), and used for efficient antibiotics removal from water. The AO-WPC aerogel shows good mechanical property and can recover after 100th of 30 % compression strain. The specific surface area of AO-WPC aerogel is up to 654.58 m2/g. More importantly, this aerogel reveals proper pore size distribution, including micro sized macropores between carbon fibers and intrinsic nano scale mesopores (11.86 nm), which is conducive to remove antibiotics from water. Taking tetracycline (Tc) as an example, the maximum adsorption capacity and adsorption rate of AO-WPC for Tc are as high as 384.6 mg/g and 0.510 g/(mg‧min), respectively, which exhibits significant advantages over most of the recent absorbents, and the adsorption toward Tc reveals good resistance to various environmental factors, including pH, various ions, and dissolved organic matter (DOM). Moreover, good thermal stability enables the AO-WPC aerogel to be regenerated through simple burning, and the adsorption capacity of Tc only decreases by 10.4 % after 10 cycles. Mechanism research shows that hydrogen bonding and π-π electron-donor-acceptor (EDA) interaction play the important role in the adsorption. The excellent mechanical property and adsorption performance imply good practical prospect of the AO-WPC aerogel.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xing Chen
- China Construction Power and Environment Engineering Co., Ltd., Nanjing 210012, China
| | - Hua Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Guan W, Zhang Z, Liu Y, Ji Y, Tong X, Liu Y, Chen J, Alvarez PJJ, Chen W, Zhang T. Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS 2 Nanosheets: Implications for Safe Design of Mercury Removal Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13110-13119. [PMID: 38989600 DOI: 10.1021/acs.est.4c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.
Collapse
Affiliation(s)
- Wenyu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yunyun Ji
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xin Tong
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jiubin Chen
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
9
|
Rezagholizade-Shirvan A, Mohammadi M, Mazaheri Y, Fallahizadeh S, Ghorbani H, Shokri S, Shariatifar N, Darroudi M, Shamloo E. Employing a magnetic chitosan/molybdenum disulfide nanocomposite for efficiently removing polycyclic aromatic hydrocarbons from milk samples. Sci Rep 2024; 14:15054. [PMID: 38956159 PMCID: PMC11220064 DOI: 10.1038/s41598-024-66087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to develop a highly efficient nanocomposite composed of magnetic chitosan/molybdenum disulfide (CS/MoS2/Fe3O4) for the removal of three polycyclic aromatic hydrocarbons (PAHs)-pyrene, anthracene, and phenanthrene. Novelty was introduced through the innovative synthesis procedure and the utilization of magnetic properties for enhanced adsorption capabilities. Additionally, the greenness of chitosan as a sorbent component was emphasized, highlighting its biodegradability and low environmental impact compared to traditional sorbents. Factors influencing PAH adsorption, such as nanocomposite dosage, initial PAH concentration, pH, and contact time, were systematically investigated and optimized. The results revealed that optimal removal efficiencies were attained at an initial PAH concentration of 150 mg/L, a sorbent dose of 0.045 g, pH 6.0, and a contact time of 150 min. The pseudo-second-order kinetic model exhibited superior fitting to the experimental data, indicating an equilibrium time of approximately 150 min. Moreover, the equilibrium adsorption process followed the Freundlich isotherm model, with kf and n values exceeding 7.91 mg/g and 1.20, respectively. Remarkably, the maximum absorption capacities for phenanthrene, anthracene, and pyrene on the sorbent were determined as 217 mg/g, 204 mg/g, and 222 mg/g, respectively. These findings underscore the significant potential of the CS/MoS2/Fe3O4 nanocomposite for efficiently removing PAHs from milk and other dairy products, thereby contributing to improved food safety and public health.
Collapse
Affiliation(s)
| | - Mansoureh Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Food Safety Division, Department of Environmental Health, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fallahizadeh
- School of Public Health, Yasuj University of Medical Sciences, Yasuj, Iran
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Samira Shokri
- Food Safety Division, Department of Environmental Health, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Food Safety Division, Department of Environmental Health, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Wang Z, Zhang A, Hua T, Chen X, Zhu M, Guo Z, Song Y, Yang G, Li S, Feng J, Li M, Yan W. Revealing the interaction forms between Hg(II) and group types (-Cl, -CN, -NH 2, -OH, -COOH) in functionalized Poly(pyrrole methane)s for efficient mercury removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124049. [PMID: 38692386 DOI: 10.1016/j.envpol.2024.124049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
To explore the impact of different functional groups on Hg(II) adsorption, a range of poly(pyrrole methane)s functionalized by -Cl, -CN, -NH2, -OH and -COOH were synthesized and applied to reveal the interaction between different functional groups and mercury ions in water, and the adsorption mechanism was revealed through combined FT-IR, XPS, and DFT calculations. The adsorption performance can be improved to varying degrees by the incorporation of functional groups. Among them, the oxygen-containing functional groups (-OH and -COOH) exhibit stronger affinity for Hg(II) and can increase the adsorption capacity from 180 mg g-1 to more than 1400 mg g-1 at 318 K, with distribution coefficient (Kd) exceeding 105 mL g-1. The variations in the capture and immobilization capabilities of functionalized poly(pyrrole methane)s predominantly stem from the unique interactions between their functional groups and mercury ions. In particular, oxygen-containing -OH and -COOH effectively capture Hg(OH)2 through hydrogen bonding, and further deprotonate to form the -O-Hg-OH and -COO-Hg-OH complexes which are more stable than those obtained from other functionalized groups. Finally, the ecological safety has been fully demonstrated through bactericidal and bacteriostatic experiments to prove the functionalized poly(pyrrole methane)s can be as an environmentally friendly adsorbent for purifying contaminated water.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aijing Zhang
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tingyu Hua
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Chen
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ziyu Guo
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanna Song
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Yan
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Yang T, Gao N, Li B. Biomass hydrothermal carbonization solution-assisted synthesis of intercalation-expanded core-shell structured molybdenum disulfide for efficient adsorption of Cr (VI) in electroplating wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 401:130761. [PMID: 38692370 DOI: 10.1016/j.biortech.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.
Collapse
Affiliation(s)
- Tianyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Na Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Low Carbon Technology Research Center, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Zhong X, Zhan W, Ma L, Yin G. Trace detection of cadmium (II) ions based on an excessively tilted fiber grating. OPTICS EXPRESS 2024; 32:15851-15861. [PMID: 38859225 DOI: 10.1364/oe.521146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd2+) ion is one of the most crucial industrial pollutants that cause serious harm to the human body. We proposed and experimentally demonstrated a highly sensitive Cd2+ sensor based on hydrogel coated excessively tilted fiber grating. The hydrogel with the functional monomer of the allyl thiourea can specifically bind to Cd2+, and hence forming a complex. The grating excites high order cladding modes, and ensures a sufficient interaction between the light and hydrogel binding to Cd2+, providing highly sensitive monitoring. The results show that the sensor can detect 0-160 pM Cd2+ in aqueous solution. The maximum sensitivity is 10600 nm/µM, and the minimum detection concentration is 20 pM (about 0.004 ppb), which is much less than that of the international standard (3 ppb). The proposed sensor exhibits high sensitivity, ultra-low detection limit, specificity, and a compact structure, offering potential as a tool for Cd2+ detection in aqueous solution.
Collapse
|
13
|
Li D, Wang Y, Deng W, Wang D. Efficient and selective capture of various mercury species from water using an exfoliated thiocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171063. [PMID: 38373452 DOI: 10.1016/j.scitotenv.2024.171063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The primary challenge in mercury (Hg) adsorbents for large-scale practical applications is to achieve the balance between performance and economy. This work attempts to address this issue by synthesizing an exfoliated thiocellulose (CU-SH) with high thiol density and hierarchical porosity using in-situ ligands grafting combined with chemical stripping. The prepared CU-SH shows remarkable physical stability and chemical resistance, and the micron sized fiber is conducive to separation from water. Hg(II) adsorption tests in water demonstrate that CU-SH has broad working pH range (1-12), fast kinetics (0.64 g/(mg‧min)), high adsorption capacity (652.9 mg/g), outstanding selectivity (Kd = 6.2 × 106 mg/L), and excellent reusability (R > 95 % after 20 cycles). Importantly, CU-SH exhibits good resistance to various coexisting ions and organic matter, and can efficiently remove Hg(II) from different real water. CU-SH can be made into a Point of Use (POU) device for continuous and efficient removal of Hg(II) from drinking water. 0.1 g CU-SH filled device can purify 3.2 L of Hg(II) (0.5 ppm) contaminated tap water before the breakthrough point of 2 ppb. Moreover, CU-SH also reveals good adsorption affinity for Hg-dissolved organic matter complexes (Hg(II)-DOM) in water, chloro(phenyl)mercury (PMC) in organic media and Hg0 vapor in air, suggesting the great practical potential of CU-SH.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Miao Z, Mu M, Yu HY, Dong Y. "Green" electrostatic droplet-assisted forming cellulose microspheres with excellent structural controllability and stability for efficient Cr(VI) removal. Carbohydr Polym 2024; 328:121749. [PMID: 38220317 DOI: 10.1016/j.carbpol.2023.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
This study presents a novel and environmentally friendly method for producing cellulose microspheres (CM) with controllable morphology and size using electrostatic droplets. The traditional droplet method for CM production requires complex equipment and harmful reagents. In contrast, the proposed method offers a simple electrostatic droplet approach to fabricate CM10 at 10 kV, which exhibited a smaller volume, linear microscopic morphology, and a larger specific surface area, with a 36.60 % improvement compared to CM0 (prepared at 0 kV). CM10 also demonstrated excellent underwater structural stability, recovering in just 0.5 s, and exhibited the highest adsorption capacity for Cr(VI) at 190.16 mg/g, a 72.15 % improvement over CM0. This enhanced adsorption capacity can be attributed to the unique structure of CM10 and the introduction of more amino groups. Moreover, CM10 displayed good cyclic adsorption capacity and high dynamic adsorption efficiency, making it highly suitable for practical applications. CM10 exhibited remarkable adsorption capacity, stability, and practical value in treating Cr(VI) wastewater. This work proposes a simple and eco-friendly method for producing CM with excellent structural controllability and stability, providing an effective route for wastewater treatment.
Collapse
Affiliation(s)
- Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengya Mu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|