1
|
Sullivan JJ, Zekelman LR, Zhang F, Juvekar P, Torio EF, Bunevicius A, Essayed WI, Bastos D, He J, Rigolo L, Golby AJ, O'Donnell LJ. Directionally encoded color track density imaging in brain tumor patients: A potential application to neuro-oncology surgical planning. Neuroimage Clin 2023; 38:103412. [PMID: 37116355 PMCID: PMC10165166 DOI: 10.1016/j.nicl.2023.103412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Diffusion magnetic resonance imaging white matter tractography, an increasingly popular preoperative planning modality used for pre-surgical planning in brain tumor patients, is employed with the goal of maximizing tumor resection while sparing postoperative neurological function. Clinical translation of white matter tractography has been limited by several shortcomings of standard diffusion tensor imaging (DTI), including poor modeling of fibers crossing through regions of peritumoral edema and low spatial resolution for typical clinical diffusion MRI (dMRI) sequences. Track density imaging (TDI) is a post-tractography technique that uses the number of tractography streamlines and their long-range continuity to map the white matter connections of the brain with enhanced image resolution relative to the acquired dMRI data, potentially offering improved white matter visualization in patients with brain tumors. The aim of this study was to assess the utility of TDI-based white matter maps in a neurosurgical planning context compared to the current clinical standard of DTI-based white matter maps. METHODS Fourteen consecutive brain tumor patients from a single institution were retrospectively selected for the study. Each patient underwent 3-Tesla dMRI scanning with 30 gradient directions and a b-value of 1000 s/mm2. For each patient, two directionally encoded color (DEC) maps were produced as follows. DTI-based DEC-fractional anisotropy maps (DEC-FA) were generated on the scanner, while DEC-track density images (DEC-TDI) were generated using constrained spherical deconvolution based tractography. The potential clinical utility of each map was assessed by five practicing neurosurgeons, who rated the maps according to four clinical utility statements regarding different clinical aspects of pre-surgical planning. The neurosurgeons rated each map according to their agreement with four clinical utility statements regarding if the map 1 identified clinically relevant tracts, (2) helped establish a goal resection margin, (3) influenced a planned surgical route, and (4) was useful overall. Cumulative link mixed effect modeling and analysis of variance were performed to test the primary effect of map type (DEC-TDI vs. DEC-FA) on rater score. Pairwise comparisons using estimated marginal means were then calculated to determine the magnitude and directionality of differences in rater scores by map type. RESULTS A majority of rater responses agreed with the four clinical utility statements, indicating that neurosurgeons found both DEC maps to be useful. Across all four investigated clinical utility statements, the DEC map type significantly influenced rater score. Rater scores were significantly higher for DEC-TDI maps compared to DEC-FA maps. The largest effect size in rater scores in favor of DEC-TDI maps was observed for clinical utility statement 2, which assessed establishing a goal resection margin. CONCLUSION We observed a significant neurosurgeon preference for DEC-TDI maps, indicating their potential utility for neurosurgical planning.
Collapse
Affiliation(s)
- Jared J Sullivan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Leo R Zekelman
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Erickson F Torio
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Walid I Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Dhiego Bastos
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Jianzhong He
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States
| | - Laura Rigolo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Alexandra J Golby
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, United States
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, United States.
| |
Collapse
|
2
|
Detecting small conflicting drainages with contrast-enhanced magnetic resonance venography for surgical planning: a technical description and quantified analysis. Acta Neurochir (Wien) 2020; 162:2519-2526. [PMID: 32322998 DOI: 10.1007/s00701-020-04345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent studies have shown the challenges involved in detecting small conflicting vessels (1.0-1.5 mm) on contrast-enhanced (CE) T1 images during stereoelectroencephalography (SEEG) planning. Improving the resolution of non-invasive approaches to identify these vessels is possible and important. We present a superior sagittal sinus mapping-based CE-magnetic resonance venography (CE-MRV) protocol calibrated by craniotomies. METHOD Seven patients with epileptic symptoms who received craniotomy were enrolled. CE-MRV was acquired with a bolus mapping of the superior sagittal sinus. Together with the T1 image, 3D veins and the brain surface were visualized. The resolution of the CE-MRV was quantified by measuring the diameter of superficial drainages after exposure of the brain surface during craniotomy. RESULTS A total of 37 superficial drainages were exposed in the bone windows. CE-MRV visualized all these drainages. On average, one superficial drainage could be found in every 13.2 mm diameter of the bone window. The boundary resolution of the CE-MRV was 0.58-0.8 mm in vessel diameter, while drainages larger than 0.8 mm were visualized consistently. CONCLUSIONS The resolution of the CE-MRV in the present study met the requirement for detection of small conflicting vessels during SEEG planning. The visualized venous landmarks could be used for visual guidance to the surgical zone. As a non-invasive approach, CE-MRV is practical to use in the clinical setting.
Collapse
|
3
|
Milton CK, Palejwala AH, O'Connor KP, McCoy TM, Conner AK, Glenn CA. Diffusion Tensor Imaging Tractography for Fornix Identification in Intraventricular Tumor Surgery: A Case Series. NEUROSURGERY OPEN 2020. [DOI: 10.1093/neuopn/okaa005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
BACKGROUND
The proximity of intraventricular or periventricular tumors to critical white matter structures, such as the fornix, poses an operative challenge. In order to avoid significant neurological morbidity, deliberate selection of surgical approach is necessary when planning resection of tumors in this region. We report our initial experience with fornix modeling as an adjunct to standard navigational techniques across multiple pathologies.
OBJECTIVE
To report the feasibility of using diffusion tensor imaging (DTI) fornix modeling as an adjunct to standard navigational techniques for surgical treatment of intraventricular and periventricular tumors involving the fornix.
METHODS
Between July 2018 and August 2019, DTI tractography was performed on 12 patients with intraventricular or periventricular tumors involving the fornix. DTI fornix modeling was performed and included as part of the intraoperative navigation in all cases.
RESULTS
The patient group was composed of 6 males and 6 females. The fornix model was delineated in all cases using DTI tractography as described. The mean patient age was 45.7 yr. The 2 most-common tumor pathologies represented in our patient cohort included meningioma and cranipharyngioma, both found in 2 patients. A glioneuronal tumor, low-grade glioma, ependymoma, subependymoma, mixed germ-cell tumor, pituitary adenoma, and renal cell carcinoma metastasis were found in 1 patient each. Case examples of fornix modeling that may be incorporated into standard neuronavigation are presented. No patient experienced new or worsening post-operative memory deficits.
CONCLUSION
DTI tractography for fornix identification is a useful adjunct to standard navigational techniques employed in surgical resection of forniceal involving tumors.
Collapse
Affiliation(s)
- Camille K Milton
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ali H Palejwala
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kyle P O'Connor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tressie M McCoy
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Chirchiglia D, Chirchiglia P, Latorre D. An update of the imaging and diagnostic techniques in use for the preservation of eloquent areas in brain tumor surgery – An opinion paper. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
6
|
Shan YZ, Wang ZM, Fan XT, Zhang HQ, Ren LK, Wei PH, Zhao GG. Automatic labeling of the fanning and curving shape of Meyer's loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography. BMC Neurol 2019; 19:302. [PMID: 31779601 PMCID: PMC6882219 DOI: 10.1186/s12883-019-1537-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visual field defects caused by injury to Meyer's loop (ML) are common in patients undergoing anterior temporal lobectomy during epilepsy surgery. Evaluation of the anatomical shapes of the curving, fanning and sharp angles of ML to guide surgeries is important but still challenging for diffusion tensor imaging. We present an advanced diffusion data-based ML atlas and labeling protocol to reproduce anatomical features in individuals within a short time. METHODS Thirty Massachusetts General Hospital-Human Connectome Project (MGH-HCP) diffusion datasets (ultra-high magnetic gradient & 512 directions) were warped to standard space. The resulting fibers were projected together to create an atlas. The anatomical features and the tractography correspondence rates were evaluated in 30 MGH-HCP individuals and local diffusion spectrum imaging data (eight healthy subjects and six hippocampal sclerosis patients). RESULTS In the atlas, features of curves, sharp angles and fanning shapes were adequately reproduced. The distances from the anterior tip of the temporal lobe to the anterior ridge of Meyer's loop were 23.1 mm and 26.41 mm on the left and right sides, respectively. The upper and lower divisions of the ML were revealed to be twisting. Eighty-eight labeled sides were achieved, and the correspondence rates were 87.44% ± 6.92, 80.81 ± 10.62 and 72.83% ± 14.03% for MGH-HCP individuals, DSI-healthy individuals and DSI-patients, respectively. CONCLUSION Atlas-labeled ML is comparable to high angular resolution tractography in healthy or hippocampal sclerosis patients. Therefore, rapid identification of the ML location with a single modality of T1 is practical. This protocol would facilitate functional studies and visual field protection during neurosurgery.
Collapse
Affiliation(s)
- Yong-Zhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Zhen-Ming Wang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiao-Tong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Hua-Qiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China
| | - Lian-Kun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xuanwu District, Beijing, 100053, China.
| |
Collapse
|
7
|
Münnich T, Klein J, Hattingen E, Noack A, Herrmann E, Seifert V, Senft C, Forster MT. Tractography Verified by Intraoperative Magnetic Resonance Imaging and Subcortical Stimulation During Tumor Resection Near the Corticospinal Tract. Oper Neurosurg (Hagerstown) 2018; 16:197-210. [DOI: 10.1093/ons/opy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
BACKGROUND
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm.
OBJECTIVE
To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI.
METHODS
Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data.
RESULTS
Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved.
CONCLUSION
Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Collapse
Affiliation(s)
- Timo Münnich
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Jan Klein
- Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Hospital, Frankfurt am Main, Germa-ny
| | - Anika Noack
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Math-ematical Modelling, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
8
|
Shurkhay VA, Goryaynov SA, Kutin MA, Eolchiyan SA, Capitanov DN, Fomichev DV, Kalinin PL, Shkarubo AN, Kopachev DN, Melikyan AG, Nersesyan MV, Shkatova AM, Konovalov AN, Potapov AA. [Application of intraoperative electromagnetic frameless navigation in transcranial and endoscopic neurosurgical interventions]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2017; 81:5-16. [PMID: 29076463 DOI: 10.17116/neiro20178155-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UNLABELLED The paper summarizes the experience in using a system of electromagnetic intraoperative frameless navigation in various neurosurgical pathologies of the brain. The electromagnetic navigation technique was used for 102 operations in 98 patients, including 36 transnasal endoscopic interventions. There were no intraoprtative and postoperative complications associated with the use of the system. In the process of using the system, factors influencing the accuracy of navigation and requiring additional control by the surgeon were identified. PURPOSE The study purpose was to evaluate the use of electromagnetic navigation in surgical treatment of patients with various brain lesions. MATERIAL AND METHODS The system of electromagnetic navigation was used for 102 operations in 98 patients (42 males and 56 females, including 18 children; median age, 34.8 years (min, 2.2 years; max, 69 years)) in the period from December 2012 to December 2016. In 36 patients, the system was used for endoscopic interventions. In 19 patients, electromagnetic navigation was used in combination with neurophysiological monitoring. RESULTS In our series of cases, the frameless electromagnetic navigation system was used in 66 transcranial operations. The mean error of navigation was 1.9±0.5 mm. In 5 cases, we used the data of preoperative functional MRI (fMRI) and tractography for navigation. At the same time, in all 7 operations with simultaneous direct stimulation of the cortex, there was interference and significant high-frequency noise, which distorted the electrophysiological data. A navigation error of more than 3 mm was associated with the use of neuroimaging data with an increment of more than 3 mm, image artifacts from the head locks, high rate of patient registration, inconsequence of touching points on the patient's head, and unsatisfactory fixation to the skin or subsequent displacement of a non-invasive localizer of the patient. In none of the cases, there was a significant effect of standard metal surgical tools (clamps, tweezers, aspirators) located near the patient's head on the navigation system. In two cases, the use of massive retractors located near the patient's localizer caused noise in the localizer and navigation errors of more than 10 mm due to significant distortions of the electromagnetic field. Thirty-six transnasal endoscopic interventions were performed using the electromagnetic frameless navigation system. The mean navigation error was 2.5±0.8 mm. CONCLUSION In general, electromagnetic navigation is an accurate, safe, and effective technique that can be used in surgical treatment of patients with various brain lesions. The mean navigation error in our series of cases was 1.9±0.5 mm for transcranial surgery and 2.5±0.8 mm for endoscopic surgery. Electromagnetic navigation can be used for different, both transcranial and endoscopic, neurosurgical interventions. Electromagnetic navigation is most convenient for interventions that do not require fixation of the patient's head, in particular for CSF shunting procedures, drainage of various space-occupying lesions (cysts, hematomas, and abscesses), and optimization of the size and selection of options for craniotomy. In repeated interventions, disruption of the normal anatomical relationships and landmarks necessitates application of neuronavigation systems in almost mandatory manner. The use of electromagnetic navigation does not limit application of the entire range of necessary intraoperative neurophysiological examinations at appropriate surgical stages. Succession in application of neuronavigation should be used to get adequate test results.
Collapse
Affiliation(s)
- V A Shurkhay
- Burdenko Neurosurgical Institute, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny Moscow Region, Russia
| | | | - M A Kutin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - D V Fomichev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - P L Kalinin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A N Shkarubo
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - D N Kopachev
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A G Melikyan
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A M Shkatova
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|