1
|
Elia A, Roux A, Debacker C, Charron S, Simboli G, Moiraghi A, Trancart B, Dezamis E, Muto J, Chretien F, Zanello M, Oppenheim C, Pallud J. Locating eloquent sites identified during brain tumor intraoperative mapping on reference MRI atlas. COMMUNICATIONS MEDICINE 2025; 5:161. [PMID: 40335678 DOI: 10.1038/s43856-025-00834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Correlating the human connectome with clinical responses elicited during intraoperative brain mapping helps understanding of the intrinsic organization of the human brain. Methods for locating eloquent sites on neuroimaging are not standardized. In the present study, we standardized a methodology for locating subcortical eloquent sites identified during intraoperative mapping for awake brain tumor resection on a reference brain template. METHODS Subcortical eloquent sites were tagged by co-registration of intraoperative photographs with early postoperative MRI ( < 48 h). Neuroimaging data were normalized into MNI152 space. To assess whether the location of subcortical eloquent sites on the MNI template was concordant with the expected brain connectivity, we compared each subcortical eloquent site with the Human Connectome Project 1065 probabilistic tractography atlas. RESULTS We analyze 290 subcortical eloquent sites identified during 69/90 awake surgeries. 2/290 (0.7%) subcortical eloquent sites identified intraoperatively do not intersect with a fiber tract according to the reference atlas. Among the other 288 that successfully intersect with, at least, one white matter tract, 255/288 (88.5%) have a clinical response elicited intraoperatively that is congruent with the intersected white matter tract. In the remaining 33/288 (11.5%) functional incongruent and the 2/290 (0.7%) anatomical incongruent subcortical sites, the minimal mean distance between the eloquent site and a congruent with matter tract is 3.6 ± 4.4 mm (range 1.0-23.9, median 3.6, interquartile range 2.5-5.4). CONCLUSIONS We propose a standardized methodology to locate with accuracy on a reference brain template subcortical eloquent sites identified intraoperatively during functional brain mapping using direct electrical stimulations under awake condition.
Collapse
Affiliation(s)
- Angela Elia
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alexandre Roux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Clément Debacker
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Sylvain Charron
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Giorgia Simboli
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Bénédicte Trancart
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Jun Muto
- Department of Neurosurgery, Fujita Health University, Aichi, Japan
| | - Fabrice Chretien
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France.
| |
Collapse
|
2
|
Thakkar JP, Luy DD, Pickles A, Refaat T, Prabhu VC. Chronic Neurological Complications of Brain Tumors and Brain Tumor Treatments. Curr Neurol Neurosci Rep 2025; 25:26. [PMID: 40116979 DOI: 10.1007/s11910-025-01411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE OF REVIEW Chronic complications of brain tumors and brain tumor treatments can lead to impairment of health-related quality of life and decreased functionality. These largely include cognitive decline, fatigue, headache, seizures, and secondary malignancies. Outpatient neurologists are an integral part of the multidisciplinary neuro-oncology team who help diagnose and manage chronic complications in this complex patient population. Timely diagnosis and treatment of these complications in outpatient neurology and neuro-oncology clinics helps improve quality of life and survival of brain tumor patients. RECENT FINDINGS We discuss updated information and management regarding various chronic neurologic complications among neuro-oncology patients. Understanding of chronic neurologic complications associated with central nervous system tumors and with common contemporary cancer treatments will facilitate neurologists management of these patient populations. While there are aspects analogous to the diagnosis and management in the non-oncologic population, a number of unique features discussed in this review should be considered.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Departments of Neurology and Neurological Surgery, Division of Neuro-Oncology, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue Bldg 105, Room 2716, Maywood, IL, 60153, USA.
- Department of Neurosurgery, Loyola University Medical Center, Maywood, IL, USA.
| | - Diego D Luy
- Department of Neurosurgery, Loyola University Medical Center, Maywood, IL, USA
| | - Andrew Pickles
- Department of Neurosurgery, Loyola University Medical Center, Maywood, IL, USA
| | - Tamer Refaat
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, USA
| | - Vikram C Prabhu
- Department of Neurosurgery, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
3
|
Falcão L, Cerqueira GA, Gonçalves JPF, de Andrade JFT, de Azevedo Figueiredo Trocoli CP, Medrado-Nunes GS, Santos VEC, Pustilnik HN, Fontes JHM, Dos Passos GS. Influence of supratotal resection on overall survival and progression of tumor in gliomas grade 2 and 3: a systematic review and meta-analysis. Neurosurg Rev 2025; 48:281. [PMID: 40032671 DOI: 10.1007/s10143-025-03428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Recurrence after resection is a major factor in poor prognosis for grade 2 and 3 gliomas. The effect of Supratotal Resection (STR) on recurrence timing remains debated. This meta-analysis examines overall survival (OS) and tumor progression in grade 2 and 3 gliomas after supratotal resection. METHODS Studies on patients with grade II and III gliomas who underwent supratotal resection were included, with comparisons to subtotal, partial, and total resections. The primary outcomes were overall survival (OS) and tumor progression, while secondary outcomes included return-to-work (RTW) rates, malignant transformations and cognitive impairments. RESULTS We included 954 patients from 8 studies, mean age was 39 (± 16) years. The mean OS for patients undergoing supratotal resection was 17.45 (95% CI: 3.39 to 89.74, p < 0.05) compared to TR. The OR for RTW in the STR group versus TR group was 0.12 (95% CI: 0.01 to 1.28, p = 0.08). Tumor progression OR was, no statistical significantly, 0.15 (95% CI: 0.00 to 38.00, p = 0.5), and the likelihood of malignancy was reduced 0.03 (95% CI: 0.01 to 0.18, p < 0.01) compared to the TR group. In the immediate pos-operatory, when comparing STR with TR, the OR of language impairment was 5.47 (95% CI: 2.73 to 10.97, p < 0.01) and cognitive impairment was 0.38 (95% CI: 0.17 to 0.58). During the follow-up, the OR of language impairment was 0.68 (95% CI: 0.25 to 1.81, p = 0.44) and cognitive impairment was 0.34 (95% CI: 0.03 to 3.61, p = 0.37) comparing STR with TR. CONCLUSION Patients with grade 2 and 3 gliomas undergoing supratotal resection showed significantly higher overall survival, fewer malignant transformations and language impairments in immediate pos-operatory. While there was a trend towards higher return-to-work rates, progression of tumor and better cognitive status during the follow-up, it was not statistically significant. Further studies are needed for definitive conclusions. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Luciano Falcão
- Bahiana School of Medicine and Public Health, Av. Dom João VI, 275 - Brotas, Salvador, BA, 40290-000, Brazil.
| | - Gabriel Araújo Cerqueira
- Bahiana School of Medicine and Public Health, Av. Dom João VI, 275 - Brotas, Salvador, BA, 40290-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Barberis M, Poisson I, Prévost-Tarabon C, Letrange S, Froelich S, Thirion B, Mandonnet E. Verbal fluency predicts work resumption after awake surgery in low-grade glioma patients. Acta Neurochir (Wien) 2024; 166:88. [PMID: 38372820 DOI: 10.1007/s00701-024-05971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Resuming professional activity after awake surgery for diffuse low-grade glioma (DLGG) is an important goal, which is not reached in every patient. Cognitive deficits can occur and persist after surgery. In this study, we analyzed the impact of mild cognitive impairments on the work resumption. METHODS Fifty-four surgeries (including five redo surgeries) performed between 2012 and 2020 for grade 2 (45) and 3 (nine) DLGG in 49 professionally active patients (mean age 40 [range 23-58.) were included. We retrospectively extracted the results of semantic and phonemic verbal fluency tests from preoperative and 4-month postoperative cognitive assessments. Patients were interviewed about their working life after surgery, between April and June 2021. RESULTS Patients (85%) returned to work, most within 3 to 6 months. Patients (76%) reported subjective complaints (primarily fatigue). Self-reported symptoms and individual and clinical variables had no impact on the work resumption. Late-postoperative average Z-scores in verbal fluency tasks were significantly lower than preoperative for the entire cohort (Wilcoxon test, p < 0.001 for semantic and p = 0.008 for phonemic fluency). The decrease in Z-scores was significantly greater (Mann Whitney U-test, semantic, p = 0.018; phonemic, p = 0.004) in the group of patients who did not return to work than in the group of patients who did. CONCLUSION The proportion of patients returning to work was comparable to similar studies. A decrease in verbal fluency tasks could predict the inability to return to work.
Collapse
Affiliation(s)
- Marion Barberis
- Neurosurgery Unit, Hôpital Lariboisière, AP-HP, 75010, Paris, France.
- UMR 7225, Frontlab, Paris Brain Institute, CNRS, INSERM U1127, 75013, Paris, France.
| | - Isabelle Poisson
- Neurosurgery Unit, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | | | - Sophie Letrange
- Neurosurgery Unit, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Sébastien Froelich
- Neurosurgery Unit, Hôpital Lariboisière, AP-HP, 75010, Paris, France
- Université de Paris Cité, 75010, Paris, France
| | | | - Emmanuel Mandonnet
- Neurosurgery Unit, Hôpital Lariboisière, AP-HP, 75010, Paris, France
- Université de Paris Cité, 75010, Paris, France
- UMR 7225, Frontlab, Paris Brain Institute, CNRS, INSERM U1127, 75013, Paris, France
| |
Collapse
|
5
|
Chohan MO, Flores RA, Wertz C, Jung RE. "Non-Eloquent" brain regions predict neuropsychological outcome in tumor patients undergoing awake craniotomy. PLoS One 2024; 19:e0284261. [PMID: 38300915 PMCID: PMC10833519 DOI: 10.1371/journal.pone.0284261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2023] [Indexed: 02/03/2024] Open
Abstract
Supratotal resection of primary brain tumors is being advocated especially when involving "non-eloquent" tissue. However, there is extensive neuropsychological data implicating functions critical to higher cognition in areas considered "non-eloquent" by most surgeons. The goal of the study was to determine pre-surgical brain regions that would be predictive of cognitive outcome at 4-6 months post-surgery. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer-v6.0 image analysis suite. Linear regression models were used to regress cortical volumes from both hemispheres, against the total cognitive z-score to determine the relationship between brain structure and broad cognitive functioning while controlling for age, sex, and total segmented brain volume. We identified 62 consecutive patients who underwent planned awake resections of primary (n = 55, 88%) and metastatic at the University of New Mexico Hospital between 2015 and 2019. Of those, 42 (23 males, 25 left hemispheric lesions) had complete pre and post-op neuropsychological data available and were included in this study. Overall, total neuropsychological functioning was somewhat worse (p = 0.09) at post-operative neuropsychological outcome (Mean = -.20) than at baseline (Mean = .00). Patients with radiation following resection (n = 32) performed marginally worse (p = .036). We found that several discrete brain volumes obtained pre-surgery predicted neuropsychological outcome post-resection. For the total sample, these volumes included: left fusiform, right lateral orbital frontal, right post central, and right paracentral regions. Regardless of lesion lateralization, volumes within the right frontal lobe, and specifically right orbitofrontal cortex, predicted neuropsychological difference scores. The current study highlights the gaps in our current understanding of brain eloquence. We hypothesize that the volume of tissue within the right lateral orbital frontal lobe represents important cognitive reserve capacity in patients undergoing tumor surgery. Our data also cautions the neurosurgeon when considering supratotal resections of tumors that do not extend into areas considered "non-eloquent" by current standards.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Ranee Ann Flores
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Christopher Wertz
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rex Eugene Jung
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
6
|
Sattari SA, Rincon-Torroella J, Sattari AR, Feghali J, Yang W, Kim JE, Xu R, Jackson CM, Mukherjee D, Lin SC, Gallia GL, Comair YG, Weingart J, Huang J, Bettegowda C. Awake Versus Asleep Craniotomy for Patients With Eloquent Glioma: A Systematic Review and Meta-Analysis. Neurosurgery 2024; 94:38-52. [PMID: 37489887 DOI: 10.1227/neu.0000000000002612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Awake vs asleep craniotomy for patients with eloquent glioma is debatable. This systematic review and meta-analysis sought to compare awake vs asleep craniotomy for the resection of gliomas in the eloquent regions. METHODS MEDLINE and PubMed were searched from inception to December 13, 2022. Primary outcomes were the extent of resection (EOR), overall survival (month), progression-free survival (month), and rates of neurological deficit, Karnofsky performance score, and seizure freedom at the 3-month follow-up. Secondary outcomes were duration of operation (minute) and length of hospital stay (LOS) (day). RESULTS Fifteen studies yielded 2032 patients, from which 800 (39.4%) and 1232 (60.6%) underwent awake and asleep craniotomy, respectively. The meta-analysis concluded that the awake group had greater EOR (mean difference [MD] = MD = 8.52 [4.28, 12.76], P < .00001), overall survival (MD = 2.86 months [1.35, 4.37], P = .0002), progression-free survival (MD = 5.69 months [0.75, 10.64], P = .02), 3-month postoperative Karnofsky performance score (MD = 13.59 [11.08, 16.09], P < .00001), and 3-month postoperative seizure freedom (odds ratio = 8.72 [3.39, 22.39], P < .00001). Furthermore, the awake group had lower 3-month postoperative neurological deficit (odds ratio = 0.47 [0.28, 0.78], P = .004) and shorter LOS (MD = -2.99 days [-5.09, -0.88], P = .005). In addition, the duration of operation was similar between the groups (MD = 37.88 minutes [-34.09, 109.86], P = .30). CONCLUSION Awake craniotomy for gliomas in the eloquent regions benefits EOR, survival, postoperative neurofunctional outcomes, and LOS. When feasible, the authors recommend awake craniotomy for surgical resection of gliomas in the eloquent regions.
Collapse
Affiliation(s)
- Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Ali Reza Sattari
- Department of Surgery, Saint Agnes Hospital, Baltimore , Maryland , USA
| | - James Feghali
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Wuyang Yang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Shih-Chun Lin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Youssef G Comair
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore , Maryland , USA
| |
Collapse
|
7
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Elia A, Young JS, Simboli GA, Roux A, Moiraghi A, Trancart B, Al-Adli N, Aboubakr O, Bedioui A, Leclerc A, Planet M, Parraga E, Benevello C, Oppenheim C, Chretien F, Dezamis E, Berger MS, Zanello M, Pallud J. A Preoperative Scoring System to Predict Function-Based Resection Limitation Due to Insufficient Participation During Awake Surgery. Neurosurgery 2023; 93:678-690. [PMID: 37018385 DOI: 10.1227/neu.0000000000002477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Failure in achieving a function-based resection related to the insufficient patient's participation is a drawback of awake surgery. OBJECTIVE To assess preoperative parameters predicting the risk of patient insufficient intraoperative cooperation leading to the arrest of the awake resection. METHODS Observational, retrospective, multicentric cohort analysis enrolling 384 (experimental dataset) and 100 (external validation dataset) awake surgeries. RESULTS In the experimental data set, an insufficient intraoperative cooperation occurred in 20/384 patients (5.2%), leading to awake surgery failure in 3/384 patients (ie, no resection, 0.8%), and precluded the achievement of the function-based resection in 17/384 patients (ie, resection limitation, 4.4%). The insufficient intraoperative cooperation significantly reduced the resection rates (55.0% vs 94.0%, P < .001) and precluded a supratotal resection (0% vs 11.3%, P = .017). Seventy years or older, uncontrolled epileptic seizures, previous oncological treatment, hyperperfusion on MRI, and mass effect on midline were independent predictors of insufficient cooperation during awake surgery ( P < .05). An Awake Surgery Insufficient Cooperation score was then assessed: 96.9% of patients (n = 343/354) with a score ≤2 presented a good intraoperative cooperation, while only 70.0% of patients (n = 21/30) with a score >2 presented a good intraoperative cooperation. In the experimental data set, similar date were found: 98.9% of patients (n = 98/99) with a score ≤2 presented a good cooperation, while 0% of patients (n = 0/1) with a score >2 presented a good cooperation. CONCLUSION Function-based resection under awake conditions can be safely performed with a low rate of insufficient patient intraoperative cooperation. The risk can be assessed preoperatively by a careful patient selection.
Collapse
Affiliation(s)
- Angela Elia
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia , Italy
- Université Paris Cité, Paris , France
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Giorgia Antonia Simboli
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Alessandro Moiraghi
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Bénédicte Trancart
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Nadeem Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Oumaima Aboubakr
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Aziz Bedioui
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Department of Neurosurgery, Centre Hospitalier Universitaire Caen, Caen , France
| | - Arthur Leclerc
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Department of Neurosurgery, Centre Hospitalier Universitaire Caen, Caen , France
| | - Martin Planet
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Eduardo Parraga
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Chiara Benevello
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Catherine Oppenheim
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
- Department of Neuroradiology, Sainte-Anne Hospital, Paris , France
| | - Fabrice Chretien
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
- Department of Neuropathology, Sainte-Anne Hospital, Paris , France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Marc Zanello
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| |
Collapse
|
9
|
Hunt PJ, Amit M, Kabotyanski KE, Aashiq M, Hanna EY, Kupferman ME, Su SY, Gidley PW, Nader ME, DeMonte F, Raza SM. Predictors of postoperative performance status after surgical management of infratemporal fossa malignancies. Neurosurg Rev 2023; 46:157. [PMID: 37386212 DOI: 10.1007/s10143-023-02063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Infratemporal fossa (ITF) tumors are difficult to access surgically due to anatomical constraints. Moreover, aggressive ITF carcinomas and sarcomas necessitate aggressive treatment strategies that, along with tumor-related symptoms, contribute to decreases in patient performance status. To assess factors that predict postoperative performance in patients undergoing surgery for ITF tumors. We reviewed medical records for all patients surgically treated for an ITF malignancy between January 1, 1999, and December 31, 2017, at our institution. We collected patient demographics, preoperative performance, tumor stage, tumor characteristics, treatment modalities, pathological data, and postoperative performance data. The 5-year survival rate was 62.2%. Higher preoperative Karnofsky Performance Status (KPS) score (n = 64; p < 0.001), short length of stay (p = 0.002), prior surgery at site (n = 61; p = 0.0164), and diagnosis of sarcoma (n = 62; p = 0.0398) were predictors of higher postoperative KPS scores. Percutaneous endoscopic gastrostomy (PEG) (n = 9; p = 0.0327), and tracheostomy tube placement (n = 20; p = 0.0436) were predictors of lower postoperative KPS scores, whereas age at presentation (p = 0.72), intracranial tumor spread (p = 0.8197), and perineural invasion (n = 40; p = 0.2195) were not. Male patients and patients with carcinomas showed the greatest decreases in KPS scores between pretreatment and posttreatment. Higher preoperative KPS score and short length of stay were the best predictors of higher postoperative KPS scores. This work provides treatment teams and patients with better information on outcomes for shared decision-making.
Collapse
Affiliation(s)
- Patrick J Hunt
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Rm FC7.2000, Unit 442, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine E Kabotyanski
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Rm FC7.2000, Unit 442, Houston, TX, 77030, USA
| | - Mohamed Aashiq
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael E Kupferman
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shirley Y Su
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul W Gidley
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marc-Elie Nader
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Franco DeMonte
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Rm FC7.2000, Unit 442, Houston, TX, 77030, USA
| | - Shaan M Raza
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Rm FC7.2000, Unit 442, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Elsheikh M, Bridgman E, Lavrador JP, Lammy S, Poon MTC. Association of extent of resection and functional outcomes in diffuse low-grade glioma: systematic review & meta-analysis. J Neurooncol 2022; 160:717-724. [PMID: 36404358 PMCID: PMC9758089 DOI: 10.1007/s11060-022-04192-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Surgical resection offers survival benefits in patients with diffuse low-grade glioma (DLGG) but its association with functional outcomes is uncertain. This systematic review assessed functional outcomes associated with extent of resection (EoR) in adults with DLGG. METHODS We searched Medline, Embase and CENTRAL on the 19th of February 2021 for observational studies reporting functional outcomes after surgical resection for patients aged ≥ 18 years with a new diagnosis of supratentorial DLGG according to any World Health Organization classification of primary brain tumors. The Newcastle-Ottawa Scale (NOS) informed our risk of bias assessments. The proportion of patients returning to work within 12 months entered a random-effects meta-analysis. PROSPERO registration number CRD42021238387. RESULTS There were seven eligible moderate to high-quality (NOS > 6) observational studies identified from 1,183 records involving 234 patients with DLGG. Functional outcomes reported included neurocognition (n = 2 studies), performance status (n = 3), quality of life (QoL) (n = 1) and return to work (n = 6). The proportion of patients who returned to work within 12 months of surgery was 84% (95% confidence interval [CI] 50-96%, I-squared = 38%, 5 studies) for gross total resection, 66% (95% CI 14-96%, I2 = 57%, 5 studies) for subtotal resection, and 31% (95% CI 4-82%, I2 = 0%, 4 studies) for partial resection. There was insufficient data on other functional outcomes for quantitative synthesis. CONCLUSION A higher proportion of DLGG patients returned to work following gross total resection compared with those who had a subtotal or partial resection. Further studies with standardized assessments can clarify the association between EoR and different functional outcomes.
Collapse
Affiliation(s)
- Mustafa Elsheikh
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Elsie Bridgman
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital, King's College Hospital NHS Foundation Trust, London, UK
| | - Simon Lammy
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Michael Tin Chung Poon
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK.
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, 50 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
11
|
The need to consider return to work as a main outcome in patients undergoing surgery for diffuse low-grade glioma: a systematic review. Acta Neurochir (Wien) 2022; 164:2789-2809. [PMID: 35945356 DOI: 10.1007/s00701-022-05339-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE For a long time, return to work (RTW) has been neglected in patients harboring a diffuse low-grade glioma (LGG). However, a majority of LGG patients worked at time of diagnosis. Moreover, these patients now live longer given current treatment paradigms, especially thanks to early maximal surgery. METHODS We systematically searched available medical databases for studies that reported data on RTW in patients who underwent resection for LGG. RESULTS A total of 30 studies were selected: 19 considered RTW (especially rate and timing) as an outcome and 11 used scales of health-related quality of life (HRQoL) which included work-related aspects. Series that considered RTW as a main endpoint were composed of 1014 patients, with postoperative RTW rates ranging from 31 to 97.1% (mean 73.1%). Timing to RTW ranged from 15 days to 22 months (mean 6.3 months). Factors related to an increased proportion of RTW were: younger age, better neurologic status, having a white-collar occupation, working pre-operatively, being the sole breadwinner, the use of awake surgery, and greater extent of resection. Female sex, older age, poor neurologic status, pre-operative history of work absences, slow lexical access speed, and postoperative seizures were negatively related to RTW. No studies that used HRQoL scales directly investigated RTW rate or timing. CONCLUSIONS RTW was scarcely analyzed in LGG patients who underwent resection. However, because they are usually young, with no or only mild functional deficits and have a longer life expectancy, postoperative RTW should be assessed more systematically and accurately as a main outcome. As majority (61.5-100%) of LGG patients were working at time of surgery, the responsibility of neurosurgeons is to bring these patients back to their previous activities according to his/her wishes. RTW might also be included as a critical endpoint for future prospective studies and randomized control trials on LGGs.
Collapse
|
12
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
13
|
Nakajima R, Kinoshita M, Okita H, Nakada M. Quality of life following awake surgery depends on ability of executive function, verbal fluency, and movement. J Neurooncol 2021; 156:173-183. [PMID: 34800211 DOI: 10.1007/s11060-021-03904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The outcome of awake surgery has been evaluated based on functional factors, return to work, and oncological aspects, and there have been no reports directly examining QOL. This study aimed to investigate the outcome of QOL following awake surgery and to determine the functional factors influencing QOL. METHODS Seventy patients with WHO grade II/III gliomas were included. For the assessment of QOL, we used the SF-36 and calculated summary and sub-component scores. Three summary component scores, including physical (PCS), mental (MCS), and role/social summary (RCS) component scores, were computed based on sub-component scores. Additionally, various assessments of neurological/neuropsychological function were performed. We performed univariate and multiple regression analyses to investigate the functional factors influencing the SF-36. RESULTS PCS and MCS were maintained, but only RCS was low to 42.0 ± 16.1. We then focused on the RCS and its sub-components: general health (GH), role physical (RP), social functioning (SF), and role emotional (RE). Multiple regression analysis showed following significant correlations between the sub-component scores and brain functions: GH to executive function and movement (p = 0.0033 and 0.032), RP to verbal fluency and movement (p = 0.0057 and 0.0010), and RE to verbal fluency (p = 0.020). Furthermore, when the sub-component scores were compared between groups with and without functional deficits related to GH, RP, and RE, each score was significantly lower in the groups with functional deficits (p = 0.012, 0.014, and 0.0049, respectively). CONCLUSIONS In patients who underwent awake surgery, a subset of patients had low QOL because of poor RCS. Functional factors influencing QOL included executive function, verbal fluency, and movement.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
14
|
Pallud J, Zanello M, Moiraghi A, Peeters S, Trancart B, Edjlali M, Oppenheim C, Varlet P, Chrétien F, Dhermain F, Roux A, Dezamis E. Surgery of Insular Diffuse Gliomas-Part 1: Transcortical Awake Resection Is Safe and Independently Improves Overall Survival. Neurosurgery 2021; 89:565-578. [PMID: 34383938 DOI: 10.1093/neuros/nyab254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/16/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Insular diffuse glioma resection is at risk of vascular injury and of postoperative new neurocognitive deficits. OBJECTIVE To assess safety and efficacy of surgical management of insular diffuse gliomas. METHODS Observational, retrospective, single-institution cohort analysis (2005-2019) of 149 adult patients surgically treated for an insular diffuse glioma: transcortical awake resection with intraoperative functional mapping (awake resection subgroup, n = 61), transcortical asleep resection without functional mapping (asleep resection subgroup, n = 50), and stereotactic biopsy (biopsy subgroup, n = 38). All cases were histopathologically assessed according to the 2016 World Health Organization classification and cIMPACT-NOW update 3. RESULTS Following awake resection, 3/61 patients had permanent motor deficit, seizure control rates improved (89% vs 69% preoperatively, P = .034), and neurocognitive performance improved from 5% to 24% in tested domains, despite adjuvant oncological treatments. Resection rates were higher in the awake resection subgroup (median 94%) than in the asleep resection subgroup (median 46%; P < .001). There was more gross total resection (25% vs 12%) and less partial resection (34% vs 80%) in the awake resection subgroup than in the asleep resection subgroup (P < .001). Karnofsky Performance Status score <70 (adjusted hazard ratio [aHR] 2.74, P = .031), awake resection (aHR 0.21, P = .031), isocitrate dehydrogenase (IDH)-mutant grade 2 astrocytoma (aHR 5.17, P = .003), IDH-mutant grade 3 astrocytoma (aHR 6.11, P < .001), IDH-mutant grade 4 astrocytoma (aHR 13.36, P = .008), and IDH-wild-type glioblastoma (aHR 21.84, P < .001) were independent predictors of overall survival. CONCLUSION Awake surgery preserving the brain connectivity is safe, allows larger resections for insular diffuse gliomas than asleep resection, and positively impacts overall survival.
Collapse
Affiliation(s)
- Johan Pallud
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Marc Zanello
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Alessandro Moiraghi
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Sophie Peeters
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Bénédicte Trancart
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Myriam Edjlali
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Catherine Oppenheim
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Pascale Varlet
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Department of Neuropathology, GHU Paris-Sainte-Anne Hospital, Paris, France
| | - Fabrice Chrétien
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Department of Neuropathology, GHU Paris-Sainte-Anne Hospital, Paris, France
| | - Frédéric Dhermain
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris-Sainte-Anne Hospital, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
15
|
Feasibility, Safety and Impact on Overall Survival of Awake Resection for Newly Diagnosed Supratentorial IDH-Wildtype Glioblastomas in Adults. Cancers (Basel) 2021; 13:cancers13122911. [PMID: 34200799 PMCID: PMC8230499 DOI: 10.3390/cancers13122911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A few studies have suggested the benefits of awake surgery by maximizing the extent of resection while preserving neurological function and improving survival in high-grade glioma patients. However, the histomolecular heterogeneity in these series, mixing grade 3 with grade 4, and IDH-mutated with IDH-wildtype gliomas, represents a major selection bias that may influence survival analyses. For the first time, in a large homogeneous single-institution cohort of newly diagnosed supratentorial IDH-wildtype glioblastoma in adult patients, we assessed feasibility, safety and efficacy of awake surgery using univariate, multivariate and case-matched analysis. Awake surgery was associated with higher resection rates, lower residual tumor rates, and more supratotal resections than asleep resections, allowed standard radiochemotherapy to be performed systematically within a short time between surgery and radiotherapy, and was an independent predictor of progression-free survival and overall survival in the whole series, together with the extent of resection, MGMT promoter methylation status, and standard. Abstract Background: Although awake resection using intraoperative cortico-subcortical functional brain mapping is the benchmark technique for diffuse gliomas within eloquent brain areas, it is still rarely proposed for IDH-wildtype glioblastomas. We have assessed the feasibility, safety, and efficacy of awake resection for IDH-wildtype glioblastomas. Methods: Observational single-institution cohort (2012–2018) of 453 adult patients harboring supratentorial IDH-wildtype glioblastomas who benefited from awake resection, from asleep resection, or from a biopsy. Case matching (1:1) criteria between the awake group and asleep group: gender, age, RTOG-RPA class, tumor side, location and volume and neurosurgeon experience. Results: In patients in the awake resection subgroup (n = 42), supratotal resections were more frequent (21.4% vs. 3.1%, p < 0.0001) while partial resections were less frequent (21.4% vs. 40.1%, p < 0.0001) compared to the asleep (n = 222) resection subgroup. In multivariable analyses, postoperative standard radiochemistry (aHR = 0.04, p < 0.0001), supratotal resection (aHR = 0.27, p = 0.0021), total resection (aHR = 0.43, p < 0.0001), KPS score > 70 (HR = 0.66, p = 0.0013), MGMT promoter methylation (HR = 0.55, p = 0.0031), and awake surgery (HR = 0.54, p = 0.0156) were independent predictors of overall survival. After case matching, a longer overall survival was found for awake resection (HR = 0.47, p = 0.0103). Conclusions: Awake resection is safe, allows larger resections than asleep surgery, and positively impacts overall survival of IDH-wildtype glioblastoma in selected adult patients.
Collapse
|
16
|
Albuquerque LAF, Almeida JP, de Macêdo Filho LJM, Joaquim AF, Duffau H. Extent of resection in diffuse low-grade gliomas and the role of tumor molecular signature-a systematic review of the literature. Neurosurg Rev 2021; 44:1371-1389. [PMID: 32770298 DOI: 10.1007/s10143-020-01362-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
There is a lack of class I evidence concerning the impact of surgery in the treatment of diffuse low-grade glioma; the early maximal resection with preservation of eloquent brain areas has been accepted as the first therapeutic option. We performed a systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and protocol. Inclusion criteria: only case series with at least 100 patients containing supratentorial hemispheric diffuse low-grade glioma (according to any of the WHO classification used in papers published between 2000 to 2019), with pre- and postoperative MRI study were included in the qualitative and quantitative analyses. The extent of resection should be defined based on MRI at least in two categories and correlated with patients' outcomes (with univariate or multivariate analyses) using overall survival (OS) or malignant progression-free survival (MPFS). A total of 18 series with 4386 patients, published in 20 papers, were included in this systematic review. All the series that evaluates the relation between the extent of resection (EOR) and OS showed a statistically significant improvement of OS at univariate and/or multivariate analyzes with a greater EOR. Six studies showed a statistically significant improvement of MPFS with a greater EOR. We demonstrate that when a more rigorous analysis of EOR is performed, a benefit of a more aggressive resection on OS and MPFS is observed. Our review about EOR in different molecular groups of DLGG also suggests a benefit of maximum safe resection for all different subtypes, even though "radical surgery" may be associated with better OS and MPFS in tumors with a more aggressive signature.
Collapse
Affiliation(s)
- Lucas Alverne F Albuquerque
- Department of Neurosurgery, General Hospital of Fortaleza, Fortaleza, Ceará, Brazil.
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Paulo Almeida
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Andrei F Joaquim
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
17
|
De Witt Hamer PC, Klein M, Hervey-Jumper SL, Wefel JS, Berger MS. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 88:720-732. [PMID: 33517431 PMCID: PMC7955971 DOI: 10.1093/neuros/nyaa365] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
Functional outcome following glioma surgery is defined as how the patient functions or feels. Functional outcome is a coprimary end point of surgery in patients with diffuse glioma, together with oncological outcome. In this review, we structure the functional outcome measurements following glioma surgery as reported in the last 5 yr. We review various perspectives on functional outcome of glioma surgery with available measures, and offer suggestions for their use. From the recent neurosurgical literature, 160 publications were retrieved fulfilling the selection criteria. In these publications, neurological outcomes were reported most often, followed by activities of daily living, seizure outcomes, neurocognitive outcomes, and health-related quality of life or well-being. In more than a quarter of these publications functional outcome was not reported. A minimum essential consensus set of functional outcome measurements would benefit comparison across neurosurgical reports. The consensus set should be based on a combination of clinician- and patient-reported outcomes, assessed at a predefined time before and after surgery. The selected measurements should have psychometric properties supporting the intended use including validity-related evidence, reliability, and sensitivity to detect meaningful change with minimal burden to ensure compliance. We circulate a short survey as a start towards reporting guidelines. Many questions remain to better understand, report, and improve functional outcome following glioma surgery.
Collapse
Affiliation(s)
- Philip C De Witt Hamer
- Correspondence: Philip C. De Witt Hamer, MD, PhD, Amsterdam UMC, Vrije Universiteit, Department of Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit, Department of Medical Psychology, Neuroscience Campus, Amsterdam, Netherlands
| | - Shawn L Hervey-Jumper
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| | - Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology and Department of Radiation Oncology, Houston, Texas
| | - Mitchel S Berger
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| |
Collapse
|
18
|
Pelletier JB, Moiraghi A, Zanello M, Roux A, Peeters S, Trancart B, Edjlali M, Lechapt E, Tauziede-Espariat A, Zah-Bi G, Parraga E, Chretien F, Dezamis E, Dhermain F, Pallud J. Is function-based resection using intraoperative awake brain mapping feasible and safe for solitary brain metastases within eloquent areas? Neurosurg Rev 2021; 44:3399-3410. [PMID: 33661423 DOI: 10.1007/s10143-021-01504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
To assess feasibility and safety of function-based resection under awake conditions for solitary brain metastasis patients. Retrospective, observational, single-institution case-control study (2014-2019). Inclusion criteria are adult patients, solitary brain metastasis, supratentorial location within eloquent areas, and function-based awake resection. Case matching (1:1) criteria between metastasis group and control group (high-grade gliomas) are sex, tumor location, tumor volume, preoperative Karnofsky Performance Status score, age, and educational level. Twenty patients were included. Intraoperatively, all patients were cooperative; no obstacles precluded the procedure from being performed. A positive functional mapping was achieved at both cortical and subcortical levels, allowing for a function-based resection in all patients. The case-matched analysis showed that intraoperative and postoperative events were similar, except for a shorter duration of the surgery (p<0.001) and of the awake phase (p<0.001) in the metastasis group. A total resection was performed in 18 cases (90%, including 10 supramarginal resections), and a partial resection was performed in two cases (10%). At three months postoperative months, none of the patients had worsening of their neurological condition or uncontrolled seizures, three patients had an improvement in their seizure control, and seven patients had a Karnofsky Performance Status score increase ≥10 points. Function-based resection under awake conditions preserving the brain connectivity is feasible and safe in the specific population of solitary brain metastasis patients and allows for high resection rates within eloquent brain areas while preserving the overall and neurological condition of the patients. Awake craniotomy should be considered to optimize outcomes in brain metastases in eloquent areas.
Collapse
Affiliation(s)
- Jean-Baptiste Pelletier
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,Service de Neurochirurgie, CHU de Saint Etienne, Saint Etienne, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,Division of Neurosurgery, Geneva University Hospitals and University of Geneva Faculty of Medicine, Geneva, Switzerland.,Swiss Foundation for Innovation and Training in Surgery (SFITS), Geneva, Switzerland
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Alexandre Roux
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France.,INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Sophie Peeters
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bénédicte Trancart
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France
| | - Myriam Edjlali
- Université de Paris, F-75006, Paris, France.,INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.,Service de Neuroradiologie, GHU Paris, Hôpital Sainte-Anne, F-75014, Paris, France
| | - Emmanuele Lechapt
- Université de Paris, F-75006, Paris, France.,Service de Neuropathologie, GHU Paris, Hôpital Sainte-Anne, F-75014, Paris, France
| | - Arnault Tauziede-Espariat
- Université de Paris, F-75006, Paris, France.,Service de Neuropathologie, GHU Paris, Hôpital Sainte-Anne, F-75014, Paris, France
| | - Gilles Zah-Bi
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France
| | - Fabrice Chretien
- Université de Paris, F-75006, Paris, France.,Service de Neuropathologie, GHU Paris, Hôpital Sainte-Anne, F-75014, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France.,Université de Paris, F-75006, Paris, France
| | - Frédéric Dhermain
- Service de Radiothérapie, Gustave Roussy University Hospital, Villejuif, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris, Hôpital Sainte-Anne, 1, rue Cabanis, F-75014, Paris, France. .,Université de Paris, F-75006, Paris, France. .,INSERM UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France.
| |
Collapse
|
19
|
Zanello M, Roux A, Zah-Bi G, Trancart B, Parraga E, Edjlali M, Tauziede-Espariat A, Sauvageon X, Sharshar T, Oppenheim C, Varlet P, Dezamis E, Pallud J. Predictors of early postoperative epileptic seizures after awake surgery in supratentorial diffuse gliomas. J Neurosurg 2021; 134:683-692. [PMID: 32168481 DOI: 10.3171/2020.1.jns192774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Functional-based resection under awake conditions had been associated with a nonnegligible rate of intraoperative and postoperative epileptic seizures. The authors assessed the incidence of intraoperative and early postoperative epileptic seizures after functional-based resection under awake conditions. METHODS The authors prospectively assessed intraoperative and postoperative seizures (within 1 month) together with clinical, imaging, surgical, histopathological, and follow-up data for 202 consecutive diffuse glioma adult patients who underwent a functional-based resection under awake conditions. RESULTS Intraoperative seizures occurred in 3.5% of patients during cortical stimulation; all resolved without any procedure being discontinued. No predictor of intraoperative seizures was identified. Early postoperative seizures occurred in 7.9% of patients at a mean of 5.1 ± 2.9 days. They increased the duration of hospital stay (p = 0.018), did not impact the 6-month (median 95 vs 100, p = 0.740) or the 2-year (median 100 vs 100, p = 0.243) postoperative Karnofsky Performance Status score and did not impact the 6-month (100% vs 91.4%, p = 0.252) or the 2-year (91.7 vs 89.4%, p = 0.857) postoperative seizure control. The time to treatment of at least 3 months (adjusted OR [aOR] 4.76 [95% CI 1.38-16.36], p = 0.013), frontal lobe involvement (aOR 4.88 [95% CI 1.25-19.03], p = 0.023), current intensity for intraoperative mapping of at least 3 mA (aOR 4.11 [95% CI 1.17-14.49], p = 0.028), and supratotal resection (aOR 6.24 [95% CI 1.43-27.29], p = 0.015) were independently associated with early postoperative seizures. CONCLUSIONS Functional-based resection under awake conditions can be safely performed with a very low rate of intraoperative and early postoperative seizures and good 6-month and 2-year postoperative seizure outcomes. Intraoperatively, the use of the lowest current threshold producing reproducible responses is mandatory to reduce seizure occurrence intraoperatively and in the early postoperative period.
Collapse
Affiliation(s)
- Marc Zanello
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Alexandre Roux
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Gilles Zah-Bi
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Bénédicte Trancart
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Eduardo Parraga
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Myriam Edjlali
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- Departments of4Neuroradiology
| | - Arnault Tauziede-Espariat
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- 5Neuropathology, and
| | - Xavier Sauvageon
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- 6Neuro-Anaesthesia and Neuro-Intensive Care, Sainte-Anne Hospital, Paris; and
| | - Tarek Sharshar
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- 6Neuro-Anaesthesia and Neuro-Intensive Care, Sainte-Anne Hospital, Paris; and
- 7Laboratory of Experimental Neuropathology, Pasteur Institute 28, Paris, France
| | - Catherine Oppenheim
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- Departments of4Neuroradiology
| | - Pascale Varlet
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
- 5Neuropathology, and
| | - Edouard Dezamis
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| | - Johan Pallud
- 1Department of Neurosurgery, Sainte-Anne Hospital, Paris
- 2Paris Descartes University, Sorbonne Paris Cité
- 3Inserm U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris
| |
Collapse
|
20
|
Schiavolin S, Mariniello A, Broggi M, Acerbi F, Schiariti M, Franzini A, Di Meco F, Ferroli P, Leonardi M. Characteristics of Patients Returning to Work After Brain Tumor Surgery. Front Hum Neurosci 2021; 14:609080. [PMID: 33613204 PMCID: PMC7886680 DOI: 10.3389/fnhum.2020.609080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the differences between patients returning to work and those who did not after brain tumor surgery. Methods: Patients were evaluated before surgery and after 3 months. The Montreal Cognitive Assessment test, Trail-Making Test (parts A and B), 15-word Rey–Osterrieth Word List (immediate and delayed recall), F-A-S tests, and Karnosfky Performance Status were used to assess cognitive status, attention, executive functions, memory, word fluency, and functional status. Patient-reported outcome measures (PROMs) used to evaluate emotional distress and disability were the Hospital Anxiety and Depression Scale and World Health Organization Disability Assessment Schedule. Clinical and work-related variables, PROMs, and cognitive tests were compared using chi-squared, t-test or Mann–Whitney U test. Results: Sixty patients were included. Patients returning to work were 61.3 and 31.0% among people with meningioma and glioma, respectively. They reported lower postoperative disability and lesser home-to-work travel time. Patients with meningioma also showed better preoperative and postoperative attention and executive functions, better postoperative functional and cognitive status, and lower frequency of treatments. Conclusions: These variables should be considered in a clinical context to plan interventions for people who need support during return to work and in future research to investigate preoperative and postoperative predictive factors of going back to work.
Collapse
Affiliation(s)
- Silvia Schiavolin
- Neurology, Public Health and Disability Unit, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Mariniello
- Neurology, Public Health and Disability Unit, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Fondazione IRCSS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
Ng S, Herbet G, Moritz-Gasser S, Duffau H. Return to Work Following Surgery for Incidental Diffuse Low-Grade Glioma: A Prospective Series With 74 Patients. Neurosurgery 2021; 87:720-729. [PMID: 31813972 DOI: 10.1093/neuros/nyz513] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Therapeutic strategy concerning incidental low-grade glioma (ILGG) is still debated. Early "prophylactic" surgery has been proposed in asymptomatic patients with favorable neurological and oncological outcomes. OBJECTIVE To assess postoperative ability to resume employment following awake surgery in asymptomatic ILGG patients. To assess extent of resection (EOR), timeline for adjuvant oncological treatment, and survival. METHODS A total of 74 patients with ILGG who underwent awake surgery with intraoperative mapping were prospectively included, with a minimum follow-up of 12 mo. All clinicoradiological data were collected, and statistical correlations with return to work (RTW) were performed. RESULTS A total of 66 patients (97.1%) among 68 patients with preoperative professional activities resumed their employment including 62 (91.2%) within 12 mo. Mean time before RTW was 6.8 mo (median: 6 mo, range: 1-36). Two patients experienced seizure-related legal issues impacting their RTW. Clinicoradiological features did not correlate with RTW apart from postoperative seizures (P = .02). Mean EOR was 95.7%. A total of 43 patients (58.1%) underwent supratotal/total resections. All patients recovered from transient deficits at 3 mo. No patients received consecutive adjuvant treatment. A total of 24 patients (32.4%) were reoperated, 24 patients received chemotherapy, and 7 patients (9.5%) received radiotherapy, on average 73.1 mo after surgery. Mean follow-up was 67 mo (range 12-240). Four patients (5.4%) died during the follow-up. CONCLUSION We observed a high rate of RTW (97.1%, including 91.2% within 12 mo) after awake surgery in ILGG patients. Delayed resumption of work was due to employer not clearing them for RTW, personal choice, and, in rare occasions, related to seizures.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1051, Institute for Neurosciences of Montpellier, Montpellier, France.,University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Scherer M, Ahmeti H, Roder C, Gessler F, Jungk C, Pala A, Mayer B, Senft C, Tatagiba M, Synowitz M, Wirtz CR, Unterberg AW, Coburger J. Surgery for Diffuse WHO Grade II Gliomas: Volumetric Analysis of a Multicenter Retrospective Cohort From the German Study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery 2020; 86:E64-E74. [PMID: 31574147 DOI: 10.1093/neuros/nyz397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In diffuse WHO grade II gliomas (LGG), the extent of resection (EOR) required to achieve significant survival benefits remains elusive. OBJECTIVE To evaluate the association of residual volume (RV) and EOR with progression-free survival (PFS) or overall survival (OS) in LGG in a retrospective, multicenter series by the German study group of intraoperative MRI (GeSGIM). METHODS Consecutive cases were retrospectively assessed from 5 centers. Tumors were volumetrically quantified before and after surgery, and clinical data were analyzed, including IDH mutations and neurologic deficits. Kaplan-Meier estimates, accelerated failure time models (AFT), and multivariate Cox regression models were calculated to identify determinants of survival. RESULTS A total of 140 cases were analyzed. Gross total resection (GTR) was associated with significantly longer PFS compared to any incomplete resection (P = .009). A significant survival disadvantage was evident even for small (>0-5 ml) residuals and increased for moderate (>5-20 ml) and large remnants (>20 ml) P = .001). Accordingly, PFS increased continuously for 20% incremental steps of EOR (P < .001). AFT models supported the notion of a continuous association of RV and EOR with PFS. Multivariate Cox regression models confirmed RV (P = .01) and EOR (P = .005) as continuous prognosticators of PFS. Univariate analysis showed significant associations of RV and EOR with OS. CONCLUSION Our data support the hypothesis of a continuous relationship of RV and EOR with survival for LGG with superiority seen for GTR. Hence, GTR should be achieved whenever safely feasible, and resections should be maximized whenever tumor has to be left behind to spare function.
Collapse
Affiliation(s)
- Moritz Scherer
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Hajrulla Ahmeti
- Department of Neurosurgery, University of Schleswig-Holstein, Kiel, Germany
| | - Constantin Roder
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Florian Gessler
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Christine Jungk
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Andrej Pala
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University of Schleswig-Holstein, Kiel, Germany
| | | | | | - Jan Coburger
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| |
Collapse
|
23
|
Rydén I, Carstam L, Gulati S, Smits A, Sunnerhagen KS, Hellström P, Henriksson R, Bartek J, Salvesen Ø, Jakola AS. Return to work following diagnosis of low-grade glioma: A nationwide matched cohort study. Neurology 2020; 95:e856-e866. [PMID: 32540938 PMCID: PMC7605502 DOI: 10.1212/wnl.0000000000009982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Abstract
Objective Return-to-work (RTW) following diagnosis of infiltrative low-grade gliomas is unknown. Methods Swedish patients with histopathologic verified WHO grade II diffuse glioma diagnosed between 2005 and 2015 were included. Data were acquired from several Swedish registries. A total of 381 patients aged 18–60 were eligible. A matched control population (n = 1,900) was acquired. Individual data on sick leave, compensations, comorbidity, and treatments assigned were assessed. Predictors were explored using multivariable logistic regression. Results One year before surgery/index date, 88% of cases were working, compared to 91% of controls. The proportion of controls working remained constant, while patients had a rapid increase in sick leave approximately 6 months prior to surgery. After 1 and 2 years, respectively, 52% and 63% of the patients were working. Predictors for no RTW after 1 year were previous sick leave (odds ratio [OR] 0.92, 95% confidence interval [CI] 0.88–0.96, p < 0.001), older age (OR 0.96, 95% CI 0.94–0.99, p = 0.005), and lower functional level (OR 0.64 95% CI, 0.45–0.91 p = 0.01). Patients receiving adjuvant treatment were less likely to RTW within the first year. At 2 years, biopsy (as opposed to resection), female sex, and comorbidity were also unfavorable, while age and adjuvant treatment were no longer significant. Conclusions Approximately half of patients RTW within the first year. Lower functional status, previous sick leave, older age, and adjuvant treatment were risk factors for no RTW at 1 year after surgery. Female sex, comorbidity, and biopsy only were also unfavorable for RTW at 2 years.
Collapse
Affiliation(s)
- Isabelle Rydén
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Louise Carstam
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Sasha Gulati
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Anja Smits
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Katharina S Sunnerhagen
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Per Hellström
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Roger Henriksson
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Jiri Bartek
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Øyvind Salvesen
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark
| | - Asgeir Store Jakola
- From the Section of Clinical Neuroscience, Institute of Neuroscience and Physiology (I.R., L.C., A.S., K.S.S., P.H., A.S.J.), University of Gothenburg, Sahlgrenska Academy; Departments of Neurology (I.R., A.S., P.H.) and Neurosurgery (L.C., A.S.J.), Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurosurgery (S.G., A.S.J.), St. Olavs University Hospital HF; Institute of Neuroscience (S.G.) and Department of Public Health and Nursing (Ø.S.), Norwegian University of Science and Technology, Trondheim, Norway; Department of Neuroscience (A.S.), Uppsala University; Department of Radiation Sciences & Oncology (R.H.), University of Umeå; Department of Neurosurgery (J.B.), Karolinska University Hospital; Departments of Neuroscience and Medicine (J.B.), Karolinska Institutet, Stockholm, Sweden; and Department of Neurosurgery (J.B.), Copenhagen University Hospital Rigshospitalet, Denmark.
| |
Collapse
|
24
|
Abstract
Increased life expectancy in brain tumour patients had led to the need for strategies that preserve and improve cognitive functioning, as many patients suffer from cognitive deficits. The tumour itself, as well as antitumor treatment including surgery, radiotherapy and chemotherapy, supportive treatment and individual patient factors are associated with cognitive problems. Here, we review the recent literature on approaches that preserve and improve cognitive functioning, including pharmacological agents and rehabilitation programs.
Collapse
|
25
|
A Multicenter Study on the Early Assessment of Functional Capacity of Patients With Brain Tumor After Surgery. J Neurosci Nurs 2019; 51:221-226. [DOI: 10.1097/jnn.0000000000000459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Morshed RA, Young JS, Hervey-Jumper SL, Berger MS. The management of low-grade gliomas in adults. J Neurosurg Sci 2019; 63:450-457. [DOI: 10.23736/s0390-5616.19.04701-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
How many patients require brain mapping in an adult neuro-oncology service? Neurosurg Rev 2019; 43:729-738. [DOI: 10.1007/s10143-019-01112-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
28
|
Nakajima R, Kinoshita M, Okita H, Yahata T, Nakada M. Glioma surgery under awake condition can lead to good independence and functional outcome excluding deep sensation and visuospatial cognition. Neurooncol Pract 2018; 6:354-363. [PMID: 31555450 DOI: 10.1093/nop/npy054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Awake surgery for the eloquent cortex is a common strategy for glioma surgery. Although a recent emphasis has been placed on awake surgery both for dominant and nondominant cerebral hemispheres to preserve neurological/neuropsychological functions, those functional outcomes are not well investigated because few studies have focused on the longitudinal recovery process. This study explored the outcome of neurological/neuropsychological functions following awake surgery until the chronic phase. Methods A total of 87 patients with glioma who underwent awake surgery were included, and of these 66 patients matched our inclusion criteria. Each patient was assessed for neurological/neuropsychological functions before surgery, as well as acute and chronic phase. Additionally, scores for the KPS were collected. Results Almost all functions recovered within 3 months postoperatively, even when transient deficits were observed in the acute phase; however, deep sensory perception deficits and visuospatial cognitive disorders persisted into the chronic phase (15.4% of patients with parietal lesions, 14.3% of patients with right cerebral hemispheric lesion, respectively). KPS score ≥90 was achieved in 86.0% of patients with lower-grade glioma, whereas only 52.2% of glioblastoma patients scored ≥90. Primary causes of declined KPS were disorder of visuospatial cognition, sensorimotor function including deep sensation, aphasia, and emotional function. Conclusions Awake surgery leads to good functional outcome at the chronic phase of neurological/neuropsychological functions, except for deep sensory and visuospatial cognition. Because sensation and visuospatial cognitive disorder have major impacts on patients' independence level, further importance should be placed on preserving these functions during surgery.
Collapse
Affiliation(s)
- Riho Nakajima
- Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | | | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Japan
| | - Tetsutaro Yahata
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Japan
| | | |
Collapse
|
29
|
Vanacôr C, Duffau H. Analysis of Legal, Cultural, and Socioeconomic Parameters in Low-Grade Glioma Management: Variability Across Countries and Implications for Awake Surgery. World Neurosurg 2018; 120:47-53. [DOI: 10.1016/j.wneu.2018.08.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022]
|
30
|
Duffau H. Diffuse low-grade glioma, oncological outcome and quality of life: a surgical perspective. Curr Opin Oncol 2018; 30:383-389. [DOI: 10.1097/cco.0000000000000483] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
INTRODUCTION Radical glioma resection improves overall survival, both in low-grade and high-grade glial tumors. However, preservation of the quality of life is also crucial. Areas covered: Due to the diffuse feature of gliomas, which invade the central nervous system, and due to considerable variations of brain organization among patients, an individual cerebral mapping is mandatory to solve the classical dilemma between the oncological and functional issues. Because functional neuroimaging is not reliable enough, intraoperative electrical stimulation, especially in awake patients benefiting from a real-time cognitive monitoring, is the best way to increase the extent of resection while sparing eloquent neural networks. Expert commentary: Here, we propose a paradigmatic shift from image-guided resection to functional mapping-guided resection, based on the study of the dynamic distribution of delocalized cortico-subcortical circuits at the individual level, i.e., the investigation of brain connectomics and neuroplastic potential. This surgical philosophy results in an improvement of both oncological outcomes and quality of life. This highlights the need to reinforce the link between glioma surgery and cognitive neurosciences.
Collapse
Affiliation(s)
| | - Hugues Duffau
- b Department of Neurosurgery , Gui de Chauliac Hospital, Montpellier University Medical Center , Montpellier , France.,c National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team "Brain Plasticity, Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier , Montpellier University Medical Center , Montpellier , France
| |
Collapse
|