1
|
Boëx C, Awadhi AA, Tyrand R, Corniola MV, Kibleur A, Fleury V, Burkhard PR, Momjian S. Validation of Lead-DBS β-Oscillation Localization with Directional Electrodes. Bioengineering (Basel) 2023; 10:898. [PMID: 37627782 PMCID: PMC10451384 DOI: 10.3390/bioengineering10080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In deep brain stimulation (DBS) studies in patients with Parkinson's disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5-3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13-31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations' probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.
Collapse
Affiliation(s)
- Colette Boëx
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Abdullah Al Awadhi
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
| | - Rémi Tyrand
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Marco V. Corniola
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Astrid Kibleur
- Centre Hospitalier Universitaire Caen Normandie, F-14000 Caen, France
| | - Vanessa Fleury
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
- Department of Neurosurgery, Pontchaillou Hospitals, CEDEX 9, F-35033 Rennes, France
| | - Pierre R. Burkhard
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| | - Shahan Momjian
- Department of Neurosurgery, University Hospitals of Geneva, CH-1205 Geneva, Switzerland (S.M.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland (P.R.B.)
| |
Collapse
|
2
|
Chen PL, Chen YC, Tu PH, Liu TC, Chen MC, Wu HT, Yeap MC, Yeh CH, Lu CS, Chen CC. Subthalamic high-beta oscillation informs the outcome of deep brain stimulation in patients with Parkinson's disease. Front Hum Neurosci 2022; 16:958521. [PMID: 36158623 PMCID: PMC9493001 DOI: 10.3389/fnhum.2022.958521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe therapeutic effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) is related to the modulation of pathological neural activities, particularly the synchronization in the β band (13–35 Hz). However, whether the local β activity in the STN region can directly predict the stimulation outcome remains unclear.ObjectiveWe tested the hypothesis that low-β (13–20 Hz) and/or high-β (20–35 Hz) band activities recorded from the STN region can predict DBS efficacy.MethodsLocal field potentials (LFPs) were recorded in 26 patients undergoing deep brain stimulation surgery in the subthalamic nucleus area. Recordings were made after the implantation of the DBS electrode prior to its connection to a stimulator. The maximum normalized powers in the theta (4–7 Hz), alpha (7–13 Hz), low-β (13–20 Hz), high-β (20–35 Hz), and low-γ (40–55 Hz) subbands in the postoperatively recorded LFP were correlated with the stimulation-induced improvement in contralateral tremor or bradykinesia–rigidity. The distance between the contact selected for stimulation and the contact with the maximum subband power was correlated with the stimulation efficacy. Following the identification of the potential predictors by the significant correlations, a multiple regression analysis was performed to evaluate their effect on the outcome.ResultsThe maximum high-β power was positively correlated with bradykinesia–rigidity improvement (rs = 0.549, p < 0.0001). The distance to the contact with maximum high-β power was negatively correlated with bradykinesia–rigidity improvement (rs = −0.452, p < 0.001). No significant correlation was observed with low-β power. The maximum high-β power and the distance to the contact with maximum high-β power were both significant predictors for bradykinesia–rigidity improvement in the multiple regression analysis, explaining 37.4% of the variance altogether. Tremor improvement was not significantly correlated with any frequency.ConclusionHigh-β oscillations, but not low-β oscillations, recorded from the STN region with the DBS lead can inform stimulation-induced improvement in contralateral bradykinesia–rigidity in patients with PD. High-β oscillations can help refine electrode targeting and inform contact selection for DBS therapy.
Collapse
Affiliation(s)
- Po-Lin Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Chieh Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsun Tu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chi Liu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Mathematics, National Taiwan University, Taipei, Taiwan
| | - Min-Chi Chen
- Department of Public Health, Biostatistics Consulting Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hau-Tieng Wu
- Department of Mathematics, Duke University, Durham, NC, United States
- Department of Statistical Science, Duke University, Durham, NC, United States
| | - Mun-Chun Yeap
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neuroradiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
| | - Chiung-Chu Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chiung-Chu Chen
| |
Collapse
|
3
|
Al Awadhi A, Tyrand R, Horn A, Kibleur A, Vincentini J, Zacharia A, Burkhard PR, Momjian S, Boëx C. Electrophysiological confrontation of Lead-DBS-based electrode localizations in patients with Parkinson's disease undergoing deep brain stimulation. Neuroimage Clin 2022; 34:102971. [PMID: 35231852 PMCID: PMC8885791 DOI: 10.1016/j.nicl.2022.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Lead-DBS agreed with microelectrode recordings with millimetric precision. Lead-DBS identified misplaced electrodes that microelectrodes could only help suspect. Lead-DBS location of the limbic STN was in agreement with electrophysiological markers. Phase duration and firing rates could help identify dopamine neurons in humans.
Microelectrode recordings (MERs) are often used during deep brain stimulation (DBS) surgeries to confirm the position of electrodes in patients with advanced Parkinson’s disease. The present study focused on 32 patients who had undergone DBS surgery for advanced Parkinson’s disease. The first objective was to confront the anatomical locations of intraoperative individual MERs as determined electrophysiologically with those determined postoperatively by image reconstructions. The second aim was to search for differences in cell characteristics among the three subthalamic nucleus (STN) subdivisions and between the STN and other identified subcortical structures. Using the DISTAL atlas implemented in the Lead-DBS image reconstruction toolbox, each MER location was determined postoperatively and attributed to specific anatomical structures (sensorimotor, associative or limbic STN; substantia nigra [SN], thalamus, nucleus reticularis polaris, zona incerta [ZI]). The STN dorsal borders determined intraoperatively from electrophysiology were then compared with the STN dorsal borders determined by the reconstructed images. Parameters of spike clusters (firing rates, amplitudes – with minimum amplitude of 60 μV -, spike durations, amplitude spectral density of β-oscillations) were compared between structures (ANOVAs on ranks). Two hundred and thirty one MERs were analyzed (144 in 34 STNs, 7 in 4 thalami, 5 in 4 ZIs, 34 in 10 SNs, 41 others). The average difference in depth of the electrophysiological dorsal STN entry in comparison with the STN entry obtained with Lead-DBS was found to be of 0.1 mm (standard deviation: 0.8 mm). All 12 analyzed MERs recorded above the electrophysiologically-determined STN entry were confirmed to be in the thalamus or zona incerta. All MERs electrophysiologically attributed to the SN were confirmed to belong to this nucleus. However, 6/34 MERs that were electrophysiologically attributed to the ventral STN were postoperatively reattributed to the SN. Furthermore, 44 MERs of 3 trajectories, which were intraoperatively attributed to the STN, were postoperatively reattributed to the pallidum or thalamus. MER parameters seemed to differ across the STN, with higher spike amplitudes (H = 10.64, p < 0.01) and less prevalent β-oscillations (H = 9.81, p < 0.01) in the limbic STN than in the sensorimotor and associative subdivisions. Some cells, especially in the SN, showed longer spikes with lower firing rates, in agreement with described characteristics of dopamine cells. However, these probabilistic electrophysiological signatures might become clinically less relevant with the development of image reconstruction tools, which deserve to be applied intraoperatively.
Collapse
Affiliation(s)
- Abdullah Al Awadhi
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Rémi Tyrand
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Andreas Horn
- Movement Disorders and Neuromodulation Section, Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Astrid Kibleur
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Julia Vincentini
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - André Zacharia
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Shahan Momjian
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Colette Boëx
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
4
|
Oxenford S, Roediger J, Neudorfer C, Milosevic L, Güttler C, Spindler P, Vajkoczy P, Neumann WJ, Kühn A, Horn A. Lead-OR: A multimodal platform for deep brain stimulation surgery. eLife 2022; 11:e72929. [PMID: 35594135 PMCID: PMC9177150 DOI: 10.7554/elife.72929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Deep brain stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MERs) or local field potential recordings can be used to extend neuroanatomical information (defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced. Methods Here, we present a tool that integrates resources from stereotactic planning, neuroimaging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and present single-use cases of the real-time platform. Results We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool. Conclusions This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages. Funding Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luft- und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD Research (FFOR).
Collapse
Affiliation(s)
- Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Jan Roediger
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Charité — Universitätsmedizin Berlin, Einstein Center for Neurosciences BerlinBerlinGermany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Center for Brain Circuit Therapeutics Department of Neurology, Brigham & Women’s Hospital, Harvard Medical SchoolBostonUnited States
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Luka Milosevic
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Krembil Brain Institute, University Health NetworkTorontoCanada
| | - Christopher Güttler
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Philipp Spindler
- Department of Neurosurgery, Charité — Universitätsmedizin BerlinBerlinGermany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité — Universitätsmedizin BerlinBerlinGermany
| | - Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andrea Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
- Center for Brain Circuit Therapeutics Department of Neurology, Brigham & Women’s Hospital, Harvard Medical SchoolBostonUnited States
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
5
|
Martinez-Simon A, Valencia M, Cacho-Asenjo E, Honorato-Cia C, Nuñez-Cordoba JM, Manzanilla O, Aldaz A, Panadero A, Guridi J, Alegre M. Effects of dexmedetomidine on subthalamic local field potentials in Parkinson's disease. Br J Anaesth 2021; 127:245-253. [PMID: 33896591 PMCID: PMC8362272 DOI: 10.1016/j.bja.2021.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/17/2020] [Accepted: 01/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. Methods Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 μg kg−1 h−1) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. Results With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5–0.6 μg kg−1 h−1) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0–9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). Conclusions Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 μg kg−1 h−1 without significant alteration of their characteristic subthalamic activity. If patients achieve a ‘sedated’ state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min. Clinical trial registration EudraCT 2016-002680-34; NCT-02982512.
Collapse
Affiliation(s)
- Antonio Martinez-Simon
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Miguel Valencia
- University of Navarra, CIMA, Program of Neuroscience, Systems Neuroscience Lab, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Elena Cacho-Asenjo
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Honorato-Cia
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jorge M Nuñez-Cordoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Oscar Manzanilla
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| | - Azucena Aldaz
- Department of Pharmacy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfredo Panadero
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Guridi
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Department of Neurosurgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
6
|
|
7
|
Shen B, Lin Y, Bi C, Zhou S, Bai Z, Zheng G, Zhou J. Translational Informatics for Parkinson's Disease: from Big Biomedical Data to Small Actionable Alterations. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:415-429. [PMID: 31786313 PMCID: PMC6943761 DOI: 10.1016/j.gpb.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/29/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a common neurological disease in elderly people, and its morbidity and mortality are increasing with the advent of global ageing. The traditional paradigm of moving from small data to big data in biomedical research is shifting toward big data-based identification of small actionable alterations. To highlight the use of big data for precision PD medicine, we review PD big data and informatics for the translation of basic PD research to clinical applications. We emphasize some key findings in clinically actionable changes, such as susceptibility genetic variations for PD risk population screening, biomarkers for the diagnosis and stratification of PD patients, risk factors for PD, and lifestyles for the prevention of PD. The challenges associated with the collection, storage, and modelling of diverse big data for PD precision medicine and healthcare are also summarized. Future perspectives on systems modelling and intelligent medicine for PD monitoring, diagnosis, treatment, and healthcare are discussed in the end.
Collapse
Affiliation(s)
- Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Cheng Bi
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Shengrong Zhou
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Zhongchen Bai
- Center for Translational Biomedical Informatics, Guizhou University School of Medicine, Guiyang 550025, China
| | - Guangmin Zheng
- Center for Translational Biomedical Informatics, Guizhou University School of Medicine, Guiyang 550025, China
| | - Jing Zhou
- Center for Translational Biomedical Informatics, Guizhou University School of Medicine, Guiyang 550025, China
| |
Collapse
|