1
|
Kocak B, Mese I, Ates Kus E. Radiomics for differentiating radiation-induced brain injury from recurrence in gliomas: systematic review, meta-analysis, and methodological quality evaluation using METRICS and RQS. Eur Radiol 2025:10.1007/s00330-025-11401-x. [PMID: 39937273 DOI: 10.1007/s00330-025-11401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To systematically evaluate glioma radiomics literature on differentiating between radiation-induced brain injury and tumor recurrence. METHODS Literature was searched on PubMed and Web of Science (end date: May 7, 2024). Quality of eligible papers was assessed using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS). Reliability of quality scoring tools were analyzed. Meta-analysis, meta-regression, and subgroup analysis were performed. RESULTS Twenty-seven papers were included in the qualitative assessment. Mean average METRICS score and RQS percentage score across three readers was 57% (SD, 14%) and 16% (SD, 12%), respectively. Score-wise inter-rater agreement for METRICS ranged from poor to excellent, while RQS demonstrated moderate to excellent agreement. Item-wise agreement was moderate for both tools. Meta-analysis of 11 eligible studies yielded an estimated area under the receiver operating characteristic curve of 0.832 (95% CI, 0.757-0.908), with significant heterogeneity (I2 = 91%) and no statistical publication bias (p = 0.051). Meta-regression did not identify potential sources of heterogeneity. Subgroup analysis revealed high heterogeneity across all subgroups, with the lowest I2 at 68% in studies with proper validation and higher quality scores. Statistical publication bias was generally not significant, except in the subgroup with the lowest heterogeneity (p = 0.044). However, most studies in both qualitative analysis (26/27; 96%) and primary meta-analysis (10/11; 91%) reported positive effects of radiomics, indicating high non-statistical publication bias. CONCLUSION While a good performance was noted for radiomics, results should be interpreted cautiously due to heterogeneity, publication bias, and quality issues thoroughly examined in this study. KEY POINTS Question Radiomic literature on distinguishing radiation-induced brain injury from glioma recurrence lacks systematic reviews and meta-analyses that assess methodological quality using radiomics-specific tools. Findings While the results are encouraging, there was substantial heterogeneity, publication bias toward positive findings, and notable concerns regarding methodological quality. Clinical relevance Meta-analysis results need cautious interpretation due to significant problems detected during the analysis (e.g., suboptimal quality, heterogeneity, bias), which may help explain why radiomics has not yet been translated into clinical practice.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Ismail Mese
- Department of Radiology, Uskudar State Hospital, Istanbul, Turkey
| | - Ece Ates Kus
- Institute of Neuroradiology, Klinikum Lippe, Lemgo, Germany
| |
Collapse
|
2
|
Pesce A, Palmieri M, Pietrantonio A, Ciarlo S, Salvati M, Pompucci A. Resection of supratentorial high-grade gliomas availing of neuronavigation matched intraoperative ultrasound and Fluorescein: How far is it safe to push the resection? World Neurosurg X 2024; 23:100379. [PMID: 38645511 PMCID: PMC11027571 DOI: 10.1016/j.wnsx.2024.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background High-Grade Gliomas are the most common primary brain malignancies and despite the multimodal treatment, and the increasing amount of adjuvant treatment options the overall prognosis remains dismal. The present investigation aims to analyze the safety profile of the use of intraoperative ultrasounds (Io-US) in a homogeneous and matched cohort of patients suffering from High-grade gliomas (HGG) operated on with or without the aid of Io-US and Fluorescein in specific relation to the incidence of neurological and functional status sequelae. Methods and materials A retrospective analysis was performed on 74 patients affected by HGG. 22 patients were treated with Io-US matched with neuronavigational system (Group A); 15 patients were treated both with the use of Io-US and Fluorescein matched with neuronavigational system (Group B); 37 patients were treated with the use of the neuronavigational system only (Group C). Primary endpoints were the extent of resection and functional outcome (measured with Karnofski Performance Status). Results Significative differences were observed in terms of a higher extent of resection in Group B. In a multivariate analysis, this data appears to be independent of the location (eloquent/non-eloquent) of the lesion and from its histology. Regarding functional outcomes, no differences were detected between the two groups. Conclusions The present study is the first that analyzes the simultaneous use of Io-US and Fluorescein, and the results demonstrate that these two instruments together could improve the extent of resection in HGG while ensuring good outcomes in terms of functional status.
Collapse
Affiliation(s)
- Alessandro Pesce
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Mauro Palmieri
- Università“La Sapienza” di Roma, Neurosurgery Division - Roma, Viale del Policlinico 155, 00161, Roma, RM, Italy
| | - Andrea Pietrantonio
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Silvia Ciarlo
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico “Tor Vergata”, University of Rome “Tor Vergata”, 00133, Rome, RM, Italy
| | - Angelo Pompucci
- A.O. “Santa Maria Goretti”, Neurosurgery Division - Latina, Via Lucia Scaravelli, 04100, Latina, LT, Italy
| |
Collapse
|
3
|
Ren J, Zhai X, Yin H, Zhou F, Hu Y, Wang K, Yan R, Han D. Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma. Neurol Ther 2023; 12:1729-1743. [PMID: 37488335 PMCID: PMC10444917 DOI: 10.1007/s40120-023-00524-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
INTRODUCTION Conventional magnetic resonance imaging (MRI) features have difficulty distinguishing glioma true tumor recurrence (TuR) from treatment-related effects (TrE). We aimed to develop a machine-learning model based on multimodality MRI radiomics to help improve the efficiency of identifying glioma TuR. METHODS A total of 131 patients were enrolled and randomly divided into the training set (n = 91) and the test set (n = 40). Radiomic features were extracted from the postoperative enhancement (PoE) region and edema (ED) region from four routine MRI sequences. After analyses of Spearman's rank correlation coefficient, and least absolute shrinkage and selection operator, the key radiomic features were selected to construct support vector machine (SVM) and k-nearest neighbor (KNN) models. Decision curve analysis (DCA) and receiver operating characteristic (ROC) curves were used to analyze the performance. RESULTS The PoE model had a significantly higher area under curve (AUC) than the ED model (p < 0.05). Among the models constructed with a single sequence, the model using PoE regional features from CE-T1WI was superior to other models, with an AUC of 0.905 for SVM and 0.899 for KNN. In multimodality models, the PoE model outperformed the ED model with an AUC of 0.931 for SVM and 0.896 for KNN. The multimodality model, which combined routine sequences and the whole regional features, showed a slightly better performance with an AUC of 0.965 for SVM and 0.955 for KNN. Decision curve analysis showed the good clinical utility of multimodal radiomics models. CONCLUSIONS Multimodality radiomics can identify glioma TuR and TrE, potentially aiding clinical decision-making for individualized treatment. And edematous regions may provide useful information for recognizing recurrence. RETROSPECTIVELY REGISTERED 2021.04.15, No:2020039.
Collapse
Affiliation(s)
- Jinfa Ren
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Xiaoyang Zhai
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Huijia Yin
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Fengmei Zhou
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Ying Hu
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Ruifang Yan
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Dongming Han
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China.
| |
Collapse
|
4
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
5
|
Current Considerations in the Treatment of Grade 3 Gliomas. Curr Treat Options Oncol 2022; 23:1219-1232. [PMID: 35913658 DOI: 10.1007/s11864-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Treatment recommendations for grade 3 gliomas are guided by their histopathologic and molecular phenotype. In the 2021 WHO classification, these tumors are categorized into two types, grade 3 IDH mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDH mutant astrocytoma. Treatment consists of maximal safe surgery, followed by radiation therapy (RT) and alkylating agent-based chemotherapy. Based on the updated CATNON result, RT followed by temozolomide improves outcome in patients with non-codeleted grade 3 IDHmt astrocytoma. In patients with IDHmt, codeleted oligodendroglioma, the addition of procarbazine, CCNU, and vincristine regimen is the recommended treatment, based on large randomized controlled trials. These current treatments prolong the overall survival to up to 10 years in patients with grade 3 IDHmt astrocytoma and 14 years in grade 3 IDHmt codeleted oligodendroglioma. Treatment options at recurrence include re-resection, re-irradiation, and other cytotoxic chemotherapy; however, these are of limited benefit. Novel agents targeting IDH mutation and its metabolic effects are currently under investigation to improve the outcome of these patients.
Collapse
|
6
|
Morshed RA, Young JS, Gogos AJ, Haddad AF, McMahon JT, Molinaro AM, Sudhakar V, Al-Adli N, Hervey-Jumper SL, Berger MS. Reducing complication rates for repeat craniotomies in glioma patients: a single-surgeon experience and comparison with the literature. Acta Neurochir (Wien) 2022; 164:405-417. [PMID: 34970702 PMCID: PMC8854329 DOI: 10.1007/s00701-021-05067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022]
Abstract
Background There is a concern that glioma patients undergoing repeat craniotomies are more prone to complications. The study’s goal was to assess if the complication profiles for initial and repeat craniotomies were similar, to determine predictors of complications, and to compare results with those in the literature. Methods A retrospective study was conducted of glioma patients (WHO grade II–IV) who underwent either an initial or repeat craniotomy performed by the senior author from 2012 until 2019. Complications were recorded by discharge, 30 days, and 90 days postoperatively. New neurologic deficits were recorded by 90 days postoperatively. Multivariate regression was performed to identify factors associated with complications. A meta-analysis was performed to identify rates of complications based on number of prior craniotomies. Results Within the cohort of 714 patients, 400 (56%) had no prior craniotomies, 218 (30.5%) had undergone 1 prior craniotomy, and 96 (13.5%) had undergone ≥ 2 prior craniotomies. There were 27 surgical and 10 medical complications in 30 patients (4.2%) and 19 reoperations for complications in 19 patients (2.7%) with no deaths by 90 days. Complications, reoperation rates, and new neurologic deficits did not differ based on number of prior craniotomies. On multivariate analysis, older age (OR1.5, 95%CI 1.0–2.2) and significant leukocytosis due to steroid use (OR12.6, 95%CI 2.5–62.9) were predictors of complications. Complication rates in the cohort were lower than rates reported in the literature. Conclusion Contrary to prior reports in the literature, repeat craniotomies can be as safe as initial operations if surgeons implement best practices. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-05067-9.
Collapse
Affiliation(s)
- Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA
| | - Andrew J Gogos
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA
| | - Alexander F Haddad
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA
| | - Vivek Sudhakar
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Rm. M-779, San Francisco, CA, 94143-0112, USA.
| |
Collapse
|
7
|
Pesce A, Armocida D, Paglia F, Palmieri M, Frati A, D'Andrea G, Salvati M, Santoro A. IDH Wild-type Glioblastoma Presenting with Seizure: Clinical Specificity, and Oncologic and Surgical Outcomes. J Neurol Surg A Cent Eur Neurosurg 2021; 83:351-360. [PMID: 34794192 DOI: 10.1055/s-0041-1735515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive primary brain neoplasia in adults. Seizure is a common manifestation in GBM. Up to 25 to 60% of patients with GBM have seizures. We aim to summarize all the relevant clinical, surgical, radiologic, and molecular features of a cohort of patients suffering from GBM-related epilepsy and measure the outcome, to understand the possible existence of a clinical/phenotypical specificity of this subgroup of patients. METHODS We retrospectively analyzed a cohort of 177 patients affected by isocitrate dehydrogenase wild-type (IDH-WT) GBM; 49 patients presented seizure at onset (SaO) and 128 were seizure free (SF). We investigated the relationship between seizures and other prognostic factors of GBMs. RESULTS A statistically significant association between the location of the lesions in the parietal lobe and seizures was observed. The left side was more commonly affected. Interestingly, there was a statistical relationship between tumors involving the subventricular zone (SVZ) and SaO patients. The tumors were also smaller on average at diagnosis, and generalized SaOs were associated with longer overall survival. CONCLUSIONS The typical patient with IDH-WT GBM with SaO is a young (<55 year) male without a history of headache. The lesion is typically small to medium in size and located in the temporoparietal dominant lobe, with a high tendency to involve the SVZ.
Collapse
Affiliation(s)
| | - Daniele Armocida
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Francesco Paglia
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Mauro Palmieri
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy
| | - Alessandro Frati
- Division of Neurosurgery, Department of Human Neurosciences, "Sapienza" University, Rome, Italy.,IRCCS "Neuromed" Pozzilli (IS), Italy
| | | | - Maurizio Salvati
- IRCCS "Neuromed" Pozzilli (IS), Italy.,Department of Mental and Neurological, Dental and Sensory Organs Health, Tor Vergata University, Rome Italy
| | | |
Collapse
|
8
|
Periventricular zone involvement as a predictor of survival in glioblastoma patients: A single centre cohort-comparison investigation concerning a distinct clinical entity. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
9
|
Chen H, Luo Y, Li C, Zhan W, Tan Q, Xie C, Sharma A, Sharma HS, Zhang Z. Multimodal imaging in the differential diagnosis of glioma recurrence from treatment-related effects: A protocol for systematic review and network meta-analysis. PROGRESS IN BRAIN RESEARCH 2021; 265:377-383. [PMID: 34560925 DOI: 10.1016/bs.pbr.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Glioma is the most common malignant primary brain tumor and it will always recur. To date, various multimodal imaging including magnetic resonance imaging (MRI) and positron emission tomography computed tomography (PET/CT) was used to differentiate the diagnosis of true tumor recurrent (TuR) and treatment-related effects (TrE) in glioma patient but with no overall conclusion. In this study, SROC curve and Bayesian network meta-analysis will be used to conduct a comprehensive analysis of the results of different clinical reports, and assess the efficacy of multimodal imaging in difference TuR and TrE. METHODS To find more comprehensive information about the application of multimodal imaging in glioma patients, we searched the EMBASE, Pubmed, and Cochrane Central Register of Controlled Trials for relevant clinical trials. We also reviewed their reference lists to avoid omissions. QUADAS-2, RevMan software, Stata, and R software will be used. RESULTS This study will provide reliable evidence for the efficacy of multimodal imaging in the differential diagnosis of TuR and TrE in glioma patients. CONCLUSION We will evaluate the effectiveness of different and rank each imaging method in glioma patients to provide a decision-making reference on which method to choose for clinicians. Protocol registration number: CRD42020217861.
Collapse
Affiliation(s)
- Huijing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwen Luo
- Qionghai Hospital of traditional Chinese Medicine, Qionghai, Hainan Province, China
| | - Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Wengang Zhan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Qijia Tan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Caijun Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, China.
| |
Collapse
|
10
|
Kocher M, Jockwitz C, Lohmann P, Stoffels G, Filss C, Mottaghy FM, Ruge MI, Weiss Lucas C, Goldbrunner R, Shah NJ, Fink GR, Galldiks N, Langen KJ, Caspers S. Lesion-Function Analysis from Multimodal Imaging and Normative Brain Atlases for Prediction of Cognitive Deficits in Glioma Patients. Cancers (Basel) 2021; 13:cancers13102373. [PMID: 34069074 PMCID: PMC8156090 DOI: 10.3390/cancers13102373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This prospective cross-sectional study utilized standard structural MR imaging and amino acid PET in conjunction with brain atlases of gray matter functional regions and white matter tracts, and elastic registration techniques to estimate the influence of the type and location of treatment-related brain damage or recurrent tumors on cognitive functioning in a group of well-doing WHO Grade III/IV glioma patients at follow-up after treatment. The negative impact of T2/FLAIR hyperintensities, supposed to be mainly caused by radiotherapy, on cognitive performance far exceeded that of surgical brain defects or recurrent tumors. The affection of functional nodes and fiber tracts of the left hemisphere and especially of the left temporal lobe by T2/FLAIR hyperintensities was highly correlated with verbal episodic memory dysfunction. These observations imply that radiotherapy for gliomas of the left hemisphere should be individually tailored by means of publicly available brain atlases and registration techniques. Abstract Cognitive deficits are common in glioma patients following multimodality therapy, but the relative impact of different types and locations of treatment-related brain damage and recurrent tumors on cognition is not well understood. In 121 WHO Grade III/IV glioma patients, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine FET-PET, and neuropsychological testing were performed at a median interval of 14 months (range, 1–214 months) after therapy initiation. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and FET-PET positive tumor sites were semi-automatically segmented and elastically registered to a normative, resting state (RS) fMRI-based functional cortical network atlas and to the JHU atlas of white matter (WM) tracts, and their influence on cognitive test scores relative to a cohort of matched healthy subjects was assessed. T2/FLAIR hyperintensities presumably caused by radiation therapy covered more extensive brain areas than the other lesion types and significantly impaired cognitive performance in many domains when affecting left-hemispheric RS-nodes and WM-tracts as opposed to brain tissue damage caused by resection or recurrent tumors. Verbal episodic memory proved to be especially vulnerable to T2/FLAIR abnormalities affecting the nodes and tracts of the left temporal lobe. In order to improve radiotherapy planning, publicly available brain atlases, in conjunction with elastic registration techniques, should be used, similar to neuronavigation in neurosurgery.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Correspondence:
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Roland Goldbrunner
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Department of Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Juelich-Aachen Research Alliance (JARA)–Section JARA-Brain, 52428 Juelich, Germany
| | - Gereon R. Fink
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Norbert Galldiks
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 50937 Cologne, Germany; (C.W.L.); (R.G.); (G.R.F.); (N.G.)
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, 52428 Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, 52428 Juelich, Germany; (P.L.); (G.S.); (C.F.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52428 Juelich, Germany; (C.J.); (S.C.)
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
11
|
Salvati M, Armocida D, Pesce A, Palmieri M, Venditti E, D'Andrea G, Frati A, Santoro A. No prognostic differences between GBM-patients presenting with postoperative SMA-syndrome and GBM-patients involving cortico-spinal tract and primary motor cortex. J Neurol Sci 2020; 419:117188. [PMID: 33075591 DOI: 10.1016/j.jns.2020.117188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The supplementary motor area (SMA) is involved in several aspects of motor control and its can be associated to a contralateral motor deficit and speech disorders. After the resection of low-grade gliomas, this syndrome is diffusely reported but it is rarely investigated in high-grade gliomas. SMA deficits may resolve completely or with minor sequelae within weeks. Whether this condition of transient deficit affects survival, was not previously investigated, and is not currently understood. OBJECTIVE The study aimed to perform an accurate investigation concerning the real clinical and prognostic impact of the postoperative SMA syndrome in order to shed light over its relationship to survival parameters and postoperative functional status of the patients. METHODS We performed a retrospective review of a series of 176 surgically treated patients suffering from Glioblastomas. Tumors classified as Group A: Involving the SMA and Group B: Lesion located outside and distal to the SMA but in anatomical relationship to primary motor cortices (PM1) or corticospinal tract (CST), in order to investigate differences concerning immunohistochemical and molecular profiles in regard to the survival parameters. RESULTS Although lesions involving SMA demonstrated a significantly higher volume in respect to their general counterparts they did not significantly differ in concerns to the molecular patterns, pre and postoperative KPS scores and in PFS and OS findings. CONCLUSIONS In our cohort SMA-syndrome is reversible and therefore guarantees a satisfactory functional status at follow-up, apparently not compromising survival when compared to other lesions affecting the primary or cortical motor area -spinal tract.
Collapse
Affiliation(s)
- Maurizio Salvati
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy; IRCCS "Neuromed", Pozzilli (IS), Italy
| | - Daniele Armocida
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy.
| | - Alessandro Pesce
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy; IRCCS "Neuromed", Pozzilli (IS), Italy
| | - Mauro Palmieri
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | - Emiliano Venditti
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | | | | | - Antonio Santoro
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| |
Collapse
|
12
|
Scoccianti S, Perna M, Olmetto E, Delli Paoli C, Terziani F, Ciccone LP, Detti B, Greto D, Simontacchi G, Grassi R, Scoccimarro E, Bonomo P, Mangoni M, Desideri I, Di Cataldo V, Vernaleone M, Casati M, Pallotta S, Livi L. Local treatment for relapsing glioblastoma: A decision-making tree for choosing between reirradiation and second surgery. Crit Rev Oncol Hematol 2020; 157:103184. [PMID: 33307416 DOI: 10.1016/j.critrevonc.2020.103184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
In case of circumscribed recurrent glioblastoma (rec-GBM), a second surgery (Re-S) and reirradiation (Re-RT) are local strategies to consider. The aim is to provide an algorithm to use in the daily clinical practice. The first step is to consider the life expectancy in order to establish whether the patient should be a candidate for active treatment. In case of a relatively good life expectancy (>3 months) and a confirmed circumscribed disease(i.e. without multiple lesions that are in different lobes/hemispheres), the next step is the assessment of the prognostic factors for local treatments. Based on the existing prognostic score systems, patients who should be excluded from local treatments may be identified; based on the validated prognostic factors, one or the other local treatment may be preferred. The last point is the estimation of expected toxicity, considering patient-related, tumor-related and treatment-related factors impacting on side effects. Lastly, patients with very good prognostic factors may be considered for receiving a combined treatment.
Collapse
Affiliation(s)
- Silvia Scoccianti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy.
| | - Marco Perna
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Emanuela Olmetto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Camilla Delli Paoli
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Francesca Terziani
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Lucia Pia Ciccone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Beatrice Detti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Daniela Greto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Gabriele Simontacchi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Roberta Grassi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Erika Scoccimarro
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Monica Mangoni
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Isacco Desideri
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Vanessa Di Cataldo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marco Vernaleone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marta Casati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Armocida D, Frati A, Salvati M, Santoro A, Pesce A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter Progression Free survival? A clinical and Molecular analytic investigation. Clin Neurol Neurosurg 2020; 198:106126. [PMID: 32861131 DOI: 10.1016/j.clineuro.2020.106126] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ki-67 proliferation index is widely used for differentiating between high and low-grade gliomas, but differentiating between the same grade IV appears to be more problematic, and the point about its prognostic value for GBM patients remains unclear. To reduce the possibility to find a marked histological heterogeneity, and may contain areas that could be diagnosed as lower grade, in this study we considered a large group of patients with IDH wild-type Glioblastoma (IDH-WT GBM) and we have analyzed previously reported prognostic factors, in regards to their relationship with the Ki-67 expression index. METHODS We explore the prognostic impact of ki-67 index status in 127 patients affected by IDH-WT GBM. We therefore analyzed clinical characteristics, tumor genetics, dimension and clinical outcomes. We selected a total of 127 patients affected by newly diagnosed IDH-WT GBM who underwent surgery, radiation, and chemotherapy in our Institution in the period ranging between January 2014 and December 2016 RESULTS: The volume of the lesion had a strong association with the Ki67 overexpression. In particular lesions whose volume was greater than 45 cm3, presented a higher percentage of Ki67 expression demonstrating that greater tumors are more likely associated to higher values of Ki67 percentages. On a multivariate analysis, it was possible to outline that Ki67 was significant a predictor of shorter PFS independently from the age of the patients, the volume of the lesion and preoperative KPS. CONCLUSIONS There is a correlation between percentage staining of Ki-67 and OS in our cohort of patients with IDH-WT GBM. This is only the third observational study documenting a positive correlation between Ki-67 and overall survival in GBM and the first one demonstrates that percentage Ki-67 staining >20 % predicts poorer progression free survival in IDH-WT GBM.
Collapse
Affiliation(s)
- Daniele Armocida
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy.
| | | | - Maurizio Salvati
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy; IRCCS "Neuromed" Pozzilli (IS), Italy
| | - Antonio Santoro
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | | |
Collapse
|
14
|
Armocida D, Pesce A, Di Giammarco F, Frati A, Salvati M, Santoro A. Histological, molecular, clinical and outcomes characteristics of Multiple Lesion Glioblastoma. A retrospective monocentric study and review of literature. Neurocirugia (Astur) 2020; 32:114-123. [PMID: 32564972 DOI: 10.1016/j.neucir.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Multiple lesion glioblastoma (M-GBM) represent a group of GBM patients in which there exist multiple foci of tumor enhancement. The prognosis is poorer than that of single-lesion GBM patients, but this actually is a controversial data. Is unknown whether multifocality has a genetic and molecular basis. Our specific aim is to identify the molecular characteristics of M-GBM by performing a comprehensive multidimensional analysis. METHODS The surgical, radiological and clinical outcomes of patients that underwent surgery for GBM at our institution for 2 years have been retrospectively reviewed. We compared the overall survival (OS), progression free survival and extent of resection (EOR) between M-GBM tumors (type I) and S-GBM (single contrast-enhancing lesion, type II). RESULTS A total of 177 patients were included in the final cohort, 12 patients had M-GBM and 165 patients had S-GBM. Although patients with M-GBM had higher tumor volumes and midline location, the EOR was not different between both type of lesions. Higher percentage of tumors with EGFR overexpression was detected in M-GBM. PFS and OS was significantly shorter in M-GBM. CONCLUSIONS Considering no differences in EOR, patients with M-GBM showed shorter PFS and OS in comparison with S-GBM. Evidences about the M-GBM origin as a multifocal lesion because its molecular profile are suggested.
Collapse
Affiliation(s)
- Daniele Armocida
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy.
| | - Alessandro Pesce
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | | | - Alessandro Frati
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | | | - Antonio Santoro
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| |
Collapse
|
15
|
D'Angelo L, Armocida D, Sampirisi L, Paglia F, Berra LV, Santoro A. Role of endoscopic surgical biopsy in diagnoses of intraventricular/periventricular tumors: review of literature including a monocentric case series. Acta Neurol Belg 2020; 120:517-530. [PMID: 32107717 DOI: 10.1007/s13760-020-01299-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
The intra- and periventricular location tumor (IPVT) of a brain remains a hard challenge for the neurosurgeon because of the deep location and eloquent anatomic associations. Due to this high risk of iatrogenic injury, many surgeons elect to perform biopsies of such lesions to establish a diagnosis. On the one hand, stereotaxic needle biopsy (SNB) is a minimally invasive procedure but with a significant risk of complications and a high risk of lack of tissue for molecular analyses for this region [Fukushima in Neurosurgery 2:110-113 (1978)]; on the other hand, the use of endoscopic intraventricular biopsy (EIB) allows for diagnosis with minimal surgical intervention [Iwamoto et al. in Ann Neurol 64(suppl. 6):628-634 (2008)]. IPVTs and related CSF pathway obstructions can be safely and effectively treated with endoscopic techniques. It is not possible to compare EIB with diagnoses made by any other method or with the established treatment. We aim to analyze the accuracy of EIB results by comparing them with results of biopsies performed later, in other methods and thereby evaluating the treatment evolution considering our personal experience. The difficulties and complications encountered are presented and compared with those reported in the literature to obtain the best review possible for this topic. A systematic review of literature was done using MEDLINE, the NIH Library, PubMed, and Google Scholar yielded 1.951 cases for EIB and 1912 for SNB, according to standard systemic review techniques. Review was conducted on 50 studies describing surgical procedures for lesions intra- and para-ventricular. The primary outcome measure was a diagnostic success. We also consider 20 patients with IPVT treated in our department. Clinical characteristics and surgical outcome were evaluated and a systematic review of the literature was performed. Overall, all our biopsies were diagnostic, with a positive histologic sample in 100% of our patients. 8 patients underwent a concurrent endoscopic third ventriculostomy. 4 patients underwent a concurrent ventriculostomy combined with septostomy. For 1 patient was necessary the only septostomy combined with biopsy. Every case has obtained a histological diagnosis. The percentage of complications was very low with only 1 case of post-operative infection and 1 case of hemorrhage. It was impossible to create a specific comparison from literature data of IPVTs between a stereotactic and endoscopic procedure, it presents only the collection of pineal gland tumor [Kelly in Neurosurgery 25(02):185-194 (1989); Quick-Weller in World Neurosurgery 96:124-128 (2016)] or unknown location of the lesion in major review [Marenco-Hillembrand et al. in Front Oncol 8:558 (2018)]. The present study aims to report our experience with the surgical management of IPVTs. The EIB sample yields an accurate histologic diagnosis tumor, with a positive histologic sample in 87, 95% of patients. The choice of the appropriate procedure should consider not only the preference and the experience of the neurosurgeon but also the several other variables as the location. While some periventricular lesions are better approached by endoscopic techniques, others are more suited for stereotactic-guided approaches. The ability to perform an EIB and relieve tumor-associated hydrocephalus by neuroendoscopy is considered to be a benefit of this procedure since this is less invasive than other treatments.
Collapse
Affiliation(s)
- Luca D'Angelo
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy.
- Azienda Ospedaliera Policlinico Umberto I, Viale del policlinico, 155-1039, 00189, Rome, Italy.
| | - Luigi Sampirisi
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | - Francesco Paglia
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | - Luigi Valentino Berra
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| | - Antonio Santoro
- Human Neurosciences Department, Neurosurgery Division, "Sapienza" University, AOU Policlinico Umberto I, Rome, Italy
| |
Collapse
|
16
|
Kocher M, Jockwitz C, Caspers S, Schreiber J, Farrher E, Stoffels G, Filss C, Lohmann P, Tscherpel C, Ruge MI, Fink GR, Shah NJ, Galldiks N, Langen KJ. Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020; 27:102287. [PMID: 32540630 PMCID: PMC7298724 DOI: 10.1016/j.nicl.2020.102287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Progressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients. METHODS Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n = 57; WHO grade III anaplastic astrocytoma, n = 13; WHO grade III anaplastic oligodendroglioma, n = 10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls. RESULTS The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education. CONCLUSION Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Caroline Tscherpel
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute of Neuroscience and Medicine 11, JARA, Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|