1
|
Liu H, Zhang Z, Huang N, Xu F, Zhao S, Chang C. Enhanced FOXO1 expression as a predictor of decitabine response and prolonged survival in high-risk myelodysplastic syndrome. Hematology 2025; 30:2506862. [PMID: 40420801 DOI: 10.1080/16078454.2025.2506862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
PURPOSE The aim of this study was to assess the predictive role of FOXO1 expression changes in determining the response to hypomethylation therapy in patients with high-risk myelodysplastic syndrome (MDS). METHODS FOXO1 mRNA levels were measured using real-time PCR in 62 newly diagnosed MDS patients undergoing decitabine treatment. The study analyzed the relationship between FOXO1 expression and clinical indicators, treatment outcomes, and prognosis. RESULTS Responders exhibited significantly elevated FOXO1 levels, which were associated with improved peripheral blood counts, decreased bone marrow blasts, and enhanced T-cell immunity and polarization. Increased FOXO1 expression after four cycles of decitabine was associated with a more favorable treatment response. Univariate and multivariate Cox analyses revealed that elevated FOXO1 expression was linked to prolonged overall survival and leukemia-free survival. CONCLUSIONS Elevated FOXO1 expression in high-risk MDS patients undergoing decitabine treatment enhances patient prognosis and survival.
Collapse
Affiliation(s)
- Hong Liu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nanfang Huang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Feng Xu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sida Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Burke S, Chowdhury O, Rouault‐Pierre K. Low-risk MDS-A spotlight on precision medicine for SF3B1-mutated patients. Hemasphere 2025; 9:e70103. [PMID: 40124717 PMCID: PMC11926769 DOI: 10.1002/hem3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
A deep understanding of the biological mechanisms driving the pathogenesis of myelodysplastic neoplasms (MDS) is essential to develop comprehensive therapeutic approaches that will benefit patient's disease management and quality of life. In this review, we focus on MDS harboring mutations in the splicing factor SF3B1. Clones harboring this mutation arise from the most primitive hematopoietic compartment and expand throughout the entire myeloid lineage, exerting distinct effects at various stages of differentiation. Supportive care, particularly managing anemia, remains essential in SF3B1-mutated MDS. While SF3B1 mutations are frequently linked with ring sideroblasts and iron overload due to impaired erythropoiesis, the current therapeutic landscape fails to adequately address the underlying disease biology, particularly in transfusion-dependent patients, where further iron overload contributes to increased morbidity and mortality. Novel agents such as Luspatercept and Imetelstat have shown promise, but their availability remains restricted and their long-term efficacy is to be investigated. Spliceosome modulators have failed to deliver and inhibitors of inflammatory pathways, including TLR and NF-κB inhibitors, are still under investigation. This scarcity of effective and disease-modifying therapies highlights the unmet need for new approaches tailored to the molecular and genetic abnormalities in SF3B1-mutated MDS. Emerging strategies targeting metabolic mis-splicing (e.g., COASY) with vitamin B5, pyruvate kinase activators, and inhibitors of oncogenic pathways like MYC and BCL-2 represent potential future avenues for treatment, but their clinical utility remains to be fully explored. The current limitations in treatment underscore the urgency of developing novel, more effective therapies for patients with SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Shoshana Burke
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Onima Chowdhury
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Molecular Haematology Unit, Weatherall institute of Molecular Medicine NHR, Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
3
|
Lewis K, Williamson M, Brown E, Trenholm E, Hogea C. Real-World Study of the Burden of Myelodysplastic Syndromes in Patients and Their Caregivers in Europe and the United States. Oncol Ther 2024; 12:753-774. [PMID: 39298037 PMCID: PMC11574251 DOI: 10.1007/s40487-024-00303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are characterized by bone marrow failure, peripheral blood cytopenias and a high risk of progression to acute myeloid leukemia (AML), which is associated with a poor prognosis and low survival rates. This study combined surveys with patient chart reviews to document real-world clinical practice and burden of MDS, including perspectives of physicians, patients and caregivers and underlying discrepancies. METHODS Physicians in major European countries and the US provided information on 1445 patients, stratified into lower- (LR) and higher-risk (HR) MDS. Patients had the opportunity to complete questionnaires describing the impact of MDS. Caregivers had the option to report on the burden of caring for a patient with MDS. RESULTS While supportive treatment was common, mainly with erythropoietins (52%), anti-AML agents were more frequently used in HR than in LR patients (70% vs 20%), while HR patients generally received more transfusions (48% vs 36%). Symptoms with the largest discordance between patient vs physician reporting were excessive bruising (30% vs 14%), GI side effects (19% vs 6%) and feeling tired or fatigued (68% vs 56%). A bigger impact of fatigue was reported on the European Organization for the Research and Treatment of Cancer Quality of Life questionnaire (EORTC QLQ-C30) for HR vs LR patients (43.2 vs 36.5 on a scale from 0 to 100). There was discordance between caregivers vs physicians on reporting of weekly caregiver hours (45.4 vs 29.2) with a Zarit Burden Interview score (ZBI, score 0-88) of 25.4. CONCLUSIONS Patients reported a higher frequency than their physicians of top symptoms, with MDS-related disruptions in daily life for both patients and caregivers. There is a need for new therapeutic strategies, along with shared understanding and decision making among patients, caregivers and physicians, to optimize disease management and improve quality of life in people living with MDS.
Collapse
Affiliation(s)
- Katie Lewis
- Adelphi Real World, Adelphi Group, Bollington, UK.
| | | | | | | | | |
Collapse
|
4
|
Martín-Rojas RM, Cayuela L, Martín-Domínguez F, Cayuela A. Unveiling sex-based geographical disparities in myelodysplastic syndrome mortality trends in Spain (1999-2022). Clin Transl Oncol 2024; 26:2693-2700. [PMID: 38762824 DOI: 10.1007/s12094-024-03503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
AIM To comprehensively analyze trends in myelodysplastic neoplasm (MDS) mortality across Spain (1999-2022), examining sex and regional differences. METHODS We analyzed nationwide death records and population data, calculating age-standardized mortality rates (ASMRs) and standardized mortality ratios (SMRs) stratified by sex and Autonomous Community (AC). Joinpoint regression identified significant shifts in trends. RESULTS Across Spain, MDS mortality risk varied among men, with rates ranging from 1.08 to 4.38 per 100,000 across regions, while women's rates ranged from 1.23 to 2.02. Five regions had higher risks than the national average, while six had lower risks. Joinpoint analysis revealed three periods nationally: a decline until 2008, and an increase until 2017, followed by a significant decrease. Despite the overall stable national trend (-0.5% annual change), significant regional variations emerged. Andalusia stood out with a worrying increase in MDS mortality, while Aragon and Murcia demonstrated promising declines. Extremadura displayed a unique trajectory with an initial rise followed by stabilization, while Galicia exhibited a contrasting trend with an initial decline and subsequent increase. Notably, men consistently faced a higher risk of MDS mortality compared to women, with significant disparities across regions. Extremadura, in particular, showed a marked difference in risk between genders. CONCLUSION MDS mortality trends in Spain are complex, and influenced by gender, region, and time. Further research is needed to understand regional disparities, recent national decline, and higher risk in specific demographics. Tailored interventions based on local factors and targeted research are crucial to address these complexities and improve patient outcomes.
Collapse
Affiliation(s)
| | - Lucía Cayuela
- Department of Internal Medicine, Hospital Severo Ochoa, Leganés, Spain
| | - Francisco Martín-Domínguez
- Department of Hematology, University Hospital Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS/CISC), Seville, Spain
| | - Aurelio Cayuela
- Unit of Public Health, Prevention and Health Promotion, South Seville Health Management Area, Seville, Spain
| |
Collapse
|
5
|
Kannan S, Vedia RA, Molldrem JJ. The immunobiology of myelodysplastic neoplasms: a mini-review. Front Immunol 2024; 15:1419807. [PMID: 39355256 PMCID: PMC11443505 DOI: 10.3389/fimmu.2024.1419807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
This mini review summarizes the immunobiology of myelodysplastic syndromes, specifically focusing on the interactions between immune cells, cytokines, and dysplastic cells within the tumor microenvironment in the bone marrow. We elucidate in detail how immune dysregulation and evasion influence the initiation and progression of myelodysplastic syndromes, as well as resistance to therapy and progression to AML. In addition, we highlight a range of therapeutic strategies, including the most recent breakthroughs and experimental therapies for treating MDS. Finally, we address the existing knowledge gaps in the understanding of the immunobiology of MDS and propose future research directions, promising advancements toward enhancing clinical outcomes and survival for patients with MDS.
Collapse
Affiliation(s)
- Shruthi Kannan
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rolando A Vedia
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Evolution of Cancer, Leukemia, and Immunity Post Stem cEll transplant (ECLIPSE), Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Gener-Ricos G, Rodriguez-Sevilla JJ, Urrutia S, Bataller A, Bazinet A, Garcia-Manero G. Advances in the management of higher-risk myelodysplastic syndromes: future prospects. Leuk Lymphoma 2024; 65:1233-1244. [PMID: 38712556 DOI: 10.1080/10428194.2024.2344061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are defined using a number of prognostic scoring systems that include the degree of cytopenias, percentage of blasts, cytogenetic alterations, and more recently genomic data. HR-MDS encompasses characteristics such as progressive cytopenias, increased bone marrow blasts, unfavorable cytogenetics, and an adverse mutational profile. Survival is generally poor, and patients require therapy to improve outcomes. Hypomethylating agents (HMAs), such as azacitidine, decitabine, and more recently, oral decitabine/cedazuridine, are the only approved therapies for HR-MDS. These are often continued until loss of response, progression, or unacceptable toxicity. Combinations including an HMA plus other drugs have been investigated but have not demonstrated better outcomes compared to single-agent HMA. Moreover, in a disease of high genomic complexity such as HR-MDS, therapy targeting specific genomic abnormalities is of interest. This review will examine the biological underpinnings of HR-MDS, its therapeutic landscape in the frontline and relapsed settings, as well as the impact of hematopoietic stem cell transplantation, the only known curative intervention for this disease.
Collapse
Affiliation(s)
- Georgina Gener-Ricos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Samuel Urrutia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
7
|
Efficace F, Buckstein R, Abel GA, Giesinger JM, Fenaux P, Bewersdorf JP, Brunner AM, Bejar R, Borate U, DeZern AE, Greenberg P, Roboz GJ, Savona MR, Sparano F, Boultwood J, Komrokji R, Sallman DA, Xie Z, Sanz G, Carraway HE, Taylor J, Nimer SD, Della Porta MG, Santini V, Stahl M, Platzbecker U, Sekeres MA, Zeidan AM. Toward a more patient-centered drug development process in clinical trials for patients with myelodysplastic syndromes/neoplasms (MDS): Practical considerations from the International Consortium for MDS (icMDS). Hemasphere 2024; 8:e69. [PMID: 38774655 PMCID: PMC11106800 DOI: 10.1002/hem3.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
Notable treatment advances have been made in recent years for patients with myelodysplastic syndromes/neoplasms (MDS), and several new drugs are under development. For example, the emerging availability of oral MDS therapies holds the promise of improving patients' health-related quality of life (HRQoL). Within this rapidly evolving landscape, the inclusion of HRQoL and other patient-reported outcomes (PROs) is critical to inform the benefit/risk assessment of new therapies or to assess whether patients live longer and better, for what will likely remain a largely incurable disease. We provide practical considerations to support investigators in generating high-quality PRO data in future MDS trials. We first describe several challenges that are to be thoughtfully considered when designing an MDS-focused clinical trial with a PRO endpoint. We then discuss aspects related to the design of the study, including PRO assessment strategies. We also discuss statistical approaches illustrating the potential value of time-to-event analyses and their implications within the estimand framework. Finally, based on a literature review of MDS randomized controlled trials with a PRO endpoint, we note the PRO items that deserve special attention when reporting future MDS trial results. We hope these practical considerations will facilitate the generation of rigorous PRO data that can robustly inform MDS patient care and support treatment decision-making for this patient population.
Collapse
Affiliation(s)
- Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Health Outcomes Research UnitGIMEMA Data CenterRomeItaly
| | - Rena Buckstein
- Department of Medical Oncology/HematologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Gregory A. Abel
- Divisions of Population Sciences and Hematologic MalignanciesDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Pierre Fenaux
- Hôpital Saint LouisAssistance Publique Hôpitaux de Paris and Paris Cité UniversityParisFrance
| | - Jan Philipp Bewersdorf
- Leukemia Service, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Andrew M. Brunner
- Leukemia Program, Harvard Medical SchoolMassachusetts General Hospital Cancer CenterBostonMassachusettsUSA
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer CenterUC San DiegoLa JollaCaliforniaUSA
| | - Uma Borate
- Ohio State University Comprehensive Cancer Center/James Cancer HospitalOhio State UniversityColumbusOhioUSA
| | - Amy E. DeZern
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins HospitalBaltimoreMarylandUSA
| | - Peter Greenberg
- Department of Medicine, Division of Hematology, Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Gail J. Roboz
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Michael R. Savona
- Department of Medicine, Division of Hematology/OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Francesco Sparano
- Italian Group for Adult Hematologic Diseases (GIMEMA), Health Outcomes Research UnitGIMEMA Data CenterRomeItaly
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Radcliffe Department of MedicineNuffield Division of Clinical Laboratory SciencesUniversity of OxfordOxfordUK
| | - Rami Komrokji
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - David A. Sallman
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Zhuoer Xie
- Department of Malignant HematologyH. Lee Moffitt Cancer CenterTampaFloridaUSA
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, SpainHospital Universitario y Politécnico La FeValenciaSpain
| | - Hetty E. Carraway
- Leukemia Program, Hematology and Medical OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Justin Taylor
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Matteo Giovanni Della Porta
- Department of Biomedical SciencesIRCCS Humanitas Clinical and Research Center & Humanitas UniversityMilanItaly
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria CareggiUniversity of FlorenceFlorenceItaly
| | - Maximilian Stahl
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMassachusettsUSA
| | - Uwe Platzbecker
- Department of Hematology and Cellular TherapyUniversity Hospital LeipzigLeipzigGermany
| | - Mikkael A. Sekeres
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal MedicineYale University School of Medicine and Yale Cancer CenterNew HavenConnecticutUSA
| |
Collapse
|
8
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Ma F, Chien K, Del Rey M, Loghavi S, Montalban-Bravo G, Adema V, Wildeman B, Kanagal-Shamanna R, Bazinet A, Chifotides HT, Thongon N, Calvo X, Hernández-Rivas JM, Díez-Campelo M, Garcia-Manero G, Colla S. Hematopoietic stem cells with granulo-monocytic differentiation state overcome venetoclax sensitivity in patients with myelodysplastic syndromes. Nat Commun 2024; 15:2428. [PMID: 38499526 PMCID: PMC10948794 DOI: 10.1038/s41467-024-46424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monica Del Rey
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Maria Díez-Campelo
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Campillo-Marcos I, Casado-Pelaez M, Davalos V, Ferrer G, Mata C, Mereu E, Roué G, Valcárcel D, Molero A, Zamora L, Xicoy B, Palomo L, Acha P, Manzanares A, Tobiasson M, Hellström-Lindberg E, Solé F, Esteller M. Single-cell Multiomics Analysis of Myelodysplastic Syndromes and Clinical Response to Hypomethylating Therapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:365-377. [PMID: 38300528 PMCID: PMC10860538 DOI: 10.1158/2767-9764.crc-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Alterations in epigenetic marks, such as DNA methylation, represent a hallmark of cancer that has been successfully exploited for therapy in myeloid malignancies. Hypomethylating agents (HMA), such as azacitidine, have become standard-of-care therapy to treat myelodysplastic syndromes (MDS), myeloid neoplasms that can evolve into acute myeloid leukemia. However, our capacity to identify who will respond to HMAs, and the duration of response, remains limited. To shed light on this question, we have leveraged the unprecedented analytic power of single-cell technologies to simultaneously map the genome and immunoproteome of MDS samples throughout clinical evolution. We were able to chart the architecture and evolution of molecular clones in precious paired bone marrow MDS samples at diagnosis and posttreatment to show that a combined imbalance of specific cell lineages with diverse mutational profiles is associated with the clinical response of patients with MDS to hypomethylating therapy. SIGNIFICANCE MDS are myeloid clonal hemopathies with a low 5-year survival rate, and approximately half of the cases do not respond to standard HMA therapy. Our innovative single-cell multiomics approach offers valuable biological insights and potential biomarkers associated with the demethylating agent efficacy. It also identifies vulnerabilities that can be targeted using personalized combinations of small drugs and antibodies.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Marta Casado-Pelaez
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Gerardo Ferrer
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Caterina Mata
- Single Cell Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Elisabetta Mereu
- Cellular Systems Genomics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - David Valcárcel
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Antonieta Molero
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lurdes Zamora
- Department of Hematology, ICO-IJC-Hospital Germans Trias i Pujol, UAB, Badalona, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Blanca Xicoy
- Department of Hematology, ICO-IJC-Hospital Germans Trias i Pujol, UAB, Badalona, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Laura Palomo
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Pamela Acha
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Ana Manzanares
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Francesc Solé
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Zafeiropoulou K, Kalampounias G, Alexis S, Androutsopoulou T, Katsoris P, Symeonidis A. Lower-Risk Myelodysplastic Syndrome (MDS) Patients Exhibit Diminished Proteasome Proteolytic Activity and High Intracellular Reactive Oxygen Species (ROS) Levels. Cureus 2023; 15:e49843. [PMID: 38169896 PMCID: PMC10758539 DOI: 10.7759/cureus.49843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis and an elevated risk of transformation to acute myeloid leukemia (AML). Available disease-modifying treatment approaches are limited. The ineffectiveness of proteasome inhibitors (PIs) in MDS patients is currently investigated, although it is unclear whether they rapidly develop resistance to PIs or whether proteasome proteolytic activity (PPA) is constitutively lower in the hematopoietic cells of these patients, thus limiting treatment effectiveness. We investigated 20 patients with MDS, categorized according to the International Prognostic Scoring System (IPSS) into a lower- or a higher-risk group. Peripheral blood mononuclear cells, bone marrow mononuclear cells, and cluster of differentiation 34-positive (CD34+) cells were isolated and assessed for the chymotrypsin-like activity of the proteasome and β5 subunit accumulation. Additionally, intracellular reactive oxygen species (ROS) generation was screened. The lower-risk patient group (n=10) exhibited significantly lower proteasome activity (p<0.001) compared to both the higher-risk group (n=10) and healthy subjects (n=10). Furthermore, the lower-risk group had elevated oxidative stress levels (p<0.0001) and reduced β5 subunit expression (p=0.0286). Both parameters were shown to be associated with transfusion dependency, since transfusion-dependent patients (n=5 in each subgroup) had decreased proteasome activity and simultaneously exhibited higher ROS levels. Our results indicate that reduced β5 expression might potentially explain PIs' ineffectiveness in lower-risk MDS, elucidating the importance of the risk group in the selection of the proper treatment algorithm.
Collapse
Affiliation(s)
| | | | | | | | | | - Argiris Symeonidis
- School of Medicine, University of Patras, Patras, GRC
- Hematology Division, Department of Internal Medicine, University General Hospital of Patras, Patras, GRC
| |
Collapse
|