1
|
Zhang Q, Li L, Qian X. Durable response to third-line combination therapy in a metastatic colorectal cancer patient with BRAF V600E mutation: A case report. Hum Vaccin Immunother 2025; 21:2471058. [PMID: 39996388 PMCID: PMC11864310 DOI: 10.1080/21645515.2025.2471058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
In metastatic colorectal cancer (mCRC), the BRAFV600E mutation subtype is one of the subtypes with the worst prognosis. The long-term abnormal activation of multiple signaling pathways caused by the BRAF V600E mutation is closely related to the formation of BRAF inhibitor resistance and drug-resistant tumor cell subpopulations. These factors significantly impact the survival and prognosis of CRC patients. Therefore, treating mCRC patients with the BRAFV600E mutation, particularly in later stages, is challenging. We reported a case of an mCRC patient with the BRAF V600E mutation in the primary and metastatic tumors. After the failure of second-line treatment, this patient received a combination therapy including immunotherapy (tislelizumab), radiotherapy, and targeted therapy (fruquintinib). Through comprehensive imaging evaluations and continuous monitoring of tumor markers, we were astonished to observe that the patient has achieved and maintained a complete response (CR) for over 12 months. This case supports the efficacy of combination therapy in mCRC patients with the BRAF V600E mutation.
Collapse
Affiliation(s)
- Qun Zhang
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Li
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Zhou K, Liu Y, Tang C, Zhu H. Pancreatic Cancer: Pathogenesis and Clinical Studies. MedComm (Beijing) 2025; 6:e70162. [PMID: 40182139 PMCID: PMC11965705 DOI: 10.1002/mco2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy, with pancreatic ductal adenocarcinoma (PDAC) being the most common and aggressive subtype, characterized by late diagnosis, aggressive progression, and resistance to conventional therapies. Despite advances in understanding its pathogenesis, including the identification of common genetic mutations (e.g., KRAS, TP53, CDKN2A, SMAD4) and dysregulated signaling pathways (e.g., KRAS-MAPK, PI3K-AKT, and TGF-β pathways), effective therapeutic strategies remain limited. Current treatment modalities including chemotherapy, targeted therapy, immunotherapy, radiotherapy, and emerging therapies such as antibody-drug conjugates (ADCs), chimeric antigen receptor T (CAR-T) cells, oncolytic viruses (OVs), cancer vaccines, and bispecific antibodies (BsAbs), face significant challenges. This review comprehensively summarizes these treatment approaches, emphasizing their mechanisms, limitations, and potential solutions, to overcome these bottlenecks. By integrating recent advancements and outlining critical challenges, this review aims to provide insights into future directions and guide the development of more effective treatment strategies for PC, with a specific focus on PDAC. Our work underscores the urgency of addressing the unmet needs in PDAC therapy and highlights promising areas for innovation in this field.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yingping Liu
- Department of RadiotherapyCancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Chuanyun Tang
- The First Clinical Medical College of Nanchang UniversityNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Qi L, Li X, Ni J, Du Y, Gu Q, Liu B, He J, Du J. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 2025; 25:19. [PMID: 39828699 PMCID: PMC11743000 DOI: 10.1186/s12935-025-03639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Immunotherapy and radiotherapy play crucial roles in the transformation therapy of locally advanced pancreatic cancer; however, the exploration of effective predictive biomarkers has been unsatisfactory. With the rapid development of radiomics, next-generation sequencing, and machine learning, there is hope to identify biomarkers that can predict the efficacy of transformative treatment for locally advanced pancreatic cancer through simple and non-invasive clinical methods. Our study focuses on using computed tomography (CT), positron emission tomography/computed tomography (PET/CT), gene mutations, and baseline carbohydrate antigen 199 (CA199) to identify biomarkers for predicting the efficacy of transformative treatment. METHODS We retrospectively collected data from 70 patients with locally advanced pancreatic cancer who had undergone a biopsy for pathological diagnosis. These patients had complete baseline enhanced CT images and baseline CA199 results. Among them, 65 patients had efficacy evaluation results after 4 treatment cycles, 54 patients had complete baseline PET/CT images, 51 patients had complete DNA mutation detection results, and 34 patients had both complete PET/CT images and DNA mutation detection results. Additionally, 47 patients had complete available CT images at baseline, after 2 treatment cycles, and after 4 treatment cycles. We extracted radiomic features from the original lesion-enhanced CT images (including baseline and subsequent follow-up CT scans), radiomic features from baseline 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) PET, and patient-specific features related to abdominal and visceral fat. We used short-term and long-term treatment efficacy as the prediction outcomes and performed statistical and machine learning-based feature selection and COX regression analysis to identify potentially predictive features. Subsequently, we separately or in combination modeled the CT features, PET features, baseline CA199, and gene mutation data to construct efficacy prediction models. Finally, we investigated the mixed effects model of the dynamic changes in CT features at baseline, after 2 treatment cycles, and after 4 treatment cycles on the prediction of short-term treatment efficacy. RESULTS We found that a combination of CT radiomic features, including F1_ gray level co-occurrence matrix (GLCM), F2_gray level run length matrix (GLRLM), F5_neighboring gray tone difference matrix (NGTDM), and F6_Shape, PET radiomic features such as visceral adipose tissue (VAT), tumor-to-liver ratio (T/L), standardized uptake value mean (SUVmean), and GLCM, as well as baseline CA199, can be used to predict short-term treatment efficacy. Baseline CA199, GLCM, IntensityDirect, Shape, and PET/CT features are independent factors for long-term treatment efficacy. In constructing the short-term treatment efficacy prediction model, ensemble learning methods such as adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and RandomForest performed the best. However, in terms of model interpretability, decision tree methods provide the most intuitive display of the predictive details of the model. For the time series data of patients' baseline CT, CT after 2 treatment cycles, and CT after 4 treatment cycles, long short-term memory (LSTM) modeling yielded better predictive models. CONCLUSION A multimodal combination of radiomics, DNA mutations, and baseline CA199 can predict the efficacy of transformative treatment in locally advanced pancreatic cancer. Various feature selection methods and multimodal fusion approaches contribute to guiding personalized and precise treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Liang Qi
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiang Li
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayao Ni
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yali Du
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qing Gu
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Juan Du
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
4
|
Bi Y, Yv H, Ma X, Chen S. Case report: A successful case of targeted immunotherapy for locally advanced pancreatic cancer under non-surgical conditions. Front Immunol 2025; 15:1519186. [PMID: 39867905 PMCID: PMC11760604 DOI: 10.3389/fimmu.2024.1519186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Locally advanced pancreatic cancer (LAPC) is a borderline unresectable malignancy that presents significant treatment challenges. The management of LAPC remains a complex issue, particularly in patients who are not eligible for surgical resection. Case Here, we report the case of a 60-year-old woman diagnosed with LAPC through pathological biopsy who subsequently underwent targeted immunotherapy following the failure of a gemcitabine, oxaliplatin, and S-1 (G&S) chemotherapy regimen. Intervention Based on next-generation sequencing (NGS), the patient's treatment regimen was adjusted to include albumin-bound paclitaxel and capecitabine chemotherapy, along with the PD-1 inhibitor camrelizumab (200 mg/cycle) for six cycles. Throughout the treatment period, the patient consistently declined surgical intervention. Imaging studies, including an upper abdominal computed tomography (CT), revealed the formation of a calcified layer surrounding the cancerous tissue in the pancreatic head. Remarkably, the patient has shown stable disease and no evidence of metastasis since the initiation of targeted immunotherapy. Conclusion This case highlights the potential of targeted immunotherapy for the treatment of LAPC, particularly in non-surgical patients. A personalized approach guided by NGS, combined with immunotherapy, is an effective alternative to traditional treatment strategies for managing this challenging malignancy.
Collapse
Affiliation(s)
- Yuanbo Bi
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haotian Yv
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaopeng Ma
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shengxiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Chick RC, Pawlik TM. Updates in Immunotherapy for Pancreatic Cancer. J Clin Med 2024; 13:6419. [PMID: 39518557 PMCID: PMC11546190 DOI: 10.3390/jcm13216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with limited effective therapeutic options. Due to a variety of cancer cell-intrinsic factors, including KRAS mutations, chemokine production, and other mechanisms that elicit a dysregulated host immune response, PDAC is often characterized by poor immune infiltration and an immune-privileged fibrotic stroma. As understanding of the tumor microenvironment (TME) evolves, novel therapies are being developed to target immunosuppressive mechanisms. Immune checkpoint inhibitors have limited efficacy when used alone or with radiation. Combinations of immune therapies, along with chemotherapy or chemoradiation, have demonstrated promise in preclinical and early clinical trials. Despite dismal response rates for immunotherapy for metastatic PDAC, response rates with neoadjuvant immunotherapy are somewhat encouraging, suggesting that incorporation of immunotherapy in the treatment of PDAC should be earlier in the disease course. Precision therapy for PDAC may be informed by advances in transcriptomic sequencing that can identify immunophenotypes, allowing for more appropriate treatment selection for each individual patient. Personalized and antigen-specific therapies are an increasing topic of interest, including adjuvant immunotherapy using personalized mRNA vaccines to prevent recurrence. Further development of personalized immune therapies will need to balance precision with generalizability and cost.
Collapse
Affiliation(s)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
6
|
Wang YZ, Peng MZ, Xu YL, Ying Y, Tang LH, Xu HX, He JY, Liu L, Wang WQ. First reported advanced pancreatic cancer with hyperprogression treated with PD-1 blockade combined with chemotherapy: a case report and literature review. Discov Oncol 2024; 15:560. [PMID: 39404967 PMCID: PMC11480291 DOI: 10.1007/s12672-024-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer is among the most immune-resistant tumor types due to its unique tumor microenvironment and low cancer immunogenicity. Single-agent immune modulators have thus far proven clinically ineffective. However, a growing body of evidence suggests that combination of these modulators with other strategies could unlock the potential of immunotherapy in pancreatic cancer. Herein, we describe the case of a 59-year-old male with metastatic pancreatic ductal adenocarcinoma, referred to our center to receive immunotherapy (serplulimab, a novel anti-PD-1 antibody) combined with chemotherapy (gemcitabine/nab-paclitaxel). During the initial three treatment cycles, the patient was assessed as having stable disease (SD) according to RECIST 1.1 criteria. However, following two additional cycles of combination therapy, the primary tumor mass increased from 4.9 cm to 13.2 cm, accompanied by the development of new lung lesions, ascites, and pelvic metastases. He succumbed to respiratory failure one month later. Retrospective analysis revealed that the patient had MDM4 amplification, identified as a high-risk factor for hyperprogressive disease (HPD). To our knowledge, this is the first reported case of HPD in pancreatic cancer with multiple metastases treated using combination therapy. We investigated the potential mechanisms and reviewed the latest literature on predictive factors for HPD. These findings suggest that while chemotherapy combined with immunotherapy may hold promise for treating pancreatic cancer, it is imperative to identify and closely monitor patients with high-risk factors for HPD when using immunotherapy.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mao-Zhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yao-Lin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin-Hui Tang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Yi He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Cortiana V, Vallabhaneni H, Gambill J, Nadar S, Itodo K, Park CH, Leyfman Y. Advancing Pancreatic Cancer Surgical Treatments and Proposal of New Approaches. Cancers (Basel) 2024; 16:2848. [PMID: 39199619 PMCID: PMC11352325 DOI: 10.3390/cancers16162848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer is a significant challenge in oncology due to its aggressive nature and complex management, leading to high mortality rates and a dismally low 5-year survival rate. Approximately 85% of cases manifest as adenocarcinoma, while endocrine tumors constitute less than 5%. Borderline resectable and locally advanced pancreatic cancers are particularly difficult to treat due to vascular involvement, which complicates complete resections and increases morbidity. Various therapeutic modalities aim to overcome these challenges and improve patient outcomes. Traditionally, upfront surgery was the standard for resectable tumors, with multimodal chemotherapy being central to treatment. Understanding surgical anatomy is pivotal in enhancing surgical outcomes and patient survival. Resectability challenges are several when seeking to achieve R0 resections, particularly for borderline resectable tumors. Various classification systems-the MD Anderson criteria, the NCCN criteria, the AHPA/SSAT/SSO consensus statement, and the Alliance definition-assess tumor involvement with major blood vessels, with the first of these systems being broadly accepted. Vascular staging integration is also important, with the Ishikawa staging system using preoperative imaging to assess venous involvement. Furthermore, neoadjuvant therapy enhances treatment effectiveness by addressing micro-metastatic disease early, increasing R0 resection chances, and downstaging tumors for optimal surgery. Insights from the Fox Chase Cancer Center's neoadjuvant treatment approach highlight the importance of a multidisciplinary strategy when advancing therapy and improving patient prognosis. This commentary, inspired by Dr. Sanjay S. Reddy's Keynote Conference during MedNews week, highlights current advancements and ongoing challenges in the treatment of pancreatic cancer, emphasizing the need for a comprehensive, multidisciplinary approach to improve outcomes.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | - Soumiya Nadar
- Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Kennedy Itodo
- Nigerian Institute for Trypanosomiasis Research Jos, Kaduna PMB 2077, Nigeria
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY 11572, USA;
| |
Collapse
|
8
|
Wang Q, Tong F, Qiao L, Qi L, Sun Y, Zhu Y, Ni J, Liu J, Kong W, Liu B, Du J. Hypofractionated radiotherapy plus PD-1 antibody and SOX chemotherapy as second-line therapy in metastatic pancreatic cancer: a single-arm, phase II clinical trial. Cancer Immunol Immunother 2024; 73:201. [PMID: 39105880 PMCID: PMC11303639 DOI: 10.1007/s00262-024-03744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE To assess the efficacy and safety of concurrent hypofractionated radiotherapy plus anti-PD-1 antibody and SOX chemotherapy in the treatment of metastatic pancreatic cancer (mPC) after failure of first-line chemotherapy. METHODS Patients with pathologically confirmed mPC who failed standard first-line chemotherapy were enrolled. The patients were treated with a regimen of hypofractionated radiotherapy, SOX chemotherapy, and immune checkpoint inhibitors at our institution. We collected the patients' clinical information and outcome measurements. The median progression-free survival (mPFS) was the primary endpoint of the study, followed by disease control rate (DCR), objective response rate (ORR), median overall survival (mOS) and safety. Exploratory analyses included biomarkers related to the benefits. RESULTS Between February 24, 2021, and August 30, 2023, twenty-five patients were enrolled in the study, and twenty-three patients who received at least one dose of the study agent had objective efficacy evaluation. The mPFS was 5.48 months, the mOS was 6.57 months, and the DCR and ORR were 69.5% and 30.4%, respectively. Among the seven patients who achieved a PR, the median duration of the response was 7.41 months. On-treatment decreased serum CA19-9 levels were associated with better overall survival. Besides, pretreatment inflammatory markers were associated with tumor response and survival. CONCLUSIONS Clinically meaningful antitumor activity and favorable safety profiles were demonstrated after treatment with these combination therapies in patients with refractory mPC. On-treatment decreased serum CA19-9 levels and pretreatment inflammatory markers platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), lactate dehydrogenase (LDH) might be biomarkers related to clinical benefits. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn/showproj.html?proj=130211 , identifier: ChiCTR2100049799, date of registration: 2021-08-09.
Collapse
Affiliation(s)
- Qin Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Fan Tong
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Li Qiao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Liang Qi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Yi Sun
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Yahui Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Jiayao Ni
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Juan Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Weiwei Kong
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing, University&Clinical Cancer Institute of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing, University&Clinical Cancer Institute of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
10
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
11
|
Endo Y, Kitago M, Kitagawa Y. Evidence and Future Perspectives for Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer: A Scoping Review. Cancers (Basel) 2024; 16:1632. [PMID: 38730584 PMCID: PMC11083108 DOI: 10.3390/cancers16091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal disease that requires innovative therapeutic approaches to enhance the survival outcomes. Neoadjuvant treatment (NAT) has gained attention for resectable and borderline resectable PC, offering improved resection rates and enabling early intervention and patient selection. Several retrospective studies have validated its efficacy. However, previous studies have lacked intention-to-treat analyses and appropriate resectability classifications. Randomized comparative trials may help to enhance the clinical applicability of evidence. Therefore, after searching the MEDLINE database, this scoping review presents a comprehensive summary of the evidence from published (n = 14) and ongoing (n = 12) randomized Phase II and III trials. Diverse regimens and their outcomes were explored for both resectable and borderline resectable PC. While some trials have supported the efficacy of NAT, others have demonstrated no clear survival benefits for patients with resectable PC. The utility of NAT has been confirmed in patients with borderline resectable PC, but the optimal regimens remain debatable. Ongoing trials are investigating novel regimens, including immunotherapy, thereby highlighting the dynamic landscape of PC treatment. Studies should focus on biomarker identification, which may enable precision in oncology. Future endeavors aim to refine treatment strategies, guided by precision oncology.
Collapse
Affiliation(s)
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo 160-8582, Japan; (Y.E.); (Y.K.)
| | | |
Collapse
|
12
|
Yang J, Qu X, Jiang F, Qiao HM, Zhao J, Zhang JR, Yan LJ, Zheng AJ, Ning P. Neoadjuvant chemotherapy may be the best neoadjuvant therapy modality for non-metastatic pancreatic cancer: a population based study. Front Oncol 2024; 14:1370009. [PMID: 38665957 PMCID: PMC11045179 DOI: 10.3389/fonc.2024.1370009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Objective Currently, there are no studies showing which neoadjuvant therapy modality can provide better prognosis for patients after pancreatic cancer surgery. This study explores the optimal neoadjuvant therapy model by comparing the survival differences between patients with non-metastatic pancreatic cancer (cT1-4N0-1M0) who received neoadjuvant chemotherapy (NACT) and neoadjuvant chemoradiotherapy (NARCT). Methods We retrospectively analyzed the clinical data of 723 patients with cT1-4N0-1M0 pancreatic cancer who received neoadjuvant therapy before surgery from the Surveillance, Epidemiology, and End Results (SEER) database. After propensity score matching (PSM), we compared the effects of NACT and NARCT on overall survival (OS) and cancer-specific survival (CSS) in patients with non-metastatic pancreatic cancer, and then performed subgroup analyze. Finally, we used univariate and multivariate Cox regression analysis to explore potential risk factors for OS and CSS in patients with non-metastatic pancreatic cancer treated with preoperative neoadjuvant therapy. Result Before PSM, mOS (30.0 months VS 26.0 months, P=0.122) and mCSS (30.0 months VS 26.0 months, P=0.117) were better in patients with non-metastatic pancreatic cancer treated with NACT compared with NARCT, but this was not statistically significant (P>0.05). After PSM, mOS (30.0 months VS 25.0 months, P=0.032) and mCSS (33.0 months VS 26.0 months, P=0.028) were better in patients with non-metastatic pancreatic cancer treated with NACT compared with NARCT, and this difference was statistically significant (P<0.05). Multivariate Cox regression analysis results showed that age, lymph node positivity, and NARCT were independent adverse prognostic factors for OS and CSS in patients with non-metastatic pancreatic cancer. Conclusion The study results show that compared with NARCT, NACT is the best preoperative neoadjuvant therapy mode for patients with non-metastatic pancreatic cancer. This result still needs to be confirmed by more prospective randomized controlled trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - An-jie Zheng
- Department of Oncology, Baoji Gaoxin Hospital, Baoji, China
| | - Peng Ning
- Department of Oncology, Baoji Gaoxin Hospital, Baoji, China
| |
Collapse
|
13
|
Mahadevia H, Uson Junior PLS, Wang J, Borad M, Babiker H. An overview of up-and-coming immune checkpoint inhibitors for pancreatic cancer. Expert Opin Pharmacother 2024; 25:79-90. [PMID: 38193476 DOI: 10.1080/14656566.2024.2304125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1/PD-L1) pathway as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have demonstrated substantial potential in several malignancies. Pancreatic adenocarcinoma (PC) still carries a high mortality despite tremendous advances in the anti-cancer arsenal. AREAS COVERED In this review, we discuss completed and ongoing studies on various ICIs in PC. ICIs have not yielded significant benefits as monotherapy. However, the combination with currently utilized therapies as well as with several other newer forms of therapy has delineated encouraging results. Larger trials are currently underway to definitively characterize the utility of ICIs in the treatment algorithm of PC. ICIs are approved for cancers with mismatch repair deficiency (dMMR) or microsatellite instability-high tumors (MSI-H) as a tumor-agnostic treatment strategy usually referred to as hot tumors. EXPERT OPINION Studies evaluating different drugs to transform the tumor microenvironment (TME) from 'cold' to 'hot' have not shown promise in PC. There still needs to be more prospective trials evaluating the efficacy of the combination of ICIs with different therapeutic modalities in PC that can augment the immunogenic potential of those 'cold' tumors. Exploratory biomarker analysis may help us identify those subsets of PC patients who may particularly benefit from ICIs.
Collapse
Affiliation(s)
- Himil Mahadevia
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Pedro Luiz Serrano Uson Junior
- Department of Internal Medicine, Division of Hematology-Oncology, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Jing Wang
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mitesh Borad
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
14
|
Chick RC, Gunderson AJ, Rahman S, Cloyd JM. Neoadjuvant Immunotherapy for Localized Pancreatic Cancer: Challenges and Early Results. Cancers (Basel) 2023; 15:3967. [PMID: 37568782 PMCID: PMC10416846 DOI: 10.3390/cancers15153967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease due to its late presentation and tendency to recur early even after optimal surgical resection. Currently, there are limited options for effective systemic therapy. In addition, PDAC typically generates an immune-suppressive tumor microenvironment; trials of immunotherapy in metastatic PDAC have yielded disappointing results. There is considerable interest in using immunotherapy approaches in the neoadjuvant setting in order to prime the immune system to detect and prevent micrometastatic disease and recurrence. A scoping review was conducted to identify published and ongoing trials utilizing preoperative immunotherapy. In total, 9 published trials and 27 ongoing trials were identified. The published trials included neoadjuvant immune checkpoint inhibitors, cancer vaccines, and other immune-modulating agents that target mechanisms distinct from that of immune checkpoint inhibition. Most of these are early phase trials which suggest improvements in disease-free and overall survival when combined with standard neoadjuvant therapy. Ongoing trials are exploring various combinations of these agents with each other and with chemotherapy and/or radiation. Rational combination immunotherapy in addition to standard neoadjuvant therapy has the potential to improve outcomes in PDAC, but further clinical trials are needed, particularly those which utilize an adaptive trial design.
Collapse
Affiliation(s)
- Robert Connor Chick
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Andrew J. Gunderson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan M. Cloyd
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|