1
|
Tanaka R, Murakami Y, Ellis D, Seita J, Yinga W, Kakuta S, Kumano K, Fukui R, Miyake K. TLR7 responses in glomerular macrophages accelerate the progression of glomerulonephritis in NZBWF1 mice. Int Immunol 2025; 37:339-353. [PMID: 40401698 DOI: 10.1093/intimm/dxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 01/28/2025] Open
Abstract
Systemic lupus erythematosus is a systemic autoimmune disease characterized by the production of autoantibodies and damage to multiple organs. Glomerulonephritis, a manifestation involving glomerular deposition of immune complexes and complement components, significantly contributes to disease morbidity. Although an endosomal single-stranded RNA sensor [Toll-like receptor 7 (TLR7)] is known to drive glomerulonephritis by promoting autoantibody production in B cells, the contribution of macrophage TLR7 responses to glomerulonephritis remains poorly understood. Here, we have examined Tlr7‒/‒ NZBWF1 (New Zealand Black/New Zealand White F1) mice and found that TLR7 deficiency ameliorates lupus nephritis by abolishing autoantibody production against RNA-associated antigens, C3 deposition, and macrophage accumulation in glomeruli. Furthermore, TLR7 signaling increased CD31 expression on glomerular endothelial cells and Ly6Clow macrophages but not on T and B cells, suggesting that CD31 mediates TLR7-dependent migration of monocytes into glomeruli. Compared to their splenic counterparts, glomerular macrophages produced IL-1β in a TLR7-dependent manner. In addition, single-cell RNA sequencing of glomerular macrophages revealed that TLR7 signaling induced expression of lupus-associated genes, including those encoding Chitinase 3 like 1, ferritin heavy chain 1, IKKε, and complement factor B (CfB). Although serum CfB did not increase in NZBWF1 mice, TLR7-dependent CfB protein expression was detected in glomerular macrophages. In addition, TLR7 signaling promoted C3 cleavage and deposition predominantly on mesangial cells. These findings suggest that TLR7 responses in glomerular macrophages accelerate the progression of glomerulonephritis in NZBWF1 mice.
Collapse
Affiliation(s)
- Reika Tanaka
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yusuke Murakami
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Faculty of Pharmacy, Department of Pharmaceutical Sciences & Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Dorothy Ellis
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Jun Seita
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Wu Yinga
- Laboratory of Biomedical Science, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keiki Kumano
- Faculty of Pharmacy, Department of Pharmaceutical Sciences & Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
2
|
Wang L, Jiang J, Yin H, Wang X, Li Q, Li H, Wu J, Lu Q. Solute carrier family 15 member 4, an emerging therapeutic target for systemic lupus erythematosus. Int Rev Immunol 2025:1-15. [PMID: 40255205 DOI: 10.1080/08830185.2025.2491644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/28/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by excessive production of type I interferons (IFNs) and autoantibodies with limited effective clinical treatments. Solute carrier family 15 member 4 (SLC15A4), a proton-coupled oligopeptide transporter, facilitates the transmembrane transport of L-histidine and some di- and tripeptides from the lysosome to the cytosol. A growing body of evidence has elucidated the critical role of SLC15A4 in pathogenesis and disease progression of SLE. Genome-wide association studies have identified SLC15A4 as a new susceptibility locus of SLE. Further mechanistical studies have demonstrated that SLC15A4 involves in the production of type I IFNs in plasmacytoid dendritic cells (pDCs) and its necessity in B cells for autoantibody production in lupus models. These studies strongly support the potential of SLC15A4 as a promising therapeutic target for SLE. This review aims to summarize recent advances in understanding the role of SLC15A4 in disease progression of SLE and the development of SLC15A4-targeted inhibitors as well as discuss its potential as a target for SLE treatment.
Collapse
Affiliation(s)
- Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaoke Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Junhui Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
3
|
Matziol T, Talagayev V, Slokan T, Strašek Benedik N, Holze J, Sova M, Wolber G, Weindl G. Discovery of Novel Isoxazole-Based Small-Molecule Toll-Like Receptor 8 Antagonists. J Med Chem 2025; 68:4888-4907. [PMID: 39950821 DOI: 10.1021/acs.jmedchem.4c03148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Toll-like receptor 8 (TLR8) recognizes viral and bacterial RNA, initiating inflammatory responses that are crucial for innate immunity. Dysregulated TLR8 signaling contributes to autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis, driving chronic inflammation and tissue damage. Therefore, targeting TLR8 has gained attention as a promising therapeutic strategy. We report a novel selective TLR8 antagonist scaffold identified through computational modeling and simulation. In silico-guided rational drug design and synthesis led to potent isoxazole-based compounds that were characterized by structure-activity relationships. The most active compounds inhibited TLR8-mediated signaling in cell lines and primary cells, reduced MyD88 recruitment, suppressed NF-κB- and IRF-dependent signaling, and decreased inflammatory responses. In silico and pharmacological analyses demonstrated competitive binding to the pocket of chemical ligands within the TLR8 dimerization interface. These highly selective and potent TLR8 antagonists possess favorable physicochemical properties, representing potential clinical candidates for TLR8-targeted therapy.
Collapse
Affiliation(s)
- Troy Matziol
- Pharmaceutical Institute, Pharmacology and Toxicology Section, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany
| | - Valerij Talagayev
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie, Universität Berlin, Königin-Luise-Street 2 + 4, 14195 Berlin, Germany
| | - Tjaša Slokan
- Faculty of Pharmacy, the Department of Pharmaceutical Chemistry, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Nika Strašek Benedik
- Faculty of Pharmacy, the Department of Pharmaceutical Chemistry, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Janine Holze
- Pharmaceutical Institute, Pharmacology and Toxicology Section, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany
| | - Matej Sova
- Faculty of Pharmacy, the Department of Pharmaceutical Chemistry, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Gerhard Wolber
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie, Universität Berlin, Königin-Luise-Street 2 + 4, 14195 Berlin, Germany
| | - Günther Weindl
- Pharmaceutical Institute, Pharmacology and Toxicology Section, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany
| |
Collapse
|
4
|
Wu Y, Deshpande A, Geraci N, Budde P, Sellers V, Velisetty P, Sun C, Strand F, Bhavsar C, Niewold TB, Jensen MA, Kalatskaya I, Sarin KY, Fiorentino D, Bender AT. TLR7/8 Activation in Immune Cells and Muscle by RNA-Containing Immune Complexes: Role in Inflammation and the Pathogenesis of Myositis. Arthritis Rheumatol 2025; 77:190-201. [PMID: 39279150 PMCID: PMC11782111 DOI: 10.1002/art.42989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Activation of endosomal toll-like receptors (TLRs) is one possible driver of inflammation in idiopathic inflammatory myopathies (IIM). We investigated the potential contribution of TLR7 and TLR8 to IIM pathogenesis. METHODS Activation of TLR7/8 in healthy donor peripheral blood mononuclear cells (PBMCs) by immune complexes from patients with IIMs and lupus was tested. Autoantibody profiling of patient IgG samples was performed using a 1581 antigen array. TLR7 and/or TLR8 activation by RNA molecules associated with autoantibodies was assessed. Gene expression in human myoblasts and satellite cells following treatment with supernatants from TLR7/8-activated PBMCs was evaluated by NanoString. C57BL/6 mice were dosed intramuscularly with the TLR7/8 agonist R848 and single-cell RNA-sequencing was performed on the muscle to ascertain the cell types responding to TLR7/8 activation and the downstream effects. RESULTS Overall, 69 patients with IIMs were included with representation of dermatomyositis, polymyositis, and inclusion body myositis subsets. Immune complexes from patients with IIMs, as well as autoantibody-associated RNAs histidyl-transfer RNA, Y1, Y4, and U1, activated PBMCs to produce interferon-α and IL-6 via TLR7/8. Several canonical (Ro60, Ro52, and HIST1H4A) and novel (IL-36RN) autoreactivities correlated highly with TLR7/8 activation. Supernatants from TLR7/8-activated PBMCs had a negative impact on human myoblasts and satellite cells. Endothelial cells were activated by R848 in mouse muscle in vivo in addition to immune cells such as monocytes and macrophages. CONCLUSION Our results suggest that patients with IIMs have autoantibodies in their blood causing TLR7/8 activation, which leads to inflammation in muscles with potential deleterious effects.
Collapse
Affiliation(s)
- Yin Wu
- EMD SeronoBillericaMassachusetts
| | - Aditee Deshpande
- EMD SeronoBillericaMassachusetts
- Present address:
Novo NordiskLexington MA
| | | | | | - Vera Sellers
- EMD SeronoBillericaMassachusetts
- Present address:
NovartisCambridge MA
| | | | | | | | | | | | | | | | | | | | - Andrew T. Bender
- EMD SeronoBillericaMassachusetts
- Present address:
AbbVieWorcesterMassachusetts
| |
Collapse
|
5
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
6
|
Wang T, Song D, Li X, Luo Y, Yang D, Liu X, Kong X, Xing Y, Bi S, Zhang Y, Hu T, Zhang Y, Dai S, Shao Z, Chen D, Hou J, Ballestar E, Cai J, Zheng F, Yang JY. MiR-574-5p activates human TLR8 to promote autoimmune signaling and lupus. Cell Commun Signal 2024; 22:220. [PMID: 38589923 PMCID: PMC11000404 DOI: 10.1186/s12964-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Dan Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xuejuan Li
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing, 400038, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Xiaoyan Liu
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shulin Bi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Tao Hu
- College of Medicine, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Yunyun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Shuang Dai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Zhiqiang Shao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Dahan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Jinpao Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China
| | - Esteban Ballestar
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916, Spain
| | - Jianchun Cai
- Department of Gastrointestinal Surgery, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian, 361005, China.
| | - Feng Zheng
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
- Department of Nephrology, The Second Hospital, Dalian Medical University, Dalian, 116144, China.
- The Advanced Institute for Molecular Medicine, Dalian Medical University, Dalian, 116144, China.
| | - James Y Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, 361102, China.
- Wuhu Hospital of East China Normal University, Wuhu, Anhui, 241000, China.
- Kidney Health Institute, Health Science Center, East China Normal University, Minhang, Shanghai, 200241, China.
| |
Collapse
|
7
|
Wolf C, Lim EL, Mokhtari M, Kind B, Odainic A, Lara-Villacanas E, Koss S, Mages S, Menzel K, Engel K, Dückers G, Bernbeck B, Schneider DT, Siepermann K, Niehues T, Goetzke CC, Durek P, Minden K, Dörner T, Stittrich A, Szelinski F, Guerra GM, Massoud M, Bieringer M, de Oliveira Mann CC, Beltrán E, Kallinich T, Mashreghi MF, Schmidt SV, Latz E, Klughammer J, Majer O, Lee-Kirsch MA. UNC93B1 variants underlie TLR7-dependent autoimmunity. Sci Immunol 2024; 9:eadi9769. [PMID: 38207055 DOI: 10.1126/sciimmunol.adi9769] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Collapse
Affiliation(s)
- Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Mohammad Mokhtari
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Barbara Kind
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Alexandru Odainic
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eusebia Lara-Villacanas
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Sarah Koss
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Mages
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Katharina Menzel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Kerstin Engel
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Gregor Dückers
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Benedikt Bernbeck
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | - Dominik T Schneider
- Department of Pediatrics, Klinikum Dortmund, University Witten/Herdecke, Dortmund 44145, Germany
| | | | - Tim Niehues
- Department of Pediatrics, Helios Klinik Krefeld, Krefeld 47805, Germany
| | - Carl Christoph Goetzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Kirsten Minden
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Anna Stittrich
- Labor Berlin Charité-Vivantes GmbH, Department of Human Genetics, Berlin 13353, Germany
| | - Franziska Szelinski
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Department of Medicine, Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Gabriela Maria Guerra
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Mona Massoud
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin 13125, Germany
| | | | - Eduardo Beltrán
- Institute for Clinical Neuroimmunology, BioMedizinisches Zentrum, Ludwig-Maximilians-Universität Munich, Munich 82152, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin 10178, Germany
| | - Mir-Farzin Mashreghi
- Deutsches Rheuma-Forschungszentrum (DRFZ), an institute of the Leibniz Association, Berlin 10117, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
| | - Johanna Klughammer
- Gene Center, Systems Immunology, Ludwig-Maximilians-Universität Munich, Munich 81377, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
8
|
Kalliolias GD, Basdra EK, Papavassiliou AG. Targeting TLR Signaling Cascades in Systemic Lupus Erythematosus and Rheumatoid Arthritis: An Update. Biomedicines 2024; 12:138. [PMID: 38255243 PMCID: PMC10813148 DOI: 10.3390/biomedicines12010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.
Collapse
Affiliation(s)
- George D. Kalliolias
- Hospital for Special Surgery, Arthritis & Tissue Degeneration, New York, NY 10021, USA;
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
9
|
Miyake K, Shibata T, Fukui R, Murakami Y, Sato R, Hiranuma R. Endosomal Toll-Like Receptors as Therapeutic Targets for Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:97-108. [PMID: 38467975 DOI: 10.1007/978-981-99-9781-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nucleic acid (NA)-sensing Toll-like receptors (TLRs) reside in the endosomal compartment of innate immune cells, such as macrophages and dendritic cells. NAs transported to the endosomal compartment are degraded by DNases and RNases. Degradation products, including single-stranded DNA, oligoRNA, and nucleosides, are recognized by TLR7, TLR8, and TLR9 to drive the defense responses against pathogens. NA degradation influences endosomal TLR responses by generating and degrading TLR ligands. TLR ligand accumulation because of impaired NA degradation causes constitutive TLR activation, leading to autoinflammatory and autoimmune diseases. Furthermore, some genes associated with these diseases promote endosomal TLR responses. Therefore, endosomal TLRs are promising therapeutic targets for TLR-mediated inflammatory diseases, and novel drugs targeting TLRs are being developed.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Hiranuma
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Shisha T, Posch MG, Lehmann J, Feifel R, Junt T, Hawtin S, Schuemann J, Avrameas A, Danekula R, Misiolek P, Siegel R, Gergely P. First-in-Human Study of the Safety, Pharmacokinetics, and Pharmacodynamics of MHV370, a Dual Inhibitor of Toll-Like Receptors 7 and 8, in Healthy Adults. Eur J Drug Metab Pharmacokinet 2023; 48:553-566. [PMID: 37532923 PMCID: PMC10480294 DOI: 10.1007/s13318-023-00847-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVE MHV370, a dual antagonist of human Toll-like receptors (TLR) 7 and 8, suppresses cytokines and interferon-stimulated genes in vitro and in vivo, and has demonstrated efficacy in murine models of lupus. This first-in-human study aimed to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of MHV370 in healthy adults, as well as the effects of food consumption on a single dose of MHV370. METHODS This was a phase 1, randomised, placebo-controlled study conducted in three parts. In part A, participants received (3:1) a single ascending dose (SAD) of 1, 3, 10, 20, 40, 80, 160, 320, 640 and 1000 mg MHV370 or placebo. In part B, participants received (3:1) multiple ascending doses (MAD) of 25, 50, 100, 200 and 400 mg MHV370 twice daily (b.i.d) or placebo for 14 days. In part C, participants received an open-label single dose of 200 mg MHV370 under fasted or fed conditions. Safety, pharmacokinetic and pharmacodynamic parameters were evaluated. RESULTS MHV370 was well tolerated, and no safety signal was observed in the study. No dose-limiting adverse events occurred across the dose range evaluated. Plasma concentrations of MHV370 increased with dose (mean [SD] maximum plasma concentrations ranged from 0.97 [0.48] to 1670 [861.0] ng/mL for SAD of 3-1000 mg, 29.5 [7.98] to 759 [325.0] ng/mL for MAD of 25-400 mg b.i.d. on day 1). The intake of food did not have a relevant impact on the pharmacokinetics of MHV370. Pharmacodynamic data indicated time- and dose-dependent inhibition of TLR7-mediated CD69 expression on B cells (100% inhibition at 24 h post-dose starting from SAD 160 mg and MAD 50 mg b.i.d.) and TLR8-mediated TNF release after ex vivo stimulation (>90% inhibition at 24 h post-dose starting from SAD 320 mg and MAD 100 mg b.i.d.). CONCLUSION The safety, pharmacokinetic and pharmacodynamic data support the further development of MHV370 in systemic autoimmune diseases driven by the overactivation of TLR7 and TLR8.
Collapse
Affiliation(s)
- Tamas Shisha
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland.
| | | | | | - Roland Feifel
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Tobias Junt
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Stuart Hawtin
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Jens Schuemann
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Alexandre Avrameas
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Rambabu Danekula
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Patrycja Misiolek
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Richard Siegel
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Peter Gergely
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| |
Collapse
|
11
|
Alper P, Betschart C, André C, Boulay T, Cheng D, Deane J, Faller M, Feifel R, Glatthar R, Han D, Hemmig R, Jiang T, Knoepfel T, Maginnis J, Mutnick D, Pei W, Ruzzante G, Syka P, Zhang G, Zhang Y, Zink F, Zipfel G, Hawtin S, Junt T, Michellys PY. Discovery of the TLR7/8 Antagonist MHV370 for Treatment of Systemic Autoimmune Diseases. ACS Med Chem Lett 2023; 14:1054-1062. [PMID: 37583811 PMCID: PMC10424326 DOI: 10.1021/acsmedchemlett.3c00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
Toll-like receptor (TLR) 7 and TLR8 are endosomal sensors of the innate immune system that are activated by GU-rich single stranded RNA (ssRNA). Multiple genetic and functional lines of evidence link chronic activation of TLR7/8 to the pathogenesis of systemic autoimmune diseases (sAID) such as Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). This makes targeting TLR7/8-induced inflammation with small-molecule inhibitors an attractive approach for the treatment of patients suffering from systemic autoimmune diseases. Here, we describe how structure-based optimization of compound 2 resulted in the discovery of 34 (MHV370, (S)-N-(4-((5-(1,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-4-yl)-3-methyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridin-1-yl)methyl)bicyclo[2.2.2]octan-1-yl)morpholine-3-carboxamide). Its in vivo activity allows for further profiling toward clinical trials in patients with autoimmune disorders, and a Phase 2 proof of concept study of MHV370 has been initiated, testing its safety and efficacy in patients with Sjögren's syndrome and mixed connective tissue disease.
Collapse
Affiliation(s)
- Phil Alper
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Claudia Betschart
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Cédric André
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Dai Cheng
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jonathan Deane
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Michael Faller
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Roland Feifel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Ralf Glatthar
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Dong Han
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Rene Hemmig
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Tao Jiang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thomas Knoepfel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jillian Maginnis
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Daniel Mutnick
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Wei Pei
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Giulia Ruzzante
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Peter Syka
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Guobao Zhang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yi Zhang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Florence Zink
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Géraldine Zipfel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stuart Hawtin
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Tobias Junt
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Pierre-Yves Michellys
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|