1
|
Burge KY, Georgescu C, Zhong H, Wilson AP, Gunasekaran A, Yu Z, Franca A, Eckert JV, Wren JD, Chaaban H. Spatial transcriptomics delineates potential differences in intestinal phenotypes of cardiac and classical necrotizing enterocolitis. iScience 2025; 28:112166. [PMID: 40201118 PMCID: PMC11978348 DOI: 10.1016/j.isci.2025.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease, often resulting in multi-organ failure and death. While classical NEC is strictly associated with prematurity, cardiac NEC is a subset of the disease occurring in infants with comorbid congenital heart disease. Despite similar symptomatology, the NEC subtypes vary slightly in presentation and may represent etiologically distinct diseases. We compared ileal spatial transcriptomes of patients with cardiac and classical NEC. Epithelial and immune cells cluster well by cell-type segment and NEC subtype. Differences in metabolism and immune cell activation functionally differentiate the cell-type makeup of the NEC subtypes. The classical NEC phenotype is defined by dysbiosis-induced inflammatory signaling and metabolic acidosis, while that of cardiac NEC involves reduced angiogenesis and endoplasmic reticulum stress-induced apoptosis. Despite subtype-associated clinical and demographic variability, spatial transcriptomics has substantiated pathway and network differences within immune and epithelial segments between cardiac and classical NEC.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P. Wilson
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Aarthi Gunasekaran
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Addison Franca
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey V. Eckert
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Pokorzynski ND, Jones KA, Campagna SR, Groisman EA. Cytoplasmic Mg 2+ supersedes carbon source preference to dictate Salmonella metabolism. Proc Natl Acad Sci U S A 2025; 122:e2424337122. [PMID: 40131949 PMCID: PMC12002343 DOI: 10.1073/pnas.2424337122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Glucose is the preferred carbon source of most studied microorganisms. However, we now report that glucose loses preferred status when the intracellular pathogen Salmonella enterica serovar Typhimurium experiences cytoplasmic magnesium (Mg2+) starvation. We establish that this infection-relevant stress drastically reduces synthesis of cyclic adenosine monophosphate (cAMP), the allosteric activator of the cAMP receptor protein (CRP), master regulator of carbon utilization. The resulting reduction in cAMP concentration, which is independent of carbon source, decreases transcription of CRP-cAMP-activated carbon utilization genes, hinders carbon source uptake, and restricts metabolism, rendering wild-type bacteria phenotypically CRP-. A cAMP-independent allele of CRP overcame the transcriptional, uptake, and metabolic restrictions caused by cytoplasmic Mg2+ starvation and significantly increased transcription of the glucose uptake gene when S. Typhimurium was inside murine macrophages. The reduced preference for glucose exhibited by S. Typhimurium inside macrophages reflects that transcription of the glucose uptake gene requires higher amounts of active CRP-cAMP than transcription of uptake genes for preferred carbon sources, such as gluconate and glycerol. By reducing CRP-cAMP activity, low cytoplasmic Mg2+ alters carbon source preference, adjusting metabolism and growth.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Katarina A. Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN37996
| | - Shawn R. Campagna
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN37996
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| |
Collapse
|
3
|
Kondratskyi A, Bazzone A, Rapedius M, Zerlotti R, Masson B, Sadanandan NP, Parker JL, Santinho A, Moutia M, Thiam AR, Kemp A, Seibertz F, Murciano N, Friis S, Becker N, Obergrussberger A, Barthmes M, George C, George M, Dalrymple D, Gasnier B, Newstead S, Grimm C, Fertig N. Lysosomal Ion Channels and Transporters: Recent Findings, Therapeutic Potential, and Technical Approaches. Bioelectricity 2025; 7:29-57. [PMID: 40342936 PMCID: PMC12056583 DOI: 10.1089/bioe.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
In recent years, there has been a growing interest in lysosomal ion channels and transporters due to their critical role in maintaining lysosomal function and their involvement in a variety of diseases, particularly lysosomal storage diseases, cancer, and neurodegenerative disorders. Recent advancements in research techniques, including manual and automated patch clamp (APC) electrophysiology, solid-supported membrane-based electrophysiology (SSME), and fluorescence-based ion imaging, have further enhanced our ability to investigate lysosomal ion channels and transporters in both physiological and pathological conditions, spurring drug discovery efforts. Several pharmaceutical companies are now developing therapies aimed at modulating these channels and transporters to improve lysosomal function in disease. Small molecules targeting channels like transient receptor potential mucolipin (TRPML) 1 and TMEM175, as well as drugs modulating lysosomal pH, are currently in preclinical and clinical development. This review provides an overview of the role of lysosomal ion channels and transporters in health and disease, highlights the cutting-edge techniques used to study them, and discusses the therapeutic potential of targeting these channels and transporters in the treatment of various diseases. Furthermore, in addition to summarizing recent discoveries, we contribute novel functional data on cystinosin, TRPML1, and two-pore channel 2 (TPC2), utilizing both SSME and APC approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidish Ponath Sadanandan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Joanne L. Parker
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | | | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Arlene Kemp
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | | | | | | | | | | | | | | | | | - David Dalrymple
- SB Drug Discovery a Sygnature Discovery Business, West of Scotland Science Park, Glasgow, UK
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | | |
Collapse
|
4
|
Keener RM, Shi S, Dalapati T, Wang L, Reinoso-Vizcaino NM, Luftig MA, Miller SI, Wilson TJ, Ko DC. Human genetic variation reveals FCRL3 is a lymphocyte receptor for Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626452. [PMID: 39677730 PMCID: PMC11643160 DOI: 10.1101/2024.12.05.626452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Yersinia pestis is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of Y. pestis infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing). We identified a nonsynonymous SNP, rs2282284, in Fc receptor like 3 (FCRL3) associated with bacterial invasion of host cells (p=9×10-8). FCRL3 belongs to the immunoglobulin superfamily and is primarily expressed in lymphocytes. rs2282284 is within a tyrosine-based signaling motif, causing an asparagine-to-serine mutation (N721S) in the most common FCRL3 isoform. Overexpression of FCRL3 facilitated attachment and invasion of non-opsonized Y. pestis. Additionally, FCRL3 colocalized with Y. pestis at sites of cellular attachment, suggesting FCRL3 is a receptor for Y. pestis. These properties were variably conserved across the FCRL family, revealing molecular requirements of attachment and invasion, including an Ig-like C2 domain and a SYK interaction motif. Direct binding was confirmed with purified FCRL5 extracellular domain. Following attachment, invasion of Y. pestis was dependent on SYK and decreased with the N721S mutation. Unexpectedly, this same variant is associated with risk of chronic hepatitis C virus infection in BioBank Japan. Thus, Y. pestis hijacks FCRL proteins, possibly taking advantage of an immune receptor to create a lymphocyte niche during infection.
Collapse
Affiliation(s)
- Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sam Shi
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Samuel I. Miller
- Departments of Genome Sciences, Medicine, and Microbiology, U of Washington, Seattle, WA, USA
| | | | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Lead Contact
| |
Collapse
|
5
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|