1
|
Charles M, Gaiani N, Sanchez MP, Boussaha M, Hozé C, Boichard D, Rocha D, Boulling A. Functional impact of splicing variants in the elaboration of complex traits in cattle. Nat Commun 2025; 16:3893. [PMID: 40274775 PMCID: PMC12022281 DOI: 10.1038/s41467-025-58970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
GWAS conducted directly on imputed whole genome sequence have led to the identification of numerous genetic variants associated with agronomic traits in cattle. However, such variants are often simply markers in linkage disequilibrium with the actual causal variants, which is a limiting factor for the development of accurate genomic predictions. It is possible to identify causal variants by integrating information on how variants impact gene expression into GWAS output. RNA splicing plays a major role in regulating gene expression. Thus, assessing the effect of variants on RNA splicing may explain their function. Here, we use a high-throughput strategy to functionally analyse putative splice-disrupting variants in the bovine genome. Using GWAS, massively parallel reporter assay and deep learning algorithms designed to predict splice-disrupting variants, we identify 38 splice-disrupting variants associated with complex traits in cattle, three of which could be classified as causal. Our results indicate that splice-disrupting variants are widely found in the quantitative trait loci related to these phenotypes. Using our combined approach, we also assess the validity of splicing predictors originally developed to analyse human variants in the context of the bovine genome.
Collapse
Affiliation(s)
- Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Nicolas Gaiani
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Alemu SW, Lopdell TJ, Trevarton AJ, Snell RG, Littlejohn MD, Garrick DJ. Comparison of genomic prediction accuracies in dairy cattle lactation traits using five classes of functional variants versus generic SNP. Genet Sel Evol 2025; 57:20. [PMID: 40217496 PMCID: PMC11987224 DOI: 10.1186/s12711-025-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Genomic selection, typically employing genetic markers from SNP chips, is routine in modern dairy cattle breeding. This study assessed the impact of functional sequence variants on genomic prediction accuracy relative to 50 k SNP chip markers for fat percent, protein percent, milk volume, fat yield, and protein yield in lactating dairy cattle. The functional variants were identified through GWAS, RNA-seq, Histone modification ChIP-seq, ATAC-seq, or were coding variants. The genomic prediction accuracy obtained using each class of functional variants was compared with matched numbers of SNPs randomly selected from the Illumina 50 k SNP chip. RESULTS The investigation revealed that variants identified by GWAS or RNA-seq, significantly improved the prediction accuracy across all five traits. Contributions from ChIP-seq, ATAC-seq, and coding variants varied. Some variants identified using ChIP-seq showed marked improvements, while others reduced accuracy in protein yield predictions. Relative to a matched number of 32,595 SNPs from the SNP chip, pooling all the functional variants demonstrated prediction accuracy increases of 1.76% for fat percent, 2.97% for protein percent, 0.51% for milk volume, and 0.26% for fat yield, but with a slight decrease of 0.43% in protein yield. CONCLUSION The study demonstrates that functional variants can improve prediction accuracy relative to equivalent numbers of variants from a generic SNP panel, with percent traits showing more significant gains than yield traits. The main advantage of using functional variants for genomic prediction was achievement of comparable accuracy using a smaller, more selective set of loci. This is particularly evident in trait-specific scenarios. Our findings indicate that specific combinations of functional variants comprising 16 k variants can achieve genomic prediction accuracy comparable to employing a standard panel of twice the size (32.6 k), especially for percent traits. This highlights the potential for the development of more efficient, trait-focused SNP panels utilizing functional variants.
Collapse
Affiliation(s)
- Setegn Worku Alemu
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand.
- Invermay Agricultural Centre, AgResearch Limited, Mosgiel, New Zealand.
| | | | | | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mathew D Littlejohn
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand
- LIC, Hamilton, New Zealand
| | - Dorian J Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, Hamilton, 3240, New Zealand
| |
Collapse
|
3
|
Fang L, Teng J, Lin Q, Bai Z, Liu S, Guan D, Li B, Gao Y, Hou Y, Gong M, Pan Z, Yu Y, Clark EL, Smith J, Rawlik K, Xiang R, Chamberlain AJ, Goddard ME, Littlejohn M, Larson G, MacHugh DE, O'Grady JF, Sørensen P, Sahana G, Lund MS, Jiang Z, Pan X, Gong W, Zhang H, He X, Zhang Y, Gao N, He J, Yi G, Liu Y, Tang Z, Zhao P, Zhou Y, Fu L, Wang X, Hao D, Liu L, Chen S, Young RS, Shen X, Xia C, Cheng H, Ma L, Cole JB, Baldwin RL, Li CJ, Van Tassell CP, Rosen BD, Bhowmik N, Lunney J, Liu W, Guan L, Zhao X, Ibeagha-Awemu EM, Luo Y, Lin L, Canela-Xandri O, Derks MFL, Crooijmans RPMA, Gòdia M, Madsen O, Groenen MAM, Koltes JE, Tuggle CK, McCarthy FM, Rocha D, Giuffra E, Amills M, Clop A, Ballester M, Tosser-Klopp G, Li J, Fang C, Fang M, Wang Q, Hou Z, Wang Q, Zhao F, Jiang L, Zhao G, Zhou Z, Zhou R, Liu H, Deng J, Jin L, Li M, Mo D, Liu X, Chen Y, Yuan X, Li J, Zhao S, Zhang Y, Ding X, Sun D, et alFang L, Teng J, Lin Q, Bai Z, Liu S, Guan D, Li B, Gao Y, Hou Y, Gong M, Pan Z, Yu Y, Clark EL, Smith J, Rawlik K, Xiang R, Chamberlain AJ, Goddard ME, Littlejohn M, Larson G, MacHugh DE, O'Grady JF, Sørensen P, Sahana G, Lund MS, Jiang Z, Pan X, Gong W, Zhang H, He X, Zhang Y, Gao N, He J, Yi G, Liu Y, Tang Z, Zhao P, Zhou Y, Fu L, Wang X, Hao D, Liu L, Chen S, Young RS, Shen X, Xia C, Cheng H, Ma L, Cole JB, Baldwin RL, Li CJ, Van Tassell CP, Rosen BD, Bhowmik N, Lunney J, Liu W, Guan L, Zhao X, Ibeagha-Awemu EM, Luo Y, Lin L, Canela-Xandri O, Derks MFL, Crooijmans RPMA, Gòdia M, Madsen O, Groenen MAM, Koltes JE, Tuggle CK, McCarthy FM, Rocha D, Giuffra E, Amills M, Clop A, Ballester M, Tosser-Klopp G, Li J, Fang C, Fang M, Wang Q, Hou Z, Wang Q, Zhao F, Jiang L, Zhao G, Zhou Z, Zhou R, Liu H, Deng J, Jin L, Li M, Mo D, Liu X, Chen Y, Yuan X, Li J, Zhao S, Zhang Y, Ding X, Sun D, Sun HZ, Li C, Wang Y, Jiang Y, Wu D, Wang W, Fan X, Zhang Q, Li K, Zhang H, Yang N, Hu X, Huang W, Song J, Wu Y, Yang J, Wu W, Kasper C, Liu X, Yu X, Cui L, Zhou X, Kim S, Li W, Im HK, Buckler ES, Ren B, Schatz MC, Li JJ, Palmer AA, Frantz L, Zhou H, Zhang Z, Liu GE. The Farm Animal Genotype-Tissue Expression (FarmGTEx) Project. Nat Genet 2025; 57:786-796. [PMID: 40097783 DOI: 10.1038/s41588-025-02121-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Genetic mutation and drift, coupled with natural and human-mediated selection and migration, have produced a wide variety of genotypes and phenotypes in farmed animals. We here introduce the Farm Animal Genotype-Tissue Expression (FarmGTEx) Project, which aims to elucidate the genetic determinants of gene expression across 16 terrestrial and aquatic domestic species under diverse biological and environmental contexts. For each species, we aim to collect multiomics data, particularly genomics and transcriptomics, from 50 tissues of 1,000 healthy adults and 200 additional animals representing a specific context. This Perspective provides an overview of the priorities of FarmGTEx and advocates for coordinated strategies of data analysis and resource-sharing initiatives. FarmGTEx aims to serve as a platform for investigating context-specific regulatory effects, which will deepen our understanding of molecular mechanisms underlying complex phenotypes. The knowledge and insights provided by FarmGTEx will contribute to improving sustainable agriculture-based food systems, comparative biology and eventual human biomedicine.
Collapse
Affiliation(s)
- Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark.
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing Lin
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhonghao Bai
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Shuli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Dailu Guan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Bingjie Li
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Midlothian, UK
| | - Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yali Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mian Gong
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhangyuan Pan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Konrad Rawlik
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, the University of Edinburgh, Edinburgh, UK
| | - Ruidong Xiang
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Michael E Goddard
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Agriculture, Food and Ecosystem Sciences, the University of Melbourne, Parkville, Victoria, Australia
| | - Mathew Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton, New Zealand
- AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, New Zealand
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, UK
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Dublin, Ireland
| | - John F O'Grady
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Xiangchun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wentao Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ning Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Yazhouwan National Laboratory, Sanya, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dan Hao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Liu
- Yazhouwan National Laboratory, Sanya, China
| | - Siqian Chen
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Robert S Young
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, P. R. China
| | - Xia Shen
- Usher Institute, University of Edinburgh, Edinburgh, UK
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Charley Xia
- Lothian Birth Cohort studies, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - John B Cole
- Council on Dairy Cattle Breeding, Bowie, MD, USA
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program and the Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Nayan Bhowmik
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Joan Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD, USA
| | - Wansheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, the University of Edinburgh, Edinburgh, UK
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | | | - Dominique Rocha
- GABI, AgroParisTech, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- GABI, AgroParisTech, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alex Clop
- Department of Animal Genetics, Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Programme, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | | | - Jing Li
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
- School of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Chao Fang
- LC-Bio Technologies, Co., Ltd, Hangzhou, China
| | - Ming Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Wang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Juan Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Yazhouwan National Laboratory, Sanya, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dongdong Wu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation and Utilization, College of Animal Science, Shandong Agricultural University, Tai'an, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Science, Ürümqi City, China
| | - Claudia Kasper
- Animal GenoPhenomics, Animal Production Systems and Animal Health, Agroscope Posieux, Fribourg, Switzerland
| | - Xinfeng Liu
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiaofei Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Leilei Cui
- School of Life Sciences, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Aging and Disease, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Seyoung Kim
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Hae Kyung Im
- Department of Medicine and Human Genetics, the University of Chicago, Chicago, IL, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Laurent Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA.
| |
Collapse
|
4
|
O'Grady JF, McHugo GP, Ward JA, Hall TJ, Faherty O'Donnell SL, Correia CN, Browne JA, McDonald M, Gormley E, Riggio V, Prendergast JGD, Clark EL, Pausch H, Meade KG, Gormley IC, Gordon SV, MacHugh DE. Integrative genomics sheds light on the immunogenetics of tuberculosis in cattle. Commun Biol 2025; 8:479. [PMID: 40128580 PMCID: PMC11933339 DOI: 10.1038/s42003-025-07846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis (bTB), an infectious disease of cattle that represents a zoonotic threat to humans. Research has shown that the peripheral blood (PB) transcriptome is perturbed during bTB disease but the genomic architecture underpinning this transcriptional response remains poorly understood. Here, we analyse PB transcriptomics data from 63 control and 60 confirmed M. bovis-infected animals and detect 2592 differently expressed genes perturbing multiple immune response pathways. Leveraging imputed genome-wide SNP data, we characterise thousands of cis-expression quantitative trait loci (eQTLs) and show that the PB transcriptome is substantially impacted by intrapopulation genomic variation during M. bovis infection. Integrating our cis-eQTL data with bTB susceptibility GWAS summary statistics, we perform a transcriptome-wide association study and identify 115 functionally relevant genes (including RGS10, GBP4, TREML2, and RELT) and provide important new omics data for understanding the host response to mycobacterial infections that cause tuberculosis in mammals.
Collapse
Affiliation(s)
- John F O'Grady
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - James A Ward
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Sarah L Faherty O'Donnell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin, Ireland
| | - Carolina N Correia
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- Children's Health Ireland, 32 James's Walk, Rialto, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Michael McDonald
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, Zurich, Switzerland
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Isobel C Gormley
- UCD School of Mathematics and Statistics, University College Dublin, Belfield, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland.
- UCD One Health Centre, University College Dublin, Belfield, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
5
|
Bovo S, Ribani A, Fanelli F, Galimberti G, Martelli PL, Trevisi P, Bertolini F, Bolner M, Casadio R, Dall'Olio S, Gallo M, Luise D, Mazzoni G, Schiavo G, Taurisano V, Zambonelli P, Bosi P, Pagotto U, Fontanesi L. Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways. Genet Sel Evol 2025; 57:11. [PMID: 40050712 PMCID: PMC11887101 DOI: 10.1186/s12711-025-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Metabolomics opens novel avenues to study the basic biological mechanisms underlying complex traits, starting from characterization of metabolites. Metabolites and their levels in a biofluid represent simple molecular phenotypes (metabotypes) that are direct products of enzyme activities and relate to all metabolic pathways, including catabolism and anabolism of nutrients. In this study, we demonstrated the utility of merging metabolomics and genomics in pigs to uncover a large list of genetic factors that influence mammalian metabolism. RESULTS We obtained targeted characterization of the plasma metabolome of more than 1300 pigs from two populations of Large White and Duroc pig breeds. The metabolomic profiles of these pigs were used to identify genetically influenced metabolites by estimating the heritability of the level of 188 metabolites. Then, combining breed-specific genome-wide association studies of single metabolites and their ratios and across breed meta-analyses, we identified a total of 97 metabolite quantitative trait loci (mQTL), associated with 126 metabolites. Using these results, we constructed a human-pig comparative catalog of genetic factors influencing the metabolomic profile. Whole genome resequencing data identified several putative causative mutations for these mQTL. Additionally, based on a major mQTL for kynurenine level, we designed a nutrigenetic study feeding piglets that carried different genotypes at the candidate gene kynurenine 3-monooxygenase (KMO) varying levels of tryptophan and demonstrated the effect of this genetic factor on the kynurenine pathway. Furthermore, we used metabolomic profiles of Large White and Duroc pigs to reconstruct metabolic pathways using Gaussian Graphical Models, which included perturbation of the identified mQTL. CONCLUSIONS This study has provided the first catalog of genetic factors affecting molecular phenotypes that describe the pig blood metabolome, with links to important metabolic pathways, opening novel avenues to merge genetics and nutrition in this livestock species. The obtained results are relevant for basic and applied biology and to evaluate the pig as a biomedical model. Genetically influenced metabolites can be further exploited in nutrigenetic approaches in pigs. The described molecular phenotypes can be useful to dissect complex traits and design novel feeding, breeding and selection programs in pigs.
Collapse
Affiliation(s)
- Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Flaminia Fanelli
- Endocrinology Research Group, Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Endocrinology and Prevention and Care of Diabetes, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacology and Biotechnology, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacology and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefania Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Diana Luise
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gianluca Mazzoni
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Laboratory on Animal Nutrition and Feeding for Livestock Sustainability and Resilience, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Uberto Pagotto
- Endocrinology Research Group, Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Endocrinology and Prevention and Care of Diabetes, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di Sant'Orsola, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Yuan C, Gillon A, Gualdrón Duarte JL, Takeda H, Coppieters W, Georges M, Druet T. Evaluation of genomic selection models using whole genome sequence data and functional annotation in Belgian Blue cattle. Genet Sel Evol 2025; 57:10. [PMID: 40038647 DOI: 10.1186/s12711-025-00955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The availability of large cohorts of whole-genome sequenced individuals, combined with functional annotation, is expected to provide opportunities to improve the accuracy of genomic selection (GS). However, such benefits have not often been observed in initial applications. The reference population for GS in Belgian Blue Cattle (BBC) continues to grow. Combined with the availability of reference panels of sequenced individuals, it provides an opportunity to evaluate GS models using whole genome sequence (WGS) data and functional annotation. RESULTS Here, we used data from 16,508 cows, with phenotypes for five muscular development traits and imputed at the WGS level, in combination with in silico functional annotation and catalogs of putative regulatory variants obtained from experimental data. We evaluated first GS models using the entire WGS data, with or without functional annotation. At this marker density, we were able to run two approaches, assuming either a highly polygenic architecture (GBLUP) or allowing some variants to have larger effects (BayesRR-RC, a Bayesian mixture model), and observed an increased reliability compared to the official GBLUP model at medium marker density (on average 0.016 and 0.018 for GBLUP and BayesRR-RC, respectively). When functional annotation was used, we observed slightly higher reliabilities with an extension of GBLUP that included multiple polygenic terms (one per functional group), while reliabilities decreased with BayesRR-RC. We then used large subsets of variants selected based on functional information or with a linkage disequilibrium (LD) pruning approach, which allowed us to evaluate two additional approaches, BayesCπ and Bayesian Sparse Linear Mixed Model (BSLMM). Reliabilities were higher for these panels than for the WGS data, with the highest accuracies obtained when markers were selected based on functional information. In our setting, BSLMM systematically achieved higher reliabilities than other methods. CONCLUSIONS GS with large panels of functional variants selected from WGS data allowed a significant increase in reliability compared to the official genomic evaluation approach. However, the benefits of using WGS and functional data remained modest, indicating that there is still room for improvement, for example by further refining the functional annotation in the BBC breed.
Collapse
Affiliation(s)
- Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium.
| | - Alain Gillon
- Walloon Breeders Association, Rue Des Champs Elysées, 4, 5590, Ciney, Belgium
| | | | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| |
Collapse
|
7
|
Zhu B, Wang T, Niu Q, Wang Z, Hay EH, Xu L, Chen Y, Zhang L, Gao X, Gao H, Cao Y, Zhao Y, Xu L, Li J. Multiple strategies association revealed functional candidate FASN gene for fatty acid composition in cattle. Commun Biol 2025; 8:208. [PMID: 39930002 PMCID: PMC11811213 DOI: 10.1038/s42003-025-07604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Fatty acid composition (FA) is an important indicator of meat quality in beef cattle. We investigated potential functional candidate genes for FA in beef cattle by integrating genomic and transcriptomic dataset through multiple strategies. In this study, we observed 65 SNPs overlapping with five candidate genes (CCDC57, FASN, HDAC11, ALG14, and ZMAT4) using two steps association based on the imputed sequencing variants. Using multiple traits GWAS, we further identified three significant SNPs located in the upstream of FASN and one SNP (chr19:50779529) was embedded in FASN. Of those, two SNPs were further identified as the cis-eQTL based on transcriptomic analysis of muscle tissues. Moreover, the knockdown of FASN yielded a significant reduction in intracellular triglyceride content in preadipocytes and impeded lipid droplet accumulation in adipocytes. RNA-seq analysis of preadipocytes with FASN interference revealed that the differentially expressed genes were enriched in cell differentiation and lipid metabolic pathway. Our study underscored the indispensable role of FASN in orchestrating adipocyte differentiation, and fatty acid metabolism. The integrative analysis with multiple strategies may contribute to the understanding of the genetic architecture of FA in farm animals.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, China
| | - Tianzhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qunhao Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zezhao Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - El Hamidi Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, USA
| | - Lei Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lupei Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xue Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huijiang Gao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yang Cao
- Key laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Yumin Zhao
- Key laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Changchun, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
8
|
Zhao Z, Niu Q, Wu J, Wu T, Xie X, Wang Z, Zhang L, Gao H, Gao X, Xu L, Zhu B, Li J. Integrating multi-layered biological priors to improve genomic prediction accuracy in beef cattle. Biol Direct 2024; 19:147. [PMID: 39741345 DOI: 10.1186/s13062-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging. METHODS We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML). We next estimated and ranked variant scores for 43 economically important traits, and compared the prediction accuracy of the top and bottom sets using genomic best linear unbiased prediction (GBLUP) and BayesB model. In addition, we annotated the variants from GWAS with functional feature sets and performed enrichment analysis. RESULTS We observed significant enrichments for 32 functional categories in 11 feature sets. The evolutionary related sets (conservation regions and selection signatures) contributed significantly to heritability (31.78-fold and 14.48-fold enrichment), while metabolomics and transcriptomics showed low heritability enrichments. We observed a significant increase in prediction accuracy using the top feature set variants compared to whole-genome sequencing (WGS) data. The prediction accuracy based on the top 10% variant set showed an average increase of 11.6% and 7.54% using BayesB and GBLUP across traits, respectively. Notably, the greatest increase of 31.52% was obtained for spleen weight (SW) using BayesB. Also, we found that the top 10% of variants show strong enrichment with weight related QTLs based on the Cattle QTL database. CONCLUSIONS Our findings suggest that integrating biological prior information from multiple layers can enhance our understanding of the genetic architecture underlying complex traits and further improve genomic prediction in beef cattle.
Collapse
Affiliation(s)
- Zhida Zhao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qunhao Niu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayuan Wu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianyi Wu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueyuan Xie
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zezhao Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Northern Agriculture and Livestock Husbandry Technology Innovation Center, Hohhot, 010010, China.
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Yuan C, Gualdrón Duarte JL, Takeda H, Georges M, Druet T. Evaluation of heritability partitioning approaches in livestock populations. BMC Genomics 2024; 25:690. [PMID: 39003468 PMCID: PMC11246585 DOI: 10.1186/s12864-024-10600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Heritability partitioning approaches estimate the contribution of different functional classes, such as coding or regulatory variants, to the genetic variance. This information allows a better understanding of the genetic architecture of complex traits, including complex diseases, but can also help improve the accuracy of genomic selection in livestock species. However, methods have mainly been tested on human genomic data, whereas livestock populations have specific characteristics, such as high levels of relatedness, small effective population size or long-range levels of linkage disequilibrium. RESULTS Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations where a single functional class had increased contribution to heritability, we observed that the estimators were unbiased but had low precision. When causal variants were enriched in variants with low (< 0.05) or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes had variable contributions to heritability, estimators showed higher levels of variation and confounding between certain categories was observed. In addition, estimators from small categories were particularly imprecise. However, the estimates and their ranking were still informative about the contribution of the classes. We also demonstrated that using methods that estimate the contribution of a single category at a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to phenotypes for muscular development and height and estimated that, on average, variants in open chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, respectively). CONCLUSIONS Heritability partitioning approaches should be used cautiously in livestock populations, in particular for small categories. Two-component approaches that fit only one functional category at a time lead to biased estimators and should not be used.
Collapse
Affiliation(s)
- Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium.
| | | | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| |
Collapse
|
10
|
Ghoreishifar M, Chamberlain AJ, Xiang R, Prowse-Wilkins CP, Lopdell TJ, Littlejohn MD, Pryce JE, Goddard ME. Allele-specific binding variants causing ChIP-seq peak height of histone modification are not enriched in expression QTL annotations. Genet Sel Evol 2024; 56:50. [PMID: 38937662 PMCID: PMC11212393 DOI: 10.1186/s12711-024-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Genome sequence variants affecting complex traits (quantitative trait loci, QTL) are enriched in functional regions of the genome, such as those marked by certain histone modifications. These variants are believed to influence gene expression. However, due to the linkage disequilibrium among nearby variants, pinpointing the precise location of QTL is challenging. We aimed to identify allele-specific binding (ASB) QTL (asbQTL) that cause variation in the level of histone modification, as measured by the height of peaks assayed by ChIP-seq (chromatin immunoprecipitation sequencing). We identified DNA sequences that predict the difference between alleles in ChIP-seq peak height in H3K4me3 and H3K27ac histone modifications in the mammary glands of cows. RESULTS We used a gapped k-mer support vector machine, a novel best linear unbiased prediction model, and a multiple linear regression model that combines the other two approaches to predict variant impacts on peak height. For each method, a subset of 1000 sites with the highest magnitude of predicted ASB was considered as candidate asbQTL. The accuracy of this prediction was measured by the proportion where the predicted direction matched the observed direction. Prediction accuracy ranged between 0.59 and 0.74, suggesting that these 1000 sites are enriched for asbQTL. Using independent data, we investigated functional enrichment in the candidate asbQTL set and three control groups, including non-causal ASB sites, non-ASB variants under a peak, and SNPs (single nucleotide polymorphisms) not under a peak. For H3K4me3, a higher proportion of the candidate asbQTL were confirmed as ASB when compared to the non-causal ASB sites (P < 0.01). However, these candidate asbQTL did not enrich for the other annotations, including expression QTL (eQTL), allele-specific expression QTL (aseQTL) and sites conserved across mammals (P > 0.05). CONCLUSIONS We identified putatively causal sites for asbQTL using the DNA sequence surrounding these sites. Our results suggest that many sites influencing histone modifications may not directly affect gene expression. However, it is important to acknowledge that distinguishing between putative causal ASB sites and other non-causal ASB sites in high linkage disequilibrium with the causal sites regarding their impact on gene expression may be challenging due to limitations in statistical power.
Collapse
Affiliation(s)
- Mohammad Ghoreishifar
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Ruidong Xiang
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claire P Prowse-Wilkins
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
van den Berg I, Chamberlain AJ, MacLeod IM, Nguyen TV, Goddard ME, Xiang R, Mason B, Meier S, Phyn CVC, Burke CR, Pryce JE. Using expression data to fine map QTL associated with fertility in dairy cattle. Genet Sel Evol 2024; 56:42. [PMID: 38844868 PMCID: PMC11154999 DOI: 10.1186/s12711-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Mike E Goddard
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brett Mason
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | | | | | | | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
12
|
Tang Y, Zhang J, Li W, Liu X, Chen S, Mi S, Yang J, Teng J, Fang L, Yu Y. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle. BMC Genomics 2024; 25:445. [PMID: 38711039 DOI: 10.1186/s12864-024-10346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.
Collapse
Affiliation(s)
- Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Leonard AS, Mapel XM, Pausch H. Pangenome-genotyped structural variation improves molecular phenotype mapping in cattle. Genome Res 2024; 34:300-309. [PMID: 38355307 PMCID: PMC10984387 DOI: 10.1101/gr.278267.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Expression and splicing quantitative trait loci (e/sQTL) are large contributors to phenotypic variability. Achieving sufficient statistical power for e/sQTL mapping requires large cohorts with both genotypes and molecular phenotypes, and so, the genomic variation is often called from short-read alignments, which are unable to comprehensively resolve structural variation. Here we build a pangenome from 16 HiFi haplotype-resolved cattle assemblies to identify small and structural variation and genotype them with PanGenie in 307 short-read samples. We find high (>90%) concordance of PanGenie-genotyped and DeepVariant-called small variation and confidently genotype close to 21 million small and 43,000 structural variants in the larger population. We validate 85% of these structural variants (with MAF > 0.1) directly with a subset of 25 short-read samples that also have medium coverage HiFi reads. We then conduct e/sQTL mapping with this comprehensive variant set in a subset of 117 cattle that have testis transcriptome data, and find 92 structural variants as causal candidates for eQTL and 73 for sQTL. We find that roughly half of the top associated structural variants affecting expression or splicing are transposable elements, such as SV-eQTL for STN1 and MYH7 and SV-sQTL for CEP89 and ASAH2 Extensive linkage disequilibrium between small and structural variation results in only 28 additional eQTL and 17 sQTL discovered when including SVs, although many top associated SVs are compelling candidates.
Collapse
Affiliation(s)
| | - Xena M Mapel
- Animal Genomics, ETH Zurich, 8092 Zurich, Switzerland
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
15
|
Zhao S, Crouse W, Qian S, Luo K, Stephens M, He X. Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits. Nat Genet 2024; 56:336-347. [PMID: 38279041 PMCID: PMC10864181 DOI: 10.1038/s41588-023-01648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Many methods have been developed to leverage expression quantitative trait loci (eQTL) data to nominate candidate genes from genome-wide association studies. These methods, including colocalization, transcriptome-wide association studies (TWAS) and Mendelian randomization-based methods; however, all suffer from a key problem-when assessing the role of a gene in a trait using its eQTLs, nearby variants and genetic components of other genes' expression may be correlated with these eQTLs and have direct effects on the trait, acting as potential confounders. Our extensive simulations showed that existing methods fail to account for these 'genetic confounders', resulting in severe inflation of false positives. Our new method, causal-TWAS (cTWAS), borrows ideas from statistical fine-mapping and allows us to adjust all genetic confounders. cTWAS showed calibrated false discovery rates in simulations, and its application on several common traits discovered new candidate genes. In conclusion, cTWAS provides a robust statistical framework for gene discovery.
Collapse
Affiliation(s)
- Siming Zhao
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| | - Wesley Crouse
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Sheng Qian
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Department of Statistics, University of Chicago, Chicago, IL, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Noce D, Foco L, Orth-Höller D, König E, Barbieri G, Pietzner M, Ghasemi-Semeskandeh D, Coassin S, Fuchsberger C, Gögele M, Del Greco M F, De Grandi A, Summerer M, Wheeler E, Langenberg C, Lass-Flörl C, Pramstaller PP, Kronenberg F, Würzner R, Pattaro C. Genetic determinants of complement activation in the general population. Cell Rep 2024; 43:113611. [PMID: 38159276 DOI: 10.1016/j.celrep.2023.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.
Collapse
Affiliation(s)
- Damia Noce
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Luisa Foco
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria; MB-LAB - Clinical Microbiology Laboratory, Franz-Fischer-Str. 7b, 6020 Innsbruck, Austria
| | - Eva König
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Giulia Barbieri
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Dariush Ghasemi-Semeskandeh
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Christian Fuchsberger
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Martin Gögele
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Fabiola Del Greco M
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Alessandro De Grandi
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Monika Summerer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| | - Peter Paul Pramstaller
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria.
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria.
| | - Cristian Pattaro
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Volta 21, 39100 Bolzano, Italy.
| |
Collapse
|
17
|
Mapel XM, Kadri NK, Leonard AS, He Q, Lloret-Villas A, Bhati M, Hiltpold M, Pausch H. Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle. Nat Commun 2024; 15:674. [PMID: 38253538 PMCID: PMC10803364 DOI: 10.1038/s41467-024-44935-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breeding bulls are well suited to investigate inherited variation in male fertility because they are genotyped and their reproductive success is monitored through semen analyses and thousands of artificial inseminations. However, functional data from relevant tissues are lacking in cattle, which prevents fine-mapping fertility-associated genomic regions. Here, we characterize gene expression and splicing variation in testis, epididymis, and vas deferens transcriptomes of 118 mature bulls and conduct association tests between 414,667 molecular phenotypes and 21,501,032 genome-wide variants to identify 41,156 regulatory loci. We show broad consensus in tissue-specific and tissue-enriched gene expression between the three bovine tissues and their human and murine counterparts. Expression- and splicing-mediating variants are more than three times as frequent in testis than epididymis and vas deferens, highlighting the transcriptional complexity of testis. Finally, we identify genes (WDR19, SPATA16, KCTD19, ZDHHC1) and molecular phenotypes that are associated with quantitative variation in male fertility through transcriptome-wide association and colocalization analyses.
Collapse
Affiliation(s)
- Xena Marie Mapel
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Naveen Kumar Kadri
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Qiongyu He
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | | | - Meenu Bhati
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
- Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Maya Hiltpold
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland.
| |
Collapse
|
18
|
Gualdrón Duarte JL, Yuan C, Gori AS, Moreira GCM, Takeda H, Coppieters W, Charlier C, Georges M, Druet T. Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals. Genet Sel Evol 2023; 55:83. [PMID: 38017417 PMCID: PMC10683324 DOI: 10.1186/s12711-023-00857-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. RESULTS After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. CONCLUSIONS Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.
Collapse
Affiliation(s)
- José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium.
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium.
| | - Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Ann-Stephan Gori
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium
| | - Gabriel C M Moreira
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Wouter Coppieters
- GIGA Genomic Platform, GIGA-R, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| |
Collapse
|
19
|
Sanchez MP, Tribout T, Kadri NK, Chitneedi PK, Maak S, Hozé C, Boussaha M, Croiseau P, Philippe R, Spengeler M, Kühn C, Wang Y, Li C, Plastow G, Pausch H, Boichard D. Sequence-based GWAS meta-analyses for beef production traits. Genet Sel Evol 2023; 55:70. [PMID: 37828440 PMCID: PMC10568825 DOI: 10.1186/s12711-023-00848-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Combining the results of within-population genome-wide association studies (GWAS) based on whole-genome sequences into a single meta-analysis (MA) is an accurate and powerful method for identifying variants associated with complex traits. As part of the H2020 BovReg project, we performed sequence-level MA for beef production traits. Five partners from France, Switzerland, Germany, and Canada contributed summary statistics from sequence-based GWAS conducted with 54,782 animals from 15 purebred or crossbred populations. We combined the summary statistics for four growth, nine morphology, and 15 carcass traits into 16 MA, using both fixed effects and z-score methods. RESULTS The fixed-effects method was generally more informative to provide indication on potentially causal variants, although we combined substantially different traits in each MA. In comparison with within-population GWAS, this approach highlighted (i) a larger number of quantitative trait loci (QTL), (ii) QTL more frequently located in genomic regions known for their effects on growth and meat/carcass traits, (iii) a smaller number of genomic variants within the QTL, and (iv) candidate variants that were more frequently located in genes. MA pinpointed variants in genes, including MSTN, LCORL, and PLAG1 that have been previously associated with morphology and carcass traits. We also identified dozens of other variants located in genes associated with growth and carcass traits, or with a function that may be related to meat production (e.g., HS6ST1, HERC2, WDR75, COL3A1, SLIT2, MED28, and ANKAR). Some of these variants overlapped with expression or splicing QTL reported in the cattle Genotype-Tissue Expression atlas (CattleGTEx) and could therefore regulate gene expression. CONCLUSIONS By identifying candidate genes and potential causal variants associated with beef production traits in cattle, MA demonstrates great potential for investigating the biological mechanisms underlying these traits. As a complement to within-population GWAS, this approach can provide deeper insights into the genetic architecture of complex traits in beef cattle.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Thierry Tribout
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Praveen K Chitneedi
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Steffen Maak
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Eliance, 75595, Paris, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pascal Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Romain Philippe
- INRAE, USC1061 GAMAA, Université de Limoges, 87060, Limoges, France
| | | | - Christa Kühn
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
- Agricultural and Environmental faculty, University Rostock, 18059, Rostock, Germany
- Friedrich-Loeffler-Institut (FLI), 17493, Greifswald, Insel Riems, Germany
| | - Yining Wang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, T4L 1W1, Canada
| | - Changxi Li
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, T4L 1W1, Canada
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, T6G 2HI, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, T6G 2HI, Canada
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8092, Zurich, Switzerland
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|