1
|
Lan LY, Liu TC, Gao SM, Li Q, Yang L, Fei HL, Zhong XK, Wang YX, Zhu CY, Abel C, Kappeler PM, Huang LN, Fan PF. Comparative study of gut microbiota reveals the adaptive strategies of gibbons living in suboptimal habitats. NPJ Biofilms Microbiomes 2025; 11:29. [PMID: 39953051 PMCID: PMC11828964 DOI: 10.1038/s41522-025-00653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
Wild animals face numerous challenges in less ideal habitats, including the lack of food as well as changes in diet. Understanding how the gut microbiomes of wild animals adapt to changes in food resources within suboptimal habitats is critical for their survival. Therefore, we conducted a longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome assembly over one year. The three gibbon species exhibited significantly different gut microbial diversity and composition. N. hainanus showed the lowest alpha diversity and highest nestedness, suggesting a more specialized and potentially stable microbial community in terms of composition, while H. tianxing displayed high species turnover and low nestedness, reflecting a more dynamic microbial ecosystem, which may indicate greater sensitivity to environmental changes or a flexible response to habitat variability. The gut microbial community of N. concolor was influenced by homogeneous selection in the deterministic process, primarily driven by Prevotellaceae. In contrast, the gut microbial communities of H. tianxing and N. hainanus were influenced by dispersal limitation in the stochastic process, driven by Acholeplasmataceae and Fibrobacterota, respectively. Further, the microbial response patterns to leaf feeding in N. hainanus differed from those of the other two gibbon species. In conclusion, this first cross-species comparative study provides initial insights into the different ecological adaptive strategies of gut microbiomes from a point of community assembly, which could contribute to the long-term conservation of wild primates. In this study, we conducted longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome (composition, alpha diversity, beta diversity and assembly process) over one year.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tai-Cong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Han-Lan Fei
- College of Life Sciences, China West Normal University, Nanchong, P.R. China
| | - Xu-Kai Zhong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yu-Xin Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chang-Yue Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Christoph Abel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
2
|
Kraus JB, Huang ZP, Li YP, Cui LW, Wang SJ, Li JF, Liu F, Wang Y, Strier KB, Xiao W. Variation in monthly and seasonal elevation use impacts behavioral and dietary flexibility in Rhinopithecus bieti. Am J Primatol 2024; 86:e23627. [PMID: 38613565 DOI: 10.1002/ajp.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Black-and-white snub-nosed monkeys (Rhinopithecus bieti) rely on behavioral and dietary flexibility to survive in temperate latitudes at high-elevation habitats characterized by climate and resource seasonality. However, little is known about how elevation influences their behavioral and dietary flexibility at monthly or seasonal scales. We studied an isolated R. bieti population at Mt. Lasha in the Yunling Provincial Nature Reserve, Yunnan, China, between May 2008 and August 2016 to assess the impacts of elevation on feeding behavior and diet. Across our sample, R. bieti occupied elevations between 3031 and 3637 m above mean sea level (amsl), with a 315.1 m amsl range across months and a 247.3 m amsl range across seasons. Contrary to expectations, individuals spent less time feeding when ranging across higher elevations. Lichen consumption correlated with elevation use across months and seasons, with individuals spending more time feeding on this important resource at higher elevations. Leaf consumption only correlated with elevation use during the spring. Our results suggest that R. bieti do not maximize their food intake at higher elevations and that monthly and seasonal changes in lichen and leaf consumption largely explain variation in elevation use. These findings shed light on the responses of R. bieti to environmental change and offer insight into strategies for conserving their habitats in the face of anthropogenic disturbance.
Collapse
Affiliation(s)
- Jacob B Kraus
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
| | - Yan-Pang Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Liang-Wei Cui
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Shuang-Jin Wang
- Party School of YuXi committee of C.P.C, Yuxi, Yunnan, China
| | - Jin-Fa Li
- Administration Bureau of Nuozhadu Provincial Nature Reserve, Pu'er, Yunnan, China
| | - Feng Liu
- Xizang Autonomous Region Research Institute of Forestry Inventory and Planning, Lhasa, China
| | - Yun Wang
- Forestry Bureau of Qianxinan Buyei and Miao Autonomous Prefecture, Guizhou, China
| | - Karen B Strier
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| |
Collapse
|
3
|
Jose L, Lee W, Hanya G, Tuuga A, Goossens B, Tangah J, Matsuda I, Kumar VS. Gut microbial community in proboscis monkeys ( Nasalis larvatus): implications for effects of geographical and social factors. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231756. [PMID: 39050721 PMCID: PMC11265907 DOI: 10.1098/rsos.231756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Recent technological advances have enabled comprehensive analyses of the previously uncharacterized microbial community in the gastrointestinal tracts of numerous animal species; however, the gut microbiota of several species, such as the endangered proboscis monkey (Nasalis larvatus) examined in this study, remains poorly understood. Our study sought to establish the first comprehensive data on the gut microbiota of free-ranging foregut-fermenting proboscis monkeys and to determine how their microbiota are affected locally by environmental factors, i.e. geographical distance, and social factors, i.e. the number of adult females within harem groups and the number of adults and subadults within non-harem groups, in a riverine forest in Sabah, Malaysian Borneo. Using 16S rRNA gene sequencing of 264 faecal samples collected from free-ranging proboscis monkeys, we demonstrated the trend that their microbial community composition is not particularly distinctive compared with other foregut- and hindgut-fermenting primates. The microbial alpha diversity was higher in larger groups and individuals inhabiting diverse vegetation (i.e. presumed to have a diverse diet). For microbial beta diversity, some measures were significant, showing higher values with larger geographical distances between samples. These results suggest that social factors such as increased inter-individual interactions, which can occur with larger groups, as well as physical distances between individuals or differences in dietary patterns, may affect the gut microbial communities.
Collapse
Affiliation(s)
- Lilian Jose
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Wanyi Lee
- National Taiwan University, Taipei10617, Taiwan
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama484-8506, Japan
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
| | - Benoit Goossens
- Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Danau Girang Field Centre, Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah88100, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, CardiffCF10 3AX, UK
| | - Joseph Tangah
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto606-8203, Japan
- Chubu Institute for Advanced Studies, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi487-8501, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah88400, Malaysia
| |
Collapse
|
4
|
Li HB, Sun J, Li LH, Zhou Y, Fang XL, Li BY, Guo LJ, Geng Y, Wang CP, Huang ZP, Garber PA, Yang Y, Cui LW, Xiao W. Effects of provisioning on the activity budget and foraging strategies of black-and-white snub-nosed monkeys (Rhinopithecus bieti) in the Baima Snow Mountain Nature Reserve, Yunnan, China. Am J Primatol 2023; 85:e23548. [PMID: 37661600 DOI: 10.1002/ajp.23548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/30/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Provisioning can significantly affect the ranging patterns, foraging strategies, and time budget of wild primates. In this study, we document for the first time, the effects of provisioning on the activity budget and foraging effort in an Asian colobine. Over 3-years, we used an instantaneous scanning method at 10-min intervals to collect data on the activity budget of a semiprovisioned breeding band (SPB) of black-and-white snub-nosed monkeys (Rhinopithecus bieti) (42-70 individuals) at Xiangguqing (Tacheng), Yunnan, China. We then compared the effects of provisioning in our study band with published data on a sympatric wild nonprovisioned breeding band (NPB) of R. bieti (ca. 360 monkeys) at the same field site. The SPB spent 25.6% of their daytime feeding, 17.1% traveling, 46.9% resting, and 10.3% socializing. In comparison, the NPB devoted more time to feeding (34.9%) and socializing (14.1%), less time to resting (31.3%), and was characterized by a greater foraging effort (1.74 versus 0.96, foraging effort = (feeding + traveling)/resting; see Methods). There was no difference between bands in the proportion of their activity budget devoted to traveling (15.7% vs. 17.1%). In addition, the SPB exhibited a more consistent activity budget and foraging effort across all seasons of the year compared to the NPB. These findings suggest that the distribution, availability, and productivity of naturally occurring feeding sites is a major determinant of the behavioral strategies and activity budget of R. bieti. Finally, a comparison of our results with data on six nonprovisioned R. bieti bands indicates that caution must be raised in meta-analyses or intraspecific comparisons of primate behavioral ecology that contain data generated from both provisioned and nonprovisioned groups.
Collapse
Affiliation(s)
- Hong-Bo Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Jing Sun
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Lun-Hong Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Xue-Lan Fang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Bo-Yan Li
- Institute of Resource Conservation, Lashihai Plateau Wetland Provincial Nature Reserve Bureau, Lijiang, Yunnan, China
| | - Long-Jie Guo
- Nujiang Administration Bureau, Gaoligongshan National Nature Reserve, Liuku, Yunnan, China
| | - Ying Geng
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Chun-Ping Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China
| | - Paul A Garber
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
| | - Yin Yang
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China
| | - Liang-Wei Cui
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali University, Dali, Yunnan, China
- International Center for Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| |
Collapse
|
5
|
Xi L, Han J, Wen X, Zhao L, Qin X, Luo S, Lv D, Song S. Species variations in the gut microbiota of captive snub-nosed monkeys. Front Endocrinol (Lausanne) 2023; 14:1250865. [PMID: 37780618 PMCID: PMC10534982 DOI: 10.3389/fendo.2023.1250865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Snub-nosed monkeys are species in danger of extinction due to habitat fragmentation and human activities. Captivity has been suggested as an Auxiliary Conservation Area (ASA) strategy. However, little is known about the adaptation of different species of snub-nosed monkeys to captive environments. Methods This study compared the gut microbiota between Rhinopithecus bieti, R. brelichi, and R. roxellana under identical captive conditions to provide insights for improving captive conservation strategies. Results The results showed that these three Rhinopithecus species shared 80.94% of their Operational Taxonomic Unit (OTU), indicating high similarity in gut microbiota composition. The predominant phyla were Firmicutes and Bacteroidetes for all three Rhinopithecus species, but differences were observed in diversity, characteristic bacterial communities, and predicted function. Significant enrichment of cellulolytic families, including Ruminococcaceae, Clostridiales vadinBB60 group, Christensenellaceae, and Erysipelotrichaceae, and pathways involved in propionate and butyrate metabolism in the gut of R. bieti suggested that it may have a superior dietary fiber utilization capacity. In contrast, Bacteroidetes, Ruminoccaceae, and Trichospiraceae were more abundant in R. brelichi and R. roxellana, and were associated with saccharide and glycan metabolic pathways. Moreover, R. brelichi and R. roxellana also had higher similarity in microbiota composition and predicted function. Discussion In conclusion, the results demonstrate that host species are associated with the composition and function of the gut microbiota in snub-nosed monkeys. Thus, host species should be considered when formulating nutritional strategies and disease surveillance in captive snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Longfei Zhao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dianhong Lv
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Xi L, Wen X, Jia T, Han J, Qin X, Zhang Y, Wang Z. Comparative study of the gut microbiota in three captive Rhinopithecus species. BMC Genomics 2023; 24:398. [PMID: 37452294 PMCID: PMC10349479 DOI: 10.1186/s12864-023-09440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Snub-nosed monkeys are highly endangered primates and their population continues to decline with the habitat fragmentation. Artificial feeding and breeding is an important auxiliary conservation strategy. Studies have shown that changes and imbalances in the gut microbiota often cause gastrointestinal problems in captive snub-nosed monkeys. Here, we compare the gut microbiota composition, diversity, and predicted metabolic function of three endangered species of snub-nosed monkeys (Rhinopithecus bieti, R. brelichi, and R. roxellana) under the same captive conditions to further our understanding of the microbiota of these endangered primates and inform captive conservation strategies. 16 S rRNA gene sequencing was performed on fecal samples from 15 individuals (R. bieti N = 5, R. brelichi N = 5, R. roxellana N = 5). RESULTS The results showed that the three Rhinopithecus species shared 24.70% of their amplicon sequence variants (ASVs), indicating that the composition of the gut microbiota varied among the three Rhinopithecus species. The phyla Firmicutes and Bacteroidetes represented 69.74% and 18.45% of the core microbiota. In particular, analysis of microbiota diversity and predicted metabolic function revealed a profound impact of host species on the gut microbiota. At the genus level, significant enrichment of cellulolytic genera including Rikenellaceae RC9 gut group, Ruminococcus, Christensenellaceae R7 group, UCG 004 from Erysipelatoclostridiaceae, and UCG 002 and UCG 005 from Oscillospiraceae, and carbohydrate metabolism including propionate and butyrate metabolic pathways in the gut of R. bieti indicated that R. bieti potentially has a stronger ability to use plant fibers as energy substances. Bacteroides, unclassified Muribaculaceae, Treponema, and unclassified Eubacterium coprostanoligenes group were significantly enriched in R. brelichi. Prevotella 9, unclassified Lachnospiraceae, and unclassified UCG 010 from Oscillospirales UCG 010 were significantly enriched in R. roxellana. Among the predicted secondary metabolic pathways, the glycan biosynthesis and metabolism had significantly higher relative abundance in the gut of R. brelichi and R. roxellana than in the gut of R. bieti. The above results suggest that different Rhinopithecus species may have different strategies for carbohydrate metabolism. The Principal coordinate analysis (PCoA) and Unweighted pair-group method with arithmetic mean (UPGMA) clustering tree revealed fewer differences between the gut microbiota of R. brelichi and R. roxellana. Correspondingly, no differences were detected in the relative abundances of functional genes between the two Rhinopithecus species. CONCLUSION Taken together, the study highlights that host species have an effect on the composition and function of the gut microbiota of snub-nosed monkeys. Therefore, the host species should be considered when developing nutritional strategies and investigating the effects of niche on the gut microbiota of snub-nosed monkeys.
Collapse
Affiliation(s)
- Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China
| | - Xiaohui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu Normal University, Shangqiu, China.
| | - Xinxi Qin
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Yanzhen Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Zihan Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|
7
|
Li Y, Yan Y, Fu H, Jin S, He S, Wang Z, Dong G, Li B, Guo S. Does diet or macronutrients intake drive the structure and function of gut microbiota? Front Microbiol 2023; 14:1126189. [PMID: 36860485 PMCID: PMC9970161 DOI: 10.3389/fmicb.2023.1126189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Shift of ingestive behavior is an important strategy for animals to adapt to change of the environment. We knew that shifts in animal dietary habits lead to changes in the structure of the gut microbiota, but we are not sure about if changes in the composition and function of the gut microbiota respond to changes in the nutrient intake or food items. To investigate how animal feeding strategies affect nutrient intakes and thus alter the composition and digestion function of gut microbiota, we selected a group of wild primate group for the study. We quantified their diet and macronutrients intake in four seasons of a year, and instant fecal samples were analyzed by high-throughput sequencing of 16S rRNA and metagenomics. These results demonstrated that the main reason that causes seasonal shifts of gut microbiota is the macronutrient variation induced by seasonal dietary differences. Gut microbes can help to compensate for insufficient macronutrients intake of the host through microbial metabolic functions. This study contributes to a deeper understanding of the causes of seasonal variation in host-microbial variation in wild primates.
Collapse
Affiliation(s)
- Yuhang Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yujie Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hengguang Fu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shiyu Jin
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shujun He
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zi Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Guixin Dong
- Guangdong Chimelong Group Co., Ltd., Guangzhou, China,Guangdong South China Rare Wild Animal Species Conservation Center, Zhuhai, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Shaanxi Institute of Zoology, Xi’an, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China,*Correspondence: Songtao Guo,
| |
Collapse
|